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Extension Dimension and Refinable Maps
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Abstract. Extension dimension is characterized in terms of w-maps. We
apply this result to prove that extension dimension is preserved by refin-
able maps between metrizable spaces. It is also shown that refinable maps
preserve some infinite-dimensional properties.
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1 Introduction

The concept of extension dimension was introduced by Dranishnikov [[] (see
also [, B]). For a normal space X and a space K we write e — dimX <
K (the extension dimension of X does not exceed K) if K is an absolute
extensor for X. This means that any continuous map f: A — K, defined on
a closed subset A of X, admits a continuous extension f: X — K. We can
enlarge the class of normal spaces X with e — dimX < K by introducing
the following notion (see [R3, Definition 2.5]: for a space K let a(K) be the
class of all normal spaces X such that if A C X is closed and f: A — K
is a continuous map, then f can be extended to a map from X into K
provided there is a neighborhood U of A and a map ¢g : U — K extending f.
Obviously, a(K) contains all spaces X with e — dimX < K and if K is an
absolute neighborhood extensor for X (br., K € ANE(X)), then X € a(K)
is equivalent to e — dimX < K (for example, this is true if X is metrizable,
or more general when X admits a perfect map onto a first countable space
).

A space X is said to be P-like [[], where P is a given class, if for every
open locally finite cover w of X there exists an w-map from X into a space
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Y € P. It is well known that a normal space X satisfies dimX < n if
and only if X is P-like with P being the class of all simplicial complexes of
dimension < n. It follows from [J] and [2] that if X is compact and K is a
CW-complex, then e — dimX < K iff X is P-like, where P denotes the class
of compact metric spaces Y with e — dimY < K.

In the present note we prove that for a CW-complex K we have X &
a(K) provided X is P-like with respect to the class of paracompact spaces
from a(K). In particular, if a metrizable space X is P-like with respect to
metrizable spaces Y with e — dimY < K, then e — dimX < K. It is also
shown that, for countable complexes K, this property characterizes the class
a(K). We apply the above results to show that if f: X — Y is a refinable
map between metrizable spaces, then e — dimX < K iff e —dimY < K, K
is any C'W-complex. The last generalizes A. Koyama’s results from [If], as
well as a result of A. Koyama and R. Sher [[§. In the final section we prove
that refinable maps preserve S-weakly infinite-dimensionality (resp., finite
C-space property). In the class of compact spaces this result was proved

earlier by H. Kato [[J] and A. Koyma [[[7] (resp., D. Garity and D. Rohm
[12)).

All spaces in this paper are assumed to be normal and all maps are
continuous.

2 The class a(K)

Let start with the following lemma.

LEMMA 2.1. Let L be a space homotopy equivalent to a space K. Then
X € a(L) if and only if X € o(K).

Proof. There exist maps ¢: K — L and ¢: L. — K such that ¢ o ~idy,
and 1 o ¢ ~ idg. It suffices to show that X € a(L) yields X € a(K). To
this end, let f: A — K be a map such that A C X is closed and f can
be extended to a map ¢g:U — K, where U is a neighborhood of A in X.
Since X is normal, there exists open V C X with A C V C V C U. Then
k = (¢og)|V is amap from V into L which is extendable to a map from
U into L. Using that X € «(L) we can find an extension h: X — L of
k. Because (¢ o h)|V ~ g, by [[3, IV, 2.1], f admits an extension. Hence
X ealK). O



Recall that a map f: X — Y, where X and Y are metrizable spaces, is
called uniformly 0-dimensional [[4] if there exists a compatible metric on X
such that for every £ > 0 and every y € f(X) there is an open neighborhood
U of y such that f~}(U) can be represented as the union of disjoint open sets
of diam < e. Tt is well known that every metric space admits a uniformly
0-dimensional map into Hilbert cube Q.

THEOREM 2.2. Let K be a countable CW -complex and f: X — Y, where
X € a(K) and Y is metrizable. Then there exist metrizable Z and maps
h:X — Z and g: Z — 'Y such that e — dimZ < K and f = go h.

Proof. Let k:Y — @ be a uniformly O-dimensional map. Fix a Polish
AN R-space P homotopy equivalent to K. By Lemma 2.1, X € «(P). Since
P e ANE(X), we have e — dimX < P. Then, according to [fj, Proposition
4.9], there exist a separable metric space M with e — dimM < P and maps
V: X — M, ¢: M — @ such that p o = ko f. Applying once more Lemma
2.1, we conclude that e — dimM < K. Let Z be the fibered product of M
and Y with respect to ¢ and k, and let ¢: Z — M and ¢g: Z — Y denote
the corresponding projections. Since k is uniformly O-dimensional, we can
find a compatible metric d on Z such that ¢ is uniformly 0-dimensional with
respect to d (see [f]). Because e —dimM < K, the last yields e —dimZ < K
[[9, Theorem 1]. Finally, define h: X — Z by h(z) = (¢(x), f(x)). O

A map f: X — Y is called an w-map, where w is an open cover of X, if
there is an open cover v of Y such that f~!(v) refines w.

COROLLARY 2.3. Let K be a countable CW -complex and X € o(K).
Then for every locally finite open cover w of X there is an w-map from X
onto a metrizable space Z with e — dimZ < K.

Proof. Take an w-map f from X into a metrizable space Y and apply
Theorem 2.2 to obtain a metrizable space Z and maps h: X — 7, g: Z - Y
such that e — dimZ < K and f = g o h. It remains to observe that h is an
w-map because f is such a map. O

It is certainly true that if Theorem 2.2 holds for any C'W-complex, then
Corollary 2.3 also holds for arbitrary K.

THEOREM 2.4. Let X be a normal space and K be a CW -complex.
If for every locally finite open cover w of X there exists an w-map into a
paracompact space Y with'Y € a(K), then X € a(K).



Proof. We follow the ideas from the proof of [fJ, Lemma 2.1]. There exists
a normed space Z and an open subset L of Z homotopy equivalent to K.
According to Lemma 2.1, it suffices to show that X € «(L). To this end, take
amap f:A— L, where A C X is closed, such that f is extendable to a map
from a neighborhood U of A into L. Since X is normal, we can suppose that
f is a map from U into L and there is an open set V' C X containing A such
that V C U. To prove that f|A can be extended to a map from X into L, it
suffices to find a map f: X — L such that f|V ~ f|V (see [[3, IV, 2.1]). Let
A be a locally finite open cover of L such that St(z, A) is contained in an open
ball for every z € L. Then w = {f*(W) : W € A} U{X — V} is a locally
finite open cover of X, so there exists an w map p: X — Y into a paracompact
space Y with Y € a(K). Let v be a locally finite open cover of Y such that
p~L(7) refines w, and {sqg : G € v} be a partition of unity subordinated to 7.
Consider the closure F of p(V) in Y and let v, = {G € v : GNF # 0}. For
every G € vp fix a point g € p~1(G) N V. Denote ag = f(zg) if G € yp
and ag = 0 otherwise, where 0 is the zero-point of Z.

CLAIM. For everyy € F there is a ball B C L with f(p~'St(y,v)) C B.

If St(y,v) ={G;:i=1,2,..,n} and G, = "{G; : i = 1,..,n}, then G,
meets p(V'), so we can find z € p~!(G,)NV. Since each p~*(G;) is contained
in a element of w and meets V', we have p~!(St(y,~) C St(z, f~'()\)). Hence
f(p~ (St(y,v)) < St(f(z),)\). Finally, choose an open ball B C L with
St(f(x),\) C B.

Define a map ¢g: F' — L by g(y) = >{s¢(y) - ag : G € vr}. According to
the Claim, this definition is correct. Moreover, again by the Claim, for every
x € V there is an open ball in L containing both f(z) and g(p(z)). Therefore
flV =~ (gop)|V. Observe that the formula g = > {s¢(y)-ac : G € v} defines
a map from Y into Z which extends g. Obviously O = g='(L) is an open
subset of Y and g has an extension to a map from O into L. Since Y € «(K),
by Lemma 2.1, Y € a(L). Hence g can be extended to a map ¢: Y — L. Let
f=aqop. Then flV = (qop)|V = (gop)|V = f[V. O

Combining Corollary 2.3 and Theorem 2.4 we obtain the following char-
acterization of the class o(K).

COROLLARY 2.5. Let K be a countable CW -complex. Then a normal
space X belongs to a(K) if and only if for every locally finite open cover w
of X there exists an w-map into a metrizable space Y with e — dimY < K.
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3 Extension dimension

A surjective map 7 X — Y is called refinable [[[f] if for any locally finite
open cover w of X and any open cover v of Y there exists a surjective w-map
f: X — Y such that r and f are 7-close (i.e., for every x € X there is an
element of v containing both points r(z) and f(z)). The map f is called
(w, y)-refinement of 7. When there exists a closed (w, 7)-refinement for r we
say that r is c-refinable. For compact metric spaces this definition coincides
with the original one given by J. Ford and J. Rogers [[]

Koyama proved that dimX = dimY provided X and Y are metric spaces
and r is refinable [[§, Theorem 2]. Under the same hypotheses A. Koyama
and R. Sher showed [[§ that dimgX = dimgY for any finitely generated
Abelian group GG. Here dimgX stands for the cohomological dimension of
X with respect to G. In case r is c-refinable we have K € AE(X) if and
only if K € AE(Y') for any simplicial complex K (see [I@, Theorem 1]). In
the present section we generalize all these results by proving that if r is a
refinable map between metric spaces X and Y, then e — dimX < K if and
only if e — dimY < K for any C'W-complex K.

LEMMA 3.1. Let r be a refinable map from a normal space X onto a
paracompact space Y and L a locally convex subset of a mormed space Z.
Suppose ACW CW Cc Wy C W, C F CW,, where W, Wy and Wy (resp.,
A and F) are open (resp., closed) subsets of Y. Further, let H, = r=*(W))
and Hy = r=*(Ws). If W, — L and h: Hy — L are continuous with
h|Hy = (g o r)|Hy, then g|A can be extended to a continuous map from F
into L.

Proof. Obviously, L is an ANR as a set having a base of convex subsets.
By [[3, IV, 2.1], g| A is extendable over F' provided there exists a map p: F' —
L such that p|D ~ g|D for some neighborhood D of A. We shall construct a
map p satisfying this condition with D = W.

Let A be a locally finite open cover of L such that St(G, A) is contained in
a convex subset of L for every G € \. Take an open set U C Y such that ' C
UcCU C W, and denote w = {h™H(G)Nr~t(Wy) : G € A} U{X —r}(U)}.
Take a locally finite open cover 7 of Y refining the cover {g~*(G)NW; : G €
A} U{Y — W} such that St(W,~) € Wy and St(F,v) C U. There exists
a (w,7y)-refinement f: X — Y for r, and let § be an open star-refinement
of ~v such that f~1(8) refines w. Since f is surjective, each f~1(V) # 0,



Vep Let B ={V e :VNF # 0} and for every V € 3 pick a point
zy € 7YV N F) such that zy € f~(W) when V meets .

Cram. f~Y W) C Hy and f~Y(F) Cc r=1(U).

If z € f~1(W), then there exists O € v such that f(z),7(z) € O (recall
that f is y-close to 7). So, ONW # 0, i.e. O C St(W,~). Since St(W,~) C
Wy, O € Wi. Hence, z € r~1(O) C H;. Similarly, using the inclusion
St(F,~) C U, we can show that f~'(F) C r~}(U).

Since, f~1(F) C r~1(U) (see the claim above), f~1(V) meets r~1(U) for
every V € (3;. On the other hand, f~'(V) is contained in an element of w,
hence each f~1(V), V € B, is contained in r~*(W,). Therefore, the points
ay = h(zy), V € (31, are determined. Consider also the points yy = f(xy)
for V€ ;. Take a partition of unity {sy : V' € [} subordinated to  and
define the map p: FF — Z by p(y) = > {sv(y) -ay : V € (1 }.

Let show that p is a map from F into L. If y € F and € X with
y = f(x), then f~1(St(y, B)) C St(x,w) C r-'(Wa). So, h(f~}(St(y, 8)) C
St(h(x),A). Consequently, St(h(x),\) contains all points ay with y € V.
Since, there exists a convex set B C L containing St(h(x), A), we obtain that
py) € B.

It remains to prove that p|W =~ g|WW. Since [ is a star-refinement of ~,
for any y € W there exists G, € A with St(y,8) C ¢~ *(G,). Fix y € W and
r € X with y = f(x). Let {V(1),V(2),..,V(n)} be the set of all V' € [
containing y. According to the choice of the points xy, each zy ) € f~H(W),
soy and yy(;, 7 = 1,..,n, belong to W. Now, since f, r are -close, we can find
G; € A, i =1,..,n such that yy ), r(zv) € g (G;). Therefore y € g71(G,)
and yy) € ¢71(G, N G;). Hence {g(v), g(r(zvw)) : ¢ = 1,..,n} is a subset
of St(Gy, A). The last set is contained in a convex set B; C L. Because
zvey € [TH(W) C Hy, i = 1,..,n, we have g(r(zvg))) = hlzve) = ava,
i =1,..,n. We finally obtain that By contains ¢g(y) and all a, with y € V.
Therefore By contains both p(y) and ¢(y). So, p|W ~ g|W. O

PROPOSITION 3.2. Let r be a refinable map from a normal space X onto
a paracompact space Y. If K is any CW-complex and X € «o(K), then
Y € a(K).

Proof. Asin the proof of Theorem 2.4, let L be an open subset of a normed
space Z homotopy equivalent to K. It suffices to show that Y € «(L).
Towards this end, let g: A — L be a map with A C Y closed and such
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that g is extendable to a map g:U — L, where U is a neighborhood of A.
Choose open in Y sets W and Wy such that ACW CcW CcW, C W, CU
and let H; = r~1(Wj). Since, by Lemma 2.1, X € «(L), and the map
(g o r)|H; is extendable to a map from a neighborhood of H; into L (the
map gor:7 +(U) — L can serve as such an extension), there exists a map
h: X — L extending (gor)|H;. Now, we apply Lemma 3.1 (with F replaced
by Y and Hy by X) to conclude that g is extendable to a map from Y into
L. Hence, Y € o(L). O

ProproOSITION 3.3. Let K be a CW-complex and r be a refinable map
from a normal space X onto a paracompact space Y with Y € a(K). Then

X € o(K).

Proof. Since for every locally finite open cover w of X there exists an
w-map from X onto Y, the proof follows from Theorem 2.4. O

Proposition 3.2 and Proposition 3.3 imply the following general result.

COROLLARY 3.4. For every CW -complex K and a refinable map from a

normal space X onto a paracompact space Y we have X € oK) if and only
if Y € a(K).

Since every C'W-complex is an AN E for the class of all metrizable spaces,
we have

COROLLARY 3.5. Ifr is a refinable map between the metric spaces X and
Y, and K is a CW -complex, then e—dimX < K if and only if e—dimY < K.

4 Infinite-dimensional spaces

The preservation of infinite-dimensional properties under refinable maps is
widely treated by different authors. H. Kato [[J has shown that refinable
maps between compact metric spaces preserve weakly infinite-dimensionality
and A. Koyama [[7] extended this result by proving that S-weakly infinite-
dimensionality is preserved by c-refinable maps between normal spaces. The
analogous question concerning property C' was settled by D. Garity and D.
Rohm [[[J] for compact metric spaces. F. Ancel [J] introduced approximately
invertible maps and established that any such a map with compact fibres
and metric domain and range preserves property C. Because every refinable



map between compact metric spaces is approximately invertible, Ancel’s re-
sult implies that one of Garity and Rohm. We shall prove in this section
that refinable maps with normal domain and paracompact range preserve S-
weakly infinite-dimensionality and finite C-property. Let us note that in the
class of compact spaces weakly infinite-dimensionality and S-weakly infinite-
dimensionality, as well as C-space property and finite C-space property, are
equivalent.

Recall that a space X is called A-weakly infinite-dimensional [ (resp.
S-weakly infinite-dimensional) if for any sequence {A;, B;} of disjoint pairs
of closed sets in X there exist closed separators C; between A; and B; such
that N2, C; = 0 (resp., N, C; = O for some n). Usually, A-weakly infinite-
dimensional spaces are called weakly infinite-dimensional.

Another type infinite-dimensional property is the following one: X is said
to be a C-space [[[] if for any sequence of open covers {w;} of X there exists
a sequence of disjoint open families {~;} such that 7; refines w; and U°,~;
covers X. The sequence {;} is called a C-refinement of {w;}. If, in the above
definition, the sequence {~;} is finite (and satisfying all other properties),
then X is called a finite C-space [[]. Every finite C-space is S-weakly infinite-
dimensional and every C-space is weakly infinite-dimensional. Moreover, X
is S-weakly infinite dimensional (resp., a finite C-space) iff 5X is weakly
infinite-dimensional (resp., a C-space), see [J] and [f]. Recall that every
countable dimensional (a countable union of finite-dimensional subspaces)
metric space has property C, but there exists a metrizable C-compactum
which is not countable dimensional [2T].

Let us note that, even for the class of compact metric spaces, there is no
CW-complex K such that X is weakly infinite- dimensional (resp., X has
property C) if and only if e — dimX < K. Otherwise, since the Hilbert
cube @ is the inverse limit of a sequence of finite-dimensional spaces, by
B3], we would have that @ is weakly infinite-dimensional (resp., C-space).
Therefore, we can not apply the results in Section 2 to conclude that weakly
infinite-dimensionality and the property C are preserved by refinable maps.

THEOREM 4.1. S-weakly infinite-dimensionality is preserved by refinable
maps with normal domains and paracompact ranges.

Proof. Let r be a refinable map from X onto Y, where X is normal S-
weakly infinite-dimensional and Y paracompact. We need the following char-
acterization of S-weakly infinite-dimensionality [B]: a space Z is S-weakly



infinite- dimensional iff for every map f: Z — @ there is n such that =, o f
is an inessential map; here each m,: Q) — I™ is the projection from () onto
its n-dimensional face I™ generated by first n coordinates. So, fix f: Y — Q.
Then, by the above characterization, there exists n with hy = m, o for
inessential. Let f, = m,0 f and A = f,1(S"'), S"~! being the boundary of
I"™. We are going to show that f, is inessential, i.e. f,|A can be extended to
a map from Y into S™7!.

To this end, fix an interior point a from I™ and let U = f (L) with
L =1I"—{a}. Take open sets W and W; in Y with AC W C W C W, C
W, C U and denote H, = r~(W)). Since h; is inessential and hy(H,;) C L,
there exists a map h: X — L extending hy|H;. By Lemma 3.1, f,|A admits
an extension ¢g: Y — L, and that suffices to find an extension of f,|A from
Y into S™71. O

Next proposition extends the result of D. Garity and D. Rohm [[J] that
property C'is preserved by refinable maps between compact metric spaces.

PROPOSITION 4.2. Let r: X — Y be refinable with X normal and Y
paracompact. If X is a finite C-space, then r(K) has property C for every
compact K C X.

Proof. Let exp(Q) be the space of all closed subsets of () with the Vietoris
topology and Z(Q) C exp(Q) consist of all Z-sets in (). We need the follow-
ing result of Uspenskij 24, Theorem 1.4]: A compact space Z has property
C' if and only if for any map ¢: Z — Z(Q) there exists a map g: Z — @ such
that g(2) € ¢(z) for every z € Z.

So, fix a map ¢:r(K) — Z(@Q) and take an extension ®:Y — exp(Q) of ¢
(such an extension exists because exp(Q) is an AR). Next, let X; = r;*(Y)
and K; = r{'(r(K)), where r; = 8r: X — BY. Since 3X is a C-space,
so is K7 (as a closed subset of 5X). Consider the map V: X; — exp(Q),
U = & ory. Then, by mentioned above result of Uspenskij, there exists a
map h: K1 — @ with h(z) &€ ¥(x) for every x € K;. Take ¢ > 0 such
that d(h(x),V(x)) > € for all z € K;, where d is the metric in @, and
extend h to a map ¢g:U — @, U is a neighborhood of K; in X, satisfying
d(g(z), ¥ (x)) > e for every x € U. Next step is to find a neighborhood W of
r(K) inY with r7'(W) C r; (W) C U and choose an open cover 7 of Y such
that St(r(K),v) C W and dy(®(y), P(2)) < 27 e for any two v-close points
Y,z € Y, where dy is the Hausdorff metric on ezp(Q). Let A be a finite open
cover of ) such that each St(q,\), ¢ € @, is contained in a convex set of
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diameter < 27%¢. Then w = {g7 (G)N X : G € A} U{X — ' (W)} covers
X. So, there exists a (w,y)-refinement f: X — Y of r and a locally finite
open cover a of Y with f~!(«) refining w. Since St(r(K),~) C W, we have
Y r(K)) Cc r~1(W) (see the claim from Lemma 3.1). Hence, if a; = {V €
a:VNnr(K) # 0}, then we can choose a point zy € f~HV) Nr= (W) for
every V € «y. Finally, let {sy : V € a} be a partition of unity subordinated
to a and define the map p:r(K) — @ by p(y) = {sv(y) -ay : V € a1},
where ay = g(zy) for every V € ay.

It remains only to show that p(y) & ¢(y) for every y e r(K). Fixy e
r(K) and x € X with y = f(z). Then f~'(St(y,«)) Nr~ (W) contains
and all zy with y € V. Moreover, f t(y )) N 7"_1( ) is a subset of

“YW)) c St(g(z),\). Take a

(S
St(z,w) Nr~Y(W). So, g(f~'(St(y,a)) Nr ).
convex set B C @ of diameter < 27'¢ which contains St(g(z),)\). Then,
p(y),g(z) € B and, because d(g(z),¥(x)) > ¢, d(p(y),¥(z)) > 271e On
the other hand, y = f(x) and r(x) are y-close, so dg(d(y), ¥(z)) < 27te.

Therefore, p(y) € ¢(y). O

THEOREM 4.3. Finite C-space property is preserved by refinable maps
with normal domains and paracompact ranges.

Proof. Suppose X is a normal finite C-space, Y is paracompact and
r: X — Y is refinable. By [, there exists a compact C-space K C X such
that every closed set H C X which is disjoint from K has a finite dimension
dim. Because this property characterizes finite C-spaces [[], it suffices to
show that every closed set in Y disjoint from r(K) is finite-dimensional and
r(K) has property C. By Proposition 4.2, r(K) is a C-space. So, it remains
only to show that all closed sets in Y outside r(K) are finite-dimensional.

Suppose B C Y is closed and BN r(K) = (). Take an open Wy C Y
containing B with W5 disjoint from r(K). Then Hy = r~(WW3) is closed in
X and disjoint from K. Hence, dimHy; = n is finite. We shall prove that
dimB < n.

Let A C B be closed and ¢: A — S™. Our intention is to extend ¢ to a
map from B into S™. Take an open set U C Y such that BC U Cc U C W,
and denote F' = U. The proof will be completed if we can find an extension
. F — L of q, where L stands for the cube I™"! with deleted an interior
point. Towards this end, extend ¢ to a map ¢g: W, — S™, where W; C Y
is open with A C W, C W, C U, and then choose any open set W C Y
satisfying A ¢ W Cc W C Wi. Then g or is a map from H, = r~*(WW))
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to S™ and, since dimHy < n, there exists an extension h: Hy — L of gor.
Finally, apply Lemma 3.1, to find an extension f:F — L of g and observe
that f|[A=¢. O
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