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EXTENSION DIMENSION AND C-SPACES

ALEX CHIGOGIDZE AND VESKO VALOV

Abstract. Some generalizations of the classical Hurewicz formula are ob-
tained for extension dimension and C-spaces. A characterization of the class
of metrizable spaces which are absolute neighborhood extensors for all metriz-
able C-spaces is also given.

1. Introduction

The dimension lowering Hurewicz theorem states that if f : X → Y is a closed
map, then dimX ≤ dim f + dimY , where dim f = sup{dim f−1(y) : y ∈ Y } (it
was first proved by Hurewicz [18] for metric compacta and later extended [24]
for paracompact spaces; see also [20], [21]). In the present paper we prove a
version of Hurewicz’s theorem for extension dimension e-dim (precise definition
of this concept is given in Section 2). The “dimesional scale” corresponding
to the extension dimension is much finer than the usual integer-valued one.
Roughly speaking extension dimension of a space is (determined by) a complex.
For instance, the inequality dimX ≤ n is equivalent to e-dimX ≤ S

n and the
inequality dimGX ≤ n is equivalent to e-dimX ≤ K(G, n) (K(G, n) denotes
the corresponding Eilenberg-MacLain complex). Extension dimension allows
us to detect new properties of spaces generated by the new scale. Moreover a
variety of known facts can now be viewed from a more general point of view.

One of the first such generalizations of the classical Hurewicz inequality was
obtained in [13]: If f : X → Y is a light map (i.e. dim f = 0) between compact
spaces, then e-dimX ≤ e-dimY . This observation, combined with a result
of Pasynkov [22], yields another generalization of the Hurewicz formula: If
dim f ≤ n and X, Y are finite-dimensional metric compacta, then e-dimX ≤
e-dim(Y ×I

n). The most general extension of the Hurewicz formula was obtained
recently in [12]: If e-dim(Y × f−1(y)) ≤ K for every y ∈ Y , then e-dimX ≤
K provided X and Y are finite-dimensional metric compacta with Y being
dimensionally full-valued and K being a countable CW -complex.
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2 A. Chigogidze and V. Valov

It is clear now that the Hurewicz formula can be generalized in several possible
directions. One of them is to replace the inequality dim f ≤ n by e-dimf−1(y) ≤
K for every y ∈ Y and leave Y to be finite-dimensional, say dimY = m. Note
that the inequality dimX ≤ n + m from the Hurewicz formula is equivalent
to e-dimX ≤ S

n+m and S
n+m = ΣmS

n, where ΣmS
n denotes the m-iterated

suspension of S
n. Consequently dimX ≤ n+m if and only if e-dimX ≤ ΣmS

n.
These observations “justify” our first results (for simplicity, they are not given
in their most general forms; complete versions are recoreded below as Theorem
2.4 and Corollary 2.7) as “extensional analogues” of the Hurewicz formula.

Theorem. Let f : X → Y be a closed surjection of metrizable spaces and
dimY ≤ m. If K is a CW -complex such that e-dim(Im × f−1(y)) ≤ K for
any y ∈ Y , then e-dimX ≤ K.

Corollary. Let f : X → Y and the spaces X, Y be as in the above Theorem.
Then e-dimX ≤ ΣmK provided e-dimf−1(y) ≤ K for any y ∈ Y .

The second part of this paper deals with C-spaces [1] (see also [16]), pre-
dominantly with the class C of all metrizable C-spaces. It is well known that
C contains (strongly) countable-dimensional metrizable spaces, i.e. metrizable
spaces which are countable union of (closed) finite-dimensional subsets, but
there exists a metric C-compactum which is not countable-dimensional [23].
Hurewicz type theorem is known [17] to be true for paracompact C-spaces (i.e.
if f : X → Y is a closed surjection between paracompact spaces and if Y and
all fibers f−1(y), y ∈ Y , are C-spaces, then X also is a C-space). Extensional
properties of X in such a situation are discussed in Theorem 3.2. In particular,
we conclude (Corollary 3.3) that absolute extensors for the class C, denoted by
AE(C), are precisely aspherical absolute neighbourhood extensors for the same
class (ANE(C)). Moreover in Theorem 3.6 we present description of ANE(C)-
spaces and provide an answer to a corresponding question of F. Ancel [3, Ques-
tion 5.13(c)]. Another implication of Theorem 3.6 is that any subclass of C
which contains strongly countable-dimensional spaces, has the same absolute
(neighborhood) extensors as the class C. In particular, if M is such a proper
subclass of C, then M can not be distinguished by existence of a metric space
K such that e-dimX ≤ K if and only if X ∈ M (J. Dijkstra [8] arrived to the
same observation for the classes Mα of all metrizable spaces with transfinite
inductive dimension ≤ α, where α is an infinite ordinal).

The authors are grateful to the referee whose comments and suggestions led
to a substantial improvement of the original exposition.

2. Generalized Hurewicz’s theorems for extension dimension

All spaces considered in this paper are at least completely regular and all
single-valued maps are continuous.
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A space K is called an absolute (neighborhood) extensor1 of X (notation:
K ∈ A(N)E(X)) if every map f : A → K, where defined on a closed subspace
A ofX, admits an extention over the wholeX (respectively, over a neighborhood
of A in X). Next let us introduce a relation ≤ for CW -complexes. Following
[10] (see also [11], [4]), we say that L ≤ K if for each space X the condition
L ∈ AE(X) implies the condition K ∈ AE(X). Equivalence classes of CW -
complexes with respect to this relation are called extension types. The above
defined relation creates a partial order in the collection of extension types of
complexes. This partial order is still denoted by ≤ and the extension type [K]
of a complex K for simplicity is still denoted by K. Note that under these
definitions the collection of extension types of all complexes has both maximal
ans minimal elements. The minimal element is the extension type of the 0-
dimensional spehere S

0 (i.e. the two-point discrete space) and the maximal
element is obviously the extension type of the one-point space (or equivalently,
of any contractible CW -complex). Finally the extension dimension of a space
X is the minimum of extension types of complexes K satisfying the relation
K ∈ AE(X): e-dimX = min{[K] : K ∈ AE(X)}. For simplicity below we
write e-dimX ≤ K instead of e-dimX ≤ [K].

The cone of a space X (notation: Cone(X)) is the quotient setX×[0, 1]/(X×
{1}) with the following topology: U is open in Cone(X) iff U ∩ (X × [0, 1)) is
open in X × [0, 1) with the product topology and, if the vertex v belongs to U ,
then X × (t, 1) ⊂ U for some 0 < t < 1. We need the following result of Dydak
[14]: If K is a space with at least two points, then K ∈ ANE(X) if and only if
e-dimX ≤ Cone(K).

Lemma 2.1. Let H ⊂ X be a zero-set in X and e-dimX ≤ K. Then every
map f : H → Cone(K)\{v} extends to a map from X into Cone(K)\{v}.

Proof. Let π1 : Cone(K)\{v} → K and π2 : Cone(K) → [0, 1] be the natural
projections. Then f = (f1, f2) with fi = πi ◦ f , i = 1, 2. Since e-dimX ≤ K
implies e-dimX ≤ Cone(K) (by the Dydak result mentioned above), there
exists a map g : X → Cone(K) extending f . Then p = π2 ◦ g extends f2.
Fix a function q : X → [0, 1] such that H = q−1(0) and define s : X → [0, 1)
by s(x) = (1 − q(x))p(x). Since e-dimX ≤ K, f1 can be extended to a map
h : X → K. Then f = (h, s) : X → Cone(K)\{v} is the required extension of
f .

Everywhere below C(X,M) denotes the space of all continuous maps from X
into M equipped with the compact-open topology. A set-valued map φ : X →
2Y is called strongly lower semi-continuous (br., strongly lsc) if for any x ∈ X

1In these notes we follow the standard definition of the concept of absolute (neighbour-
hood) extensor. It should be noted however that in certain situations this definition is not
satisfactory and requires a modification. Such an approach is developed in [4], [5], [6].
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and a compact set P ⊂ φ(x) there exists a neighborhood U of x such that
P ⊂ φ(z) for every z ∈ U . Here, 2Y stands for the family of all nonempty
subsets of Y . We also write X is Cn to denote that every continuous image of
a k-sphere in X, k ≤ n, is contractible in X.

Proposition 2.2. Suppose f : X → Y is a closed surjection such that X is a k-
space, K ∈ ANE(Im×X) and e-dim(Im×f−1(y)) ≤ K for any y ∈ Y . Let M be
the cone of K with a vertex v and h : A→ K a map with A ⊂ X being a zero-set.
Then the set-valued map φ : Y → 2C(X,M), φ(y) = {g ∈ C(X,M) : g(f−1(y)) ⊂
M\{v} and g(x) = h(x) for all x ∈ A} is strongly lsc and each φ(y) is Cm−1.

Proof. Claim 1. φ(y) 6= ∅ for each y ∈ Y .

Observe first thatK ∈ ANE(Im×X) implies M ∈ AE(Im×X), in particular,
M ∈ AE(X). For fixed y ∈ Y extend h|(f−1(y)∩A) to a map g1 : f−1(y) → K
(such an extension exists because f−1(y) is a closed subset of I

m × f−1(y)), so
e-dimf−1(y) ≤ K). Then g1 and h define a map from f−1(y)∪A into K which
is extendable to a map g : X → M . Obviously, g(f−1(y)) ⊂ K and g|A = h|A,
so g ∈ φ(y).

Claim 2. φ is strongly lsc.

Let y0 ∈ Y and P ⊂ φ(y0) be compact. We have to find a neighborhood V of
y0 in Y such that P ⊂ φ(y) for every y ∈ V . Let P (x) = {g(x) : g ∈ P}, x ∈ X.
Since P ⊂ C(X,M) is compact and X is a k-space, by the Ascoli theorem, each
P (x) is compact and P is evently continuous. This easily implies that the set
W = {x ∈ X : P (x) ⊂ M\{v}} is open in X and, obviously, f−1(y0) ⊂ W .
Because f is closed, there exists a neighborhood V of y0 in Y with f−1(V ) ⊂W .
Then, according to the choice of W and the definition of φ, P ⊂ φ(y) for every
y ∈ V .

Claim 3. Each φ(y) is Cm−1.

For a fixed y ∈ Y take an arbitrary map u : S
n−1 → φ(y), where n ≤ m. We

are going to show that u can be extended continuously to a map from I
n into

φ(y) (we identify S
n−1 with the boundary of I

n). Since S
n−1 × X is a k-space

(as a product of a compact space and a k-space), the map u1 : S
n−1 ×X → M ,

u1(z, x) = u(z)(x), is continuous (see [15]). Because u1(z, x) = h(x) for every
(z, x) ∈ S

n−1 × A, we can extend u1|(S
n−1 × A) to a map u2 : I

n × A → K,
u2(z, x) = h(x). Then, we have a closed subset H = (Sn−1 × f−1(y)) ∪ (In ×
(f−1(y)∩A)) of I

n × f−1(y) and a map u3 : H → M\{v} defined by u3|(S
n−1 ×

f−1(y)) = u1|(S
n−1×f−1(y)) and u3|(I

n×(f−1(y)∩A)) = u2|(I
n×(f−1(y)∩A)).

Since S
n−1 and f−1(y) ∩ A are zero-sets in I

n and f−1(y), respectively, both
S

n−1×f−1(y) and I
n×(f−1(y)∩A) are zero-sets in I

n×f−1(y), so isH . Note that
e-dim(In×f−1(y)) ≤ K because I

n×f−1(y) is closed in I
m×f−1(y). Therefore,

by Lemma 2.1, u3 extends to a map u4 : I
n × f−1(y) → M\{v}. Now, let F be
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the union of the sets F1 = I
n × f−1(y), F2 = I

n × A and F3 = S
n−1 × X. We

define the map p : F → M by p|F1 = u4, p|F2 = u2 and p|F3 = u1. Obviously,
F is closed in I

n × X. Since M ∈ AE(In × X), there exists an extension
q : I

n × X → M of p. To finish the proof of Claim 3, observe that q generates
the map u : I

n → C(X,M), u(z)(x) = q(z, x). Moreover, q(z, x) = h(x) for any
(z, x) ∈ I

n × A and q(In × f−1(y)) ⊂ M\{v}. So, u is a map from I
n to φ(y)

which extends u.

Now we need the following result of E. Michael [25, Remark 2].

Proposition 2.3. Let X be paracompact with dimX ≤ m and Y an arbitrary
space. Then every strongly lsc mapping ϕ : X → 2Y has a continuous selection
provided ϕ(x) is Cm−1 for each x ∈ X.

Theorem 2.4. Let f : X → Y be a closed surjection with X a k-space and
Y paracompact of dimension dimY ≤ m. If K is any space such that K ∈
ANE(Im ×X) and e-dim(Im × f−1(y)) ≤ K for any y ∈ Y , then e-dimX ≤ K.

Proof. Suppose A ⊂ X is closed and h : A → K is a map. We are go-
ing to find a continuous extension h : X → K of h. Let M be the cone
of K with a vertex v. Since M ∈ AE(X), there exists a map q : X →
M extending h. Then q−1(K) is a zero-set in X (because K is such a set
in M) containing A. Therefore, we can assume that A is a zero-set in X.
Next, define the set-valued map φ : Y → 2C(X,M), φ(y) = {g ∈ C(X,M) :
g(f−1(y)) ⊂ M\{v} and g(x) = h(x) for all x ∈ A} (a similar idea was earlier
used by V.Gutev and V. Valov). By Proposition 2.2, φ : Y → C(X,M) is a
strongly lsc map with each φ(y) being a Cm−1-set. Since dimY ≤ m, we can
apply Proposition 2.3 to obtain a continuous selection t : Y → C(X,M) for φ.
Then g : X →M , defined by g(x) = t(f(x))(x), is continuous on every compact
subset ofX and becauseX is a k-space, g is continuous. Since t(f(x)) ∈ φ(f(x)),
we have g(x) = h(x) for all x ∈ A and g(x) ∈ M\{v}, x ∈ X. Finally, if
π1 : M\{v} → K denotes the natural retraction, then h = π ◦ g : X → K is the
required continuous extension of h.

A k-space X is called a cw-space [11] if every contractible CW -complex is
an AE(X). In particular, if X is a cw-space and K any CW -complex, then
Cone(K) ∈ AE(X). Any metrizable space, more generally, every space admit-
ting a perfect map onto a first countable paracompact space, is cw [14].

Corollary 2.5. Let f : X → Y be a closed surjection, where Y is paracompact
with dim Y ≤ m and I

m × X is a cw-space. If K is a CW -complex such that
e-dim(Im × f−1(y)) ≤ K for every y ∈ Y , then e-dimX ≤ K.

Proof. Since X is a k-space and K ∈ ANE(Im × X), we can apply Theorem
2.4.
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Lemma 2.6. If e-dimX ≤ K, where X × I is a paracompact cw-space and K
a CW -complex, then e-dim(X × I) ≤ ΣK.

Proof. This lemma was proved by Dranishnikov [9] for metric spaces X. His
proof, coupled with [11, Propositions 1.17-1.18], works in our situation as well.

Corollary 2.7. Let X × I
m be a paracompact cw-space, K be a CW -complex

and f : X → Y be a closed surjection with dimY ≤ m. If e-dimf−1(y) ≤ K for
every y ∈ Y , then e-dimX ≤ ΣmK.

Proof. Observe first that Y is paracompact as a closed image of the paracompact
X. By Lemma 2.6, e-dim(Im × f−1(y)) ≤ ΣmK for any y ∈ Y . Then the proof
follows from Corollary 2.5 with K replaced by ΣmK.

.

3. C-spaces

Recall that X is a C-space [1] if for any sequence {ωn} of open covers of X
there exists a sequence {γn} of open disjoint families in X such that each γn

refines ωn and
⋃
{γn : n ∈ N} covers X. Property C is a dimensional type prop-

erty, and it admits a characterization similar to that one (see Proposition 2.3)
of finite-dimensional spaces (everywhere below a space is said to be aspherical
if it is Cn for all n).

Proposition 3.1. [20] A paracompact X is a C-space if and only if every
strongly lsc map φ : X → 2Y with aspherical images φ(x), x ∈ X, where Y
is an arbitrary space, has a continuous selection.

Theorem 3.2. Let f : X → Y be a closed surjection with X a k-space and Y a
paracompact C-space. If K is a space satisfying both conditions K ∈ ANE(Im×
X) and K ∈ AE(Im×f−1(y)) for any m ∈ N and any y ∈ Y , then K ∈ AE(X).

Proof. We follow the proof of Theorem 2.4. Maintaining the same notations
and applying now Proposition 3.1 (instead of Proposition 2.3), it suffices to
show that if A is a zero-set in X, then the formula φ(y) = {g ∈ C(X,M) :
g(f−1(y)) ⊂ M\{v} and g(x) = h(x) for all x ∈ A} defines a set-valued map
φ : Y → 2C(X,M) which is strongly lsc and each φ(y) is aspherical. And this
follows from Proposition 2.2.

Theorem 3.2 is not of any interest when K is a CW -complex. Indeed, K ∈
AE(Im × f−1(y)) for all m implies that every homotopy group of K is trivial.
So, K is contractible and therefore it is an absolute extensor for any cw-space.
On the other hand, the Borsuk example of a contractible and locally contractible
compact metric space which is not an AE for the class of all metrizable spaces
shows that Theorem 3.2 has a meaning for general spaces K.
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Let C denote the class of all metrizable C-spaces. We write K ∈ A(N)E(C)
if K ∈ A(N)E(X) for any X ∈ C; when the class of all metrizable spaces is
considered, we simply write K ∈ A(N)E.

Corollary 3.3. A space K ∈ ANE(C) is an AE(C) if and only if K is aspher-
ical.

Proof. Any AE(C) is aspherical (because the class C contains all finite-dimensional
spaces) and an ANE(C). Suppose K ∈ ANE(C) is aspherical and X ∈ C. We
are going to apply Theorem 3.2 in the special case when X = Y and f being the
identity map. In this special case Proposition 2.2 is true if e-dim(Im×f−1(y)) ≤
K is replaced by K ∈ Cm−1. Indeed, Claim 1 becomes trivial; to prove Claim
2 we don’t need to apply Lemma 2.1 because the set H is homeomorphic either
to I

n if y ∈ A or S
n−1 otherwise, we need that any map from S

n−1 into K is
extendable to map from I

n into K, n ≤ m. In order to apply Theorem 3.2,
it remains only to check that K ∈ ANE(X × I

m) for all m. And that is true
because X × I

m ∈ C [17].

Let discuss now some sufficient (and necessary) conditions for a metric space
to be an ANE(C). Let P be a topological property. We say that X ⊂ E is a
UV (P) subset of E if each neighborhood U of X in E contains a neighborhood
V of X in E such that any map h : Z → V , where Z ∈ P, extends to a map
h : Cone(Z) → U . A closed surjection f : X → Y is called UV (P) if each of its
point inverses is a UV (P) subset of X. Recall that if, in the above definition,
V is contractible in U , then X is called UV ∞; a cell-like space is a compact
metric space X such that X is a UV ∞ set in every ANE-space E in which it is
embedded as a closed subset (see, for example, [3]). In the existing terminology,
a UV ∞ (resp., cell-like) map is a perfect map with UV ∞ (cell-like) preimages.
Obviously, every UV ∞ map is UV (P) for any property P.

Proposition 3.4. Any one of the following two conditions is sufficient for a
metrizable space Y to be an ANE(C):

(a) Y is locally contractible, more generally, there exists a metrizable space
X and a UV ∞ map from X onto Y .

(b) Y has a base of open aspherical sets.

Proof. First condition was proved by Ancel [3, Theorem C.5.9], see also [1] for
the case of local contractibility. Condition (b) can be obtained by using the
arguments of Ageev and Repovš [2, proof of Theorem 1.3].

Not every metrizable ANE(C)-space is locally contractible. J. van Mill pro-
vided an example of a cell-like image of the Hilbert cube such that no nonempty
open subset is contractible in that space [19]. At the same time, by [3], this
example is an ANE(C). In view of mentioned above result of Ancel [3, Theorem
C.5.9], it is interesting whether any metrizable ANE(C) is a UV ∞ image of a
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metrizable space. In such a case, the class of metrizable ANE(C) would be pre-
cisely the class of all UV ∞ images of metrizable spaces. We can provide similar
characterization ANE(C) in terms of UV (s.c.d.) maps, where s.c.d. denotes the
property strong countable-dimensionality.

Proposition 3.5. Let f : M → X be a surjective map between metrizable
spaces. If for any x ∈ X and its neighborhood U(x) in X there exists an-
other neighborhood V (x) of x in X such that V (x) = f−1(V (x)) is contractible
in U(x) = f−1(U(x)), then X ∈ ANE(C).

Proof. First step is to show that X is an approximate absolute neighborhood
extensor for the class C, i.e. if H is a metrizable C-space, A ⊂ H closed and
h : A → X a map, then for every open cover γ of X there is a neighborhood
WA of A in H and a map h : WA → X such that h|A is γ-close to h. We follow
the construction from the proof of [2, Teorem 4.3, first part]. For every x ∈ X
and n ≥ 0 fix points z(x) ∈ f−1(x) and neighborhoods Vn(x) ⊂ Un(x) of x in
X such that:

(1) V n(x) contracts in Un(x) to z(x) for all n ≥ 0 and x ∈ X;
(2) the cover α0 = {U0(x) : x ∈ X} refines γ;
(3) the cover αn = {Un(x) : x ∈ X} star-refines βn−1 = {Vn−1(x) : x ∈ X}

for any n ≥ 1, i.e. {St(U, αn) : U ∈ αn} refines βn−1.

Observe that we have corresponding covers γ = f−1(γ), αn = {Un(x) :
x ∈ X} and βn = {V n(x) : x ∈ X} of M such that α0 refines γ and αn

star-refines βn−1, n ≥ 1. For every n ≥ 0 and x ∈ X we fix a contraction

map F x,n : V n(x) × [0, 1] → Un(x) with F x,n(z, 1) = z(x). Since A is a C-
space (as a closed subset of H), there is a sequence of disjoint open families
{µn : n = 1, 2, ..} in H such that the restriction of each µn on A refines h−1(βn)
and µ =

⋃
{µn : n = 1, 2..} covers A. Further, let K be the nerve of µ and

θ : WA = ∪{W : W ∈ µ} → |K| a barycentric map. We are going to define a
map g : |K| → M such that the family {g(θ(y)) ∪ f−1(h(y)) : y ∈ A} refines γ.
Then the map h = f ◦ g ◦ θ will be the required γ-approximation of h. Any
simplex (W0,W1, ..,Wk) from K, where Wi ∈ µn(i), can be ordered such that
n(0) < n(1) < ..., n(k) (this is possible because ∩{Wi : i = 1, 2, .., k} 6= ∅, so
the numbers n(i) are different). By (3), for any W ∈ µn there exists x(W ) ∈ X
with St(h(W ∩ A), αn) ⊂ Vn−1(x(W )). We define g0 : |K0| → M by g0(W ) =
z(x(W )), W ∈ µ. Using the contractions F x,n, as in [2, proof of Theorem 4.3],
we can define by induction maps gn : |Kn| → M such that the restriction of gn

on |Ki| is gi, i ≤ n, and for any simplex △n = (W0,W1, ..,Wn) ∈ |Kn| we have

(4) f−1(h(W0 ∩A)) ∪ gn(△
n) ⊂ Un0−1(x(W0)).

So, we obtain a map g : |K| →M and, by (4), h|A and h are γ-close, where h =
f ◦g◦θ. Indeed, if y ∈ A and θ(y) ∈ △n for some simplex △n = (W0,W1, ..,Wn),
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then h(y) ∈ f(gn(△n)) and h(y) ∈ h(W0 ∩ A). According to (4), the last two
inclusions imply that both h(y) and h(y) belong to Un0−1(x(W0)). So, h(y) and
h(y) are αn0−1-close and, since n0 − 1 ≥ 0, they are also γ-close. Therefore, X
is an approximate absolute neighborhood extensor for the class C.

To complete the proof we state the following result which was actually proved
in [2] but not explicitely formulated: If M is a class of metrizable spaces such
that Y × [0, 1) ∈ M for every Y ∈ M, then any approximate absolute neigh-
borhood extensor for M is an ANE(M). Since C is closed with respect to
multiplication by [0, 1), we have X ∈ ANE(C).

Theorem 3.6. For a metrizable space X the following conditions are equiva-
lent:

(a) X is an ANE for the class of metrizable (strongly) countable-dimensional
spaces.

(b) X is a UV (s.c.d.) image of a metrizable space.
(c) X is an ANE(C).

Proof. Since every metrizable (strongly) countable-dimensional space has prop-
erty C, (c) implies (a). Standard arguments show that every metrizable X
which is an ANE for the class of metrizable (strongly) countable-dimensional
spaces has the following property (∗):

For every x ∈ X and its neighborhood U(x) in X there is a neighborhood
V (x) ⊂ U(x) such that any map from a closed subset of a (strongly) countable-
dimensional metrizable space Z into V (x) extends to a map from Z into U(x).

Hence, (a) yields that the identity map of X is UV (s.c.d). So, it remains to
prove (b)⇒(c). Let f : Y → X be a UV (s.c.d.) map with Y metrizable. We
need the following result of M. Zarichnyi [26]: There exists an ω-soft map from
a σ-compact strongly countable-dimensional metrizable space onto the Hilbert
cube. Here, a map g : M → H is called ω-soft if for every strongly countable-
dimensional metrizable space Z, its closed subset B ⊂ Z and any two maps
φ : Z → H , ψ : B → M such that g ◦ ψ = φ|B there exists a map Φ: Z → M
extending ψ with g ◦Φ = φ. Using the Zarichnyi result, for every cardinal τ we
can construct a strongly countable-dimensional metrizable space M(τ) of weight
τ and an ω-soft map g : M(τ) → l2(τ) (see [7] for a similar reduction), where
l2(τ) denotes the Hilbert space of weight τ . Embedding Y into l2(τ) for some τ
and considering the restriction gY of g onto MY = g−1(Y ), we obtain a strongly
countable-dimensional metrizable space MY and an ω-soft map gY : MY → Y .
Let q = f ◦ gY . We are going to show that q : MY → X satisfies the hypotheses
of Proposition 3.5. To this end, let U(x) be a neighborhood of x ∈ X. Since f is
UV (s.c.d.), there exists a neighborhoodW (x) ⊂ f−1(U(x)) such that every map
from a strongly countable-dimensional metrizable space Z into W (x) extends to
a map from Cone(Z) into f−1(U(x)). Then f−1(V (x)) ⊂W (x) for some neigh-
borhood V (x) of x in X because f is closed. Now consider V (x) = q−1(V (x))
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and U(x) = q−1(U(x)). Since V (x) is strongly countable-dimensional, there
exists a map φ : Cone(V (x)) → f−1(U(x)) extending the restriction gY |V (x).
Finally, using that gY ω-soft, we can lift φ to a map Φ: Cone(V (x)) → U(x)
such that Φ|V (x) is the identity. Therefore, V (x) is contractible in U(x) and,
by Proposition 3.5, X ∈ ANE(C).

The equivalence of conditions (a) and (c) from Theorem 3.6, yields the fol-
lowing observation: if M is a subclass of C containing all strongly countable-
dimensional spaces, then ANE(M) coincides with ANE(C) in the realm of
metrizable spaces. Consequently, since every K ∈ AE(M) is aspherical, the
above observation combined with Corollary 3.3 implies also that M and C have
the same metrizable AE-spaces. Finally, we would like to point out that Theo-
rem 3.6 provides an answer to the question [3, Question 5.13(c)] asking whether
a metrizable space X is an ANE for the class of countable-dimensional spaces
if X has the property (∗) mentioned in the proof of Theorem 3.6.
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[12] , D. Repovš and E. Ščepin, Transversal intersection formula for compacta, Topol-
ogy and Appl. 85 (1998), 93–117.

[13] and V. Uspenskij, Light maps and extensional dimension, Topology and Appl. 80

(1997), 91–99.
[14] J. Dydak, Extension theory: The interface between set-theoretic and algebraic topology,

Topology Appl. 20 (1996), 1–34.
[15] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).



Extension dimension and C-spaces 11

[16] , Theory of dimensions: Finite and Infinite (Heldermann Verlag, Lemgo, 1995).
[17] Y. Hattori and K. Yamada, Closed preimages of C-spaces, Math. Japon. 34 (1989),

555–561.
[18] W. Hurewicz, Uber Stetige Bilder von Punktmengen (Zweite Mittelung), Proc. Akad.

Amsterdam 30, 1 (1927), 159–165.
[19] Jan van Mill, Local contractibility, cell-like maps, and dimension, Proc. Amer. Math.

Soc. 98 (1986), 534–536.
[20] B. Pasynkov, On the Hurewicz formula, Vestnik Mosk. Univ. Ser. Mat. 4 (1965), 3–5 (in

Russian).
[21] , Factorization theorems in dimension theory, Uspehi Mat. Nauk 36, 3 (1981),

147–175 (in Russian).
[22] , On geometry of continuous maps of finite-dimensional metric compacta, Trudy

Steklov Math. Inst. 212 (1996), 147–172 (in Russian).
[23] R. Pol, A weakly infinite-dimensional compactum which is not countable-dimensional,

Proc. Amer. Math. Soc. 82 (1981), 634–636.
[24] E. Skljarenko, A theorem on dimension-lowering mappings, Bull. Acad. Pol. Sci. Ser.

Math. 10 (1962), 429–432 (in Russian).
[25] V. Uspenskij, A selection theorem for C-spaces, Topology and Appl. 85 (1998), 351–374.
[26] M. Zarichnyi, Universal map of σ onto Σ and absorbing sets in the classes of absolute

Borelian and projective finite-dimensional spaces, Topology and Appl. 67 (1995), 221–
230.

Department of Mathematics and Statistics, University of Saskatchewan,

McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

E-mail address : chigogid@math.usask.ca

Department of Mathematics, Nipissing University, 100 College Drive, P.O.

Box 5200, North Bay, ON, P1B 8L7, Canada

E-mail address : veskov@unipissing.ca


