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HUREWICZ THEOREM FOR EXTENSION DIMENSION

N. BRODSKY AND A. CHIGOGIDZE

Abstract. We prove a new selection theorem for multivalued mappings
of C-space. Using this theorem we prove extension dimensional version of
Hurewicz theorem for a closed mapping f : X → Y of k-space X onto para-
compact C-space Y : if for finite CW -complex M we have e-dimY ≤ [M ] and
for every point y ∈ Y and every compactum Z with e-dimZ ≤ [M ] we have
e-dim(f−1(y) × Z) ≤ [L] for some CW -complex L, then e-dimX ≤ [L].

1. Introduction

The classical Hurewicz theorem states that for a mapping of finite-dimensional
compacta f : X → Y we have

dimX ≤ dimY + dimf, where dimf = max{dim(f−1(y) | y ∈ Y }.

There are several approaches to extension dimensional generalization of Hure-
wicz theorem [6],[3],[1],[7],[8],[9].

Using the idea from [3] we improve Theorem 7.6 from [1]:

Theorem 3.1. Let f : X → Y be a closed mapping of a k-space X onto para-

compact C-space Y . Suppose that e-dimY ≤ [M ] for a finite CW -complex M .

If for every point y ∈ Y and for every compactum Z with e-dimZ ≤ [M ] we

have e-dim(f−1(y) × Z) ≤ [L] for some CW -complex L, then e-dimX ≤ [L].

The notion of extension dimension was introduced by Dranishnikov [4]: for a
CW -complex L a space X is said to have extension dimension ≤ [L] (notation:
e-dimX ≤ [L]) if any mapping of its closed subspace A ⊂ X into L admits an
extension to the whole space X.

To prove Theorem 3.1 we need an extension dimensional version of Uspen-
skij’s selection theorem [11]. In section 2 we prove Theorem 2.8 on selections of
multivalued mappings of C-space. Then Theorem 2.5 helps us to prove Theo-
rem 2.9 — a needed version of Uspenskij’s theorem.

Filtrations of multivalued maps are proved to be very useful for construction
of continuous selections [10], [1]. And we state our selection theorems in terms
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of filtrations. Note that Valov [12] used filtrations to prove a selection theorem
for mappings of finite C-spaces.

Let us recall some definitions and introduce our notations. A space X is called
a k-space if U ⊂ X is open in X whenever U ∩ C is relatively open in C for
every compact subset C of X. The graph of a multivalued mapping F : X → Y

is the subset ΓF = {(x, y) ∈ X × Y : y ∈ F (x)} of the product X × Y .
We denote by covX the collection of all coverings of the space X. For a cover

ω of a space X and for a subset A ⊆ X let St(A, ω) denote the star of the set A
with respect to ω. We say that a subset A ⊂ X refines a cover ω ∈ covX if A
is contained in some element of ω. A covering ω′ ∈ covX strongly star refines a
covering ω ∈ covX if for any element W ∈ ω′ the set St(W,ω′) refines ω.

Definition 1.1. A topological space X is called C-space if for each sequence
{ωi}i≥1 of open covers of X, there is an open cover Σ of X of the form ∪∞

i=1σi

such that for each i ≥ 1, σi is a pairwise disjoint collection which refines ωi.

If the space X is paracompact, we can choose the cover Σ to be locally finite
and every collection σi to be discrete.

Definition 1.2. A multivalued mapping F : X → Y is said to be strongly lower

semicontinuous (briefly, strongly l.s.c.) if for any point x ∈ X and any compact
set K ⊂ F (x) there exists a neighborhood V of x such that K ⊂ F (z) for every
z ∈ V .

Definition 1.3. Let L be a CW -complex. A pair of spaces V ⊂ U is said to
be [L]-connected (resp., [L]c-connected) if for every paracompact space X (resp.,
compact metric space X) of extension dimension e-dimX ≤ [L] and for every
closed subspace A ⊂ X any mapping of A into V can be extended to a mapping
of X into U .

An increasing1 sequence of subspaces Z0 ⊂ Z1 ⊂ · · · ⊂ Z is called a filtration

of space Z. A sequence of multivalued mappings {Fk : X → Y } is called a
filtration of multivalued mapping F : X → Y if {Fk(x)} is a filtration of F (x)
for any x ∈ X.

Definition 1.4. A filtration of multivalued mappings {Gi : X → Y } is said to
be fiberwise [L]c-connected if for any point x ∈ X and any i the pair Gi(x) ⊂
Gi+1(x) is [L]c-connected.

2. Selection theorems

The following notion of stably [L]-connected filtration of multivalued map-
pings provides a key property of the filtration for our construction of continuous
selections.

1We consider only increasing filtrations indexed by a segment of the integral series.
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Definition 2.1. A pair F ⊂ H of multivalued mappings from X to Y is called
stably [L]-connected if every point x ∈ X has a neighborhood Ox such that the
pair F (Ox) ⊂ ∩z∈Ox

H(z) is [L]-connected.
We say that the pair F ⊂ H is called stably [L]-connected with respect to

a covering ω ∈ covX, if for any W ∈ ω the pair F (W ) ⊂ ∩x∈WH(x) is [L]-
connected.

A filtration {Fi} of multivalued mappings is called stably [L]-connected if
every pair Fi ⊂ Fi+1 is stably [L]-connected.

Clearly, any stably [L]-connected pair of multivalued maps of a space X is
stably [L]-connected with respect to some covering of X.

We denote by Q the Hilbert cube. We identify a space Y with the subspace
Y ×{0} of the product Y ×Q and denote by prY the projection of Y ×Q onto
Y .

Definition 2.2. For a subspace Z ⊂ Y ×Q we say that Y projectively contains

Z. We say that a multivalued mapping F : X → Y projectively contains a
multivalued mapping G : X → Y ×Q if for any point x ∈ X the set prY ◦G(x)
is contained in F (x).

Lemma 2.3. Let L be a finite CW -complex. If a topological space Y contains a

compactum K of extension dimension e-dimK ≤ [L] such that the pair K ⊂ Y

is [L]c-connected, then Y projectively contains a compactum K ′ of extension

dimension e-dimK ′ ≤ [L] such that K lies in K ′ and the pair K ⊂ K ′ is [L]-
connected.

Proof. There exists AE([L])-compactum K ′ of extension dimension e-dimK ′ ≤
[L] containing the given compactum K [2]. Clearly, the pair K ⊂ K ′ is [L]-
connected. Since e-dimK ′ ≤ [L], there exists a mapping p : K ′ → Y extending
the inclusion of K into Y .

It is easy to see that there exists a mapping q : K ′ → Q such that q−1(0) = K

and q is an embedding on K ′ \K. Now define an embedding j : K ′ → Y × Q

as j = p × q. Since q−1(0) = K, the mapping j coincide with p on K which is
inclusion on K.

Definition 2.4. We say that a filtration F0 ⊂ F1 ⊂ . . . of multivalued map-
pings from X to Y projectively contains a filtration G0 ⊂ G1 ⊂ . . . of multi-
valued mappings from X to Y × Q if for any point x ∈ X and any n the set
prY ◦Gn(x) is contained in Fn(x).

Theorem 2.5. For a finite CW -complex L any fiberwise [L]c-connected filtra-

tion of strongly l.s.c. multivalued mappings of paracompact space X to a topo-

logical space Y projectively contains stably [L]-connected filtration of compact-

valued mappings.
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Proof. For a given fiberwise [L]c-connected filtration F0 ⊂ F1 ⊂ . . . of strongly
l.s.c. multivalued mappings we construct stably [L]-connected filtration G0 ⊂
G1 ⊂ . . . of compact-valued mappings Gn : X → Y ×Qn as follows: successively
for every n ≥ 0 we construct a covering ωn = {W n

λ }λ∈Λn
∈ covX and a family of

subcompacta {Kn
λ}λ∈Λn

of Y ×Qn, and define the mapping Gn by the formula

Gn(x) = ∪{Kn
λ | x ∈W n

λ }.

First, we construct G0, i.e. the covering ω0 and the family {K0
λ}λ∈Λ0

. Since F0

is strongly l.s.c., there exists a locally finite open covering ω−1 = {W−1
λ }λ∈Λ

−1
∈

covX and a family {M−1
λ }λ∈Λ

−1
of points in Y such that W−1

λ ×M−1
λ ⊂ ΓF0

for
any λ ∈ Λ−1. Denote by H0 a multivalued mapping taking a point x ∈ X to
the set H0(x) = ∪{M−1

λ | x ∈W−1
λ }. Note that H0(x) is contained in F0(x) and

consists of finitely many points. By Lemma 2.3 for any x ∈ X there exists a

compactum Ĥ0(x) ⊂ F1(x) ×Q of extension dimension e-dimĤ0(x) ≤ [L] such

that the pair H0(x) ⊂ Ĥ0(x) is [L]-connected. Since F1 is strongly l.s.c., any

point x ∈ X has a neighborhood O0(x) such that the product O0(x)× Ĥ0(x) is
contained in ΓF1

× Q. Since X is paracompact, we can choose neighborhoods
O0(x) in such a way that the covering O0 = {O0(x)}x∈X strongly star refines
ω−1. Let ω0 = {W 0

λ}λ∈Λ0
be a locally finite open cover of X refining O0. For

every λ ∈ Λ0 we fix a point xλ such that W 0
λ ⊂ O0(xλ) and put M0

λ = Ĥ0(xλ).
For every λ ∈ Λ0 we fix α(λ) ∈ Λ−1 such that St(W 0

λ ,O0) ⊂ W−1
α(λ) and put

K0
λ = M−1

α(λ).

Inductive step of our construction is similar to the first step. Suppose that
a covering ωn−1 = {W n−1

λ }λ∈Λn−1
∈ covX and a family {Mn−1

λ }λ∈Λn−1
of com-

pacta in Y × Qn−1 are already constructed such that e-dimMn−1
λ ≤ [L] and

the product W n−1
λ × Mn−1

λ is contained in ΓFn
× Qn for any λ ∈ Λn−1. De-

note by Hn a multivalued mapping taking a point x ∈ X to the compactum
Hn(x) = ∪{Mn−1

λ | x ∈ W n−1
λ }. Note that Hn(x) is contained in Fn(x) × Qn

and has extension dimension e-dimHn(x) ≤ [L]. By Lemma 2.3 for any x ∈ X

there exists a compactum Ĥn(x) ⊂ Fn+1(x) × Qn+1 of extension dimension

e-dimĤn(x) ≤ [L] such that the pair Hn(x) ⊂ Ĥn(x) is [L]-connected. Since
Fn+1 is strongly l.s.c., any point x ∈ X has a neighborhood On(x) such that

the product On(x) × Ĥn(x) is contained in ΓFn+1
× Qn+1. Since X is para-

compact, we can choose neighborhoods On(x) in such a way that the covering
On = {On(x)}x∈X strongly star refines ωn−1. Let ωn = {W n

λ }λ∈Λn
be a locally

finite open cover of X refining On. For every λ ∈ Λn we fix a point xλ such that

W n
λ ⊂ On(xλ) and put Mn

λ = Ĥn(xλ). For every λ ∈ Λn we fix α(λ) ∈ Λn−1

such that St(W n
λ ,On) ⊂W n−1

α(λ) and put Kn
λ = Mn−1

α(λ).

To show that the pair Gn−1 ⊂ Gn is stably [L]-connected, we prove that the
pair Gn−1(W

n
λ ) ⊂ ∩{Gn(x) | x ∈ W n

λ } is [L]-connected for any W n
λ ∈ ωn. By

the construction of Gn, the set Kn
λ is contained in ∩{Gn(x) | x ∈ W n

λ }. We
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know that the pair Hn−1(xα(λ)) ⊂ Ĥn−1(xα(λ)) = Mn−1
α(λ) = Kn

λ is [L]-connected.

Therefore it is enough to show the following inclusion:

Gn−1(W
n
λ ) =

⋃
{Kn−1

β |W n
λ ∩W n−1

β 6= ∅} ⊂ ∪{Mn−2
ν | xα(λ) ∈W n−2

ν } = Hn−1(xα(λ))

which follows from the fact that W n
λ ∩W n−1

β 6= ∅ implies xα(λ) ∈ W n−2
α(β) (note

that Mn−2
α(β) = Kn−1

β ). By the choice of α(λ) we have W n
λ ⊂ On−1(xα(λ)). Then

W n
λ ∩W n−1

β 6= ∅ implies On−1(xα(λ)) ∩W n−1
β 6= ∅ and xα(λ) ∈ On−1(xα(λ)) ⊂

St(W n−1
β ,On−1) ⊂W n−2

α(β) .

Definition 2.6. For a space Z a pair of spaces V ⊂ U is said to be Z-connected

if for every closed subspace A ⊂ Z any mapping of A into V can be extended
to a mapping of Z into U .

Definition 2.7. A pair F ⊂ H of multivalued mappings from X to Y is called
stably Z-connected if every point x ∈ X has a neighborhood Ox such that the
pair F (Ox) ⊂ ∩z∈Ox

H(z) is Z-connected.
We say that the pair F ⊂ H is called stably Z-connected with respect to

a covering ω ∈ covX, if for any W ∈ ω the pair F (W ) ⊂ ∩x∈WH(x) is Z-
connected.

A filtration {Fi} of multivalued mappings is called stably Z-connected if every
pair Fi ⊂ Fi+1 is stably Z-connected.

Theorem 2.8. Let F : X → Y be a multivalued mapping of paracompact C-

space X to a topological space Y . If F admits infinite stably X-connected filtra-

tion of multivalued mappings, then F has a singlevalued continuous selection.

Proof. Let {Fi}
∞
i=−1 be the given filtration of F . Let {ωi}

∞
i=−1 be a sequence

of coverings of X such that ωi+1 refines ωi and the pair Fi ⊂ Fi+1 is stably
X-connected with respect to the covering ωi. Since X is paracompact C-space,
there exists a locally finite closed cover Σ of X of the form Σ = ∪∞

i=0σi such
that σi is discrete collection refining ωi. Define Σn = ∪n

i=0σi. We will construct
a continuous selection f of F extending it successively over the sets Σn.

First, we construct f0 : Σ0 → Y . We define f0 separately on every element s
of the discrete collection σ0: take a point p ∈ F−1(s) and put f0(s) = p. Since
the set s refines ω0, then p ∈ F0(x) for any x ∈ s and therefore f0 is a selection
of F0|Σ0

.
Suppose that we already constructed fn — a continuous selection of Fn|Σn

.
Let us define fn+1 on arbitrary element Z of discrete collection σn+1. Since Σ
is locally finite, the set A = Z ∩ Σn is closed in X. Since fn is a selection of
Fn, then fn(A) is contained in Fn(Z). Since the pair Fn(Z) ⊂ ∩x∈ZFn+1(x) is
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X-connected, we can extend fn|A to a mapping f ′
n : Z → ∩x∈ZFn+1(x). Clearly,

f ′
n is a selection of Fn+1|Z . We define fn+1 on the set Z as f ′

n.
Finally, we define f to be equal to fn on the set Σn.

Theorem 2.9. Let L be a finite CW -complex and F : X → Y be a multivalued

mapping of paracompact C-space X of extension dimension e-dimX ≤ [L] to

a topological space Y . If F admits infinite fiberwise [L]c-connected filtration

of strongly l.s.c. multivalued mappings, then F has a singlevalued continuous

selection.

Proof. By Theorem 2.5, the mapping F ′ : X → Y × Q defined as F ′(x) =
F (x)×Q contains a stably [L]-connected filtration of multivalued mappings. By
Theorem 2.8 F ′ has a singlevalued continuous selection f ′. Then the mapping
f = prY ◦ f ′ is a singlevalued continuous selection of F .

3. Hurewicz theorem

The proof of the following theorem is similar to the proof of Theorem 2.4
from [3].

Theorem 3.1. Let f : X → Y be a closed mapping of k-space X onto para-

compact C-space Y . Suppose that e-dimY ≤ [M ] for a finite CW -complex M .

If for every point y ∈ Y and for every compactum Z with e-dimZ ≤ [M ] we

have e-dim(f−1(y) × Z) ≤ [L] for some CW -complex L, then e-dimX ≤ [L].

Proof. Suppose A ⊂ X is closed and g : A → L is a map. We are going to
find a continuous extension g̃ : X → L of g. Let K be the cone over L with
a vertex v. We denote by C(X,K) the space of all continuous maps from X

to K equipped with the compact-open topology. We define a multivalued map
F : Y → C(X,K) as follows:

F (y) = {h ∈ C(X,K) | h(f−1(y)) ⊂ K \ {v} and h|A = g}.

Claim. F admits continuous singlevalued selection.
If ϕ : Y → C(X,K) is a continuous selection for F , then the mapping h : X → K

defined by h(x) = ϕ(f(x))(x) is continuous on every compact subset of X and
because X is a k-space, h is continuous. Since ϕ(f(x)) ∈ F (f(x)) for every
x ∈ X, we have h(X) ⊂ K \ {v}. Now if π : K \ {v} → L denotes the natural
retraction, then g̃ = π ◦ h : X → L is the desired continuous extension of h.

Proof of the claim. We are going to apply Theorem 2.9 to infinite filtration
F ⊂ F ⊂ F ⊂ . . . . To do this, we have to show that F is strongly l.s.c. and
that the pair F (y) ⊂ F (y) is [M ]c-connected for every point y ∈ Y .

First, we show that F is strongly l.s.c. Let y0 ∈ Y and P ⊂ F (y0) be compact.
We have to find a neighborhood V of y0 in Y such that P ⊂ F (y) for every
y ∈ V . For every x ∈ X define a subset P (x) = {h(x) | h ∈ P} of K. Since
P ⊂ C(X,K) is compact and X is a k-space, by the Ascoli theorem, each
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P (x) is compact and P is evenly continuous. This easily implies that the set
W = {x ∈ X | P (x) ⊂ K \ {v}} is open in X and, obviously, f−1(y0) ⊂ W .
Since f is closed, there exists a neighborhood V of y0 in Y with f−1(V ) ⊂ W .
Then, according to the choice of W and the definition of F , we have P ⊂ F (y)
for every y ∈ V .

Fix an arbitrary point y ∈ Y . Let us prove that the pair F (y) ⊂ F (y) is
[M ]c-connected. Consider a pair of compacta B ⊂ Z where e-dimZ ≤ [M ] and
a mapping ϕ : B → F (y). Since B ×X is a k-space (as a product of a compact
space and a k-space), the map ψ : B × X → K defined as ψ(b, x) = ϕ(b)(x)
is continuous. Extend ψ to a set Z × A letting ψ(z, a) = g(a). Clearly, ψ
takes the set Z × f−1(y) ∩ (Z × A ∪ B × X) into K \ {v} ∼= L × [0, 1). Since
e-dim(Z × f−1(y)) ≤ [L], we can extend ψ over the set Z × f−1(y) to take
it into K \ {v}. Finally extend ψ over Z × X as a mapping into AE-space
K. Now define an extension ϕ̃ : Z → F (y) of the mapping ϕ by the formula
ϕ̃(z)(x) = ψ(z, x).

Corollary 3.2 (cf. Theorem 2.25 from [6]). Let f : X → Y be a mapping of

finite-dimensional compacta where e-dimY = [M ] for finite CW -complex M .

If for some CW -complex L we have e-dim(f−1(y) × Y ) ≤ [L] for every point

y ∈ Y , then e-dimX ≤ [L].

Proof. By Theorem 6.3 from [5] for any compactum Z with e-dimZ ≤ e-dimY
we have e-dim(f−1(y) × Z) ≤ [L]. Thus, we can apply Theorem 3.1
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