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Abstract: 

Low birth weight is associated with increased risk for Attention-Deficit/Hyperactivity Disorder 

(ADHD); however, the etiological underpinnings of this relationship remain unclear. This study 

investigated if genetic variants in angiogenic, dopaminergic, neurotrophic, kynurenine, and 

cytokine-related biological pathways moderate the relationship between birth weight and ADHD 

symptom severity. A total of 398 youth from two multi-site, family-based studies of ADHD were 

included in the analysis. The sample consisted of 360 ADHD probands, 21 affected siblings, and 

17 unaffected siblings. A set of 164 SNPs from 31 candidate genes, representing five biological 

pathways, were included in our analyses. Birth weight and gestational age data were collected 

from a state birth registry, medical records, and parent report. Generalized Estimating Equations 

tested for main effects and interactions between individual SNPs and birth weight centile in 

predicting ADHD symptom severity. SNPs within neurotrophic (NTRK3) and cytokine genes 

(CNTFR) were associated with ADHD inattentive symptom severity. There was no main effect 

of birth weight centile on ADHD symptom severity. SNPs within angiogenic (NRP1 & NRP2), 

neurotrophic (NTRK1 & NTRK3), cytokine (IL16 & S100B), and kynurenine (CCBL1 & 

CCBL2) genes moderate the association between birth weight centile and ADHD symptom 

severity. The SNP main effects and SNP × birth weight centile interactions remained significant 

after adjusting for multiple testing. Genetic variability in angiogenic, neurotrophic, and 
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inflammatory systems may moderate the association between restricted prenatal growth, a proxy 

for an adverse prenatal environment, and risk to develop ADHD. 
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Article: 

INTRODUCTION 

Attention-Deficit/Hyperactivity Disorder (ADHD) is characterized by persistent, pervasive, and 

developmentally inappropriate levels of inattention, hyperactivity-impulsivity, or both. ADHD 

arises from the complex interplay between genetic and environmental factors [Thapar et 

al., 2013]. Consequently, there are likely to be multiple etiological pathways leading from early 

risk to the development of the disorder [Sonuga-Barke and Halperin, 2010; Thapar et al., 2013]. 

In particular, environmental insults during prenatal development have the potential to have 

lasting effects on neurodevelopmental risk for ADHD [Lou, 1996; Toft, 1999; Lou et al., 2004; 

Mill and Petronis, 2008]. Although multiple prenatal environmental risk factors for ADHD have 

been identified [Banerjee et al., 2007; Nigg et al., 2010; Froehlich et al., 2011], specific 

developmental mechanisms that contribute to the emergence of ADHD are poorly understood. 

Restricted fetal growth phenotypes, like low birth weight (<2,500 g) and small for gestational 

age, are among the strongest risk factors for ADHD and lead to 1.5 to 3-fold increase in ADHD 

risk [Breslau et al., 1996; Mick et al., 2002; Indredavik et al., 2004; Linnet et al., 2006; Boulet et 

al., 2009]. The strength of this association, however, varies across studies [Nigg, 2006] and is not 

always replicated [Cornforth et al., 2012]. Consistent with the dimensional nature of ADHD 

[Levy et al., 1997; Coghill and Sonuga-Barke, 2012], the association between lower birth weight 

and ADHD-related phenotypes is continuous and extends into the normal birth weight range 

[Boulet et al., 2011; Phua et al., 2012; Qiu et al., 2012; Walhovd et al., 2012]. Lower birth 

weight is also associated with reduced anterior cingulate cortex, caudate nucleus, and total brain 

volumes [Peterson et al., 2003; Tolsa et al., 2004; de Kieviet et al., 2012; Walhovd et al., 2012], 

which are linked with ADHD behavioral symptomatology [Frodl and Skokauskas, 2012; Hart et 

al., 2013]. Identifying biological mechanisms that contribute to the association between lower 

birth weight and ADHD may further elucidate early developmental pathways to ADHD. 

Similar to ADHD [Thapar et al., 2013], birth weight has multifactorial origins and a substantial 

heritability estimate [Mook-Kanamori et al.,2012]. This allows for the possibility that birth 

weight and ADHD share a common genetic liability. Twin studies, however, demonstrate that 

prenatal environmental factors, rather than shared genetic factors, largely account for the 

relationship between birth weight and ADHD symptoms [Lehn et al., 2007; Groen-Blokhuis et 

al., 2011; Ficks et al., 2013; Sharp et al., 2003] or externalizing behavior [van Os et al.,2001; 

Wichers et al., 2002]. This suggests that environmental determinants of lower birth weight 

contribute to the development of ADHD. 



Suboptimal maternal-placental-fetal nutrient and oxygen transport (e.g., placental insufficiency) 

is associated with restricted fetal growth in most cases [Ghidini, 1996; Hendrix et al., 2008]. 

Prenatal ischemia-hypoxia is considered the primary pathway to lower birth weight, especially in 

well-nourished populations [Henriksen et al., 2002]. Placental insufficiency and fetal growth 

restriction are associated with altered angiogenic [Conde-Agudelo et al., 2013], dopaminergic 

[Vucetic et al., 2010], neurotrophic [Malamitsi-Puchner et al., 2007], and inflammatory 

responses [Amarilyo et al., 2011], and numerous poor neurodevelopmental outcomes 

[Baschat, 2011]. Prenatal ischemia-hypoxia is a common element to multiple early risk factors 

for ADHD including maternal smoking [Bush et al., 2000] and maternal alcohol use during 

pregnancy [Bosco and Diaz, 2012] as well as ischemia-hypoxia related obstetric complications 

[Pineda et al., 2007; Rennie et al., 2007; Getahun et al., 2013]. Consistent with the 

Developmental Origins of Health and Disease (DOHaD) framework [Gluckman et al.,2004; Mill 

et al., 2008; Swanson and Wadhwa, 2008; Swanson et al., 2009; Wadhwa et al., 2009], the 

association between lower birth weight and ADHD may arise from prenatal ischemia-hypoxia. 

Prenatal ischemia-hypoxia may directly disrupt or delay development or lead to structural or 

functional adaptations to the adverse intrauterine environment. Such adaptations, however, may 

leave the individual ill-equipped to function in a nutrient and oxygen rich postnatal environment. 

For example, in response to prenatal ischemia-hypoxia some fetuses preferentially redistribute 

blood flow to the brain, known as the “brain-sparing effect” [Roza et al., 2008]. Fetuses that 

demonstrate “brain-sparing” circulation may be better protected from the immediate adverse 

effects of ischemia-hypoxia, however, these fetuses may exhibit decreased cerebral vascular 

plasticity [Fu et al., 2006] and increased behavioral problems [Roza et al., 2008; Figueras et 

al., 2011]. Genetic variability in key ischemia-hypoxia related developmental systems may 

further alter susceptibility to ADHD, following an adverse intrauterine environment. 

Few studies have investigated how the interplay between fetal growth and genetic variability 

contributes to ADHD's complex pathophysiology. Langley et al. (2008) found that “classic” 

candidate neurotransmitter gene (DAT1, DRD4, DRD5, and SLC6A4) variants did not moderate 

the association between birth weight and ADHD. Another study reported that ADHD youth who 

also had low birth weight were at increased risk for early-onset antisocial behavior if they 

possessed the COMT Val/Val genotype [Thapar et al., 2005]. This finding, however, was not 

replicated in a separate ADHD clinical sample [Sengupta et al., 2006]. To examine mechanisms 

linking fetal growth with ADHD, it may be important to broaden the search to genes implicated 

in the response to prenatal ischemia-hypoxia, a main determinant of restricted fetal growth. 

Prenatal ischemia-hypoxia impacts multiple neurodevelopmental systems [Schmidt-Kastner et 

al., 2012; Zhang et al., 2012; Wang et al.,2013]. Of the many systems implicated in the ischemia-

hypoxia response, dopaminergic [Levy, 1991; Swanson et al., 2007], neurotrophic [Ribases et 

al., 2008; Sanchez-Mora et al., 2009], angiogenic [Kim et al., 2002; Jesmin et al., 2004], 

kynurenine [Oades, 2011] and cytokine systems [Oades, 2011] are also implicated in the 

development of ADHD and related conditions. Therefore, genetic variants within these five 



systems were the focus of this study. Variability in genes regulating these systems may alter 

vulnerability to the effects of prenatal ischemia-hypoxia leading to the neurodevelopmental 

deficits that mediate the ADHD behavioral phenotype [Toft, 1999; Shaw et al., 2006; Rapoport 

and Gogtay, 2008]. To address this hypothesis, we examined interactions between genetic 

variants within ischemia-hypoxia response systems and birth weight centile, adjusted for 

gestational age, to predict ADHD symptom severity. We predicted that: (i) lower birth weight 

centile would be associated with increased ADHD symptomatology; and (ii) SNPs within 

dopaminergic, neurotrophic, angiogenic, kynurenine and cytokine system genes would moderate 

the association between birth weight centile and ADHD symptom severity. 

MATERIALS AND METHODS 

Subjects 

Participants were drawn from two larger studies - the North Carolina Genetics of ADHD Project 

[NCGAP; Kollins et al., 2008; Anastopoulos et al., 2011] and the International Multisite ADHD 

Genetics Project [IMAGE; Brookes et al., 2006; Kuntsi et al., 2006; Neale et al., 2008], the latter 

including 12 enrollment sites within Europe and Israel. The current analysis was conducted on a 

subset of the NCGAP and IMAGE samples who were singleton births and had birth weight, 

gestational age, and genome-wide single nucleotide polymorphism (SNP) data. Birth weight and 

gestational age data were only available for IMAGE study sites in the United Kingdom, Ireland 

and the Netherlands. Furthermore, we only included Caucasian participants due to genotype 

imputation procedures (described below). Of the 398 youth in the final sample (Table I), 86% 

met criteria for DSM-IV ADHD Combined Type (n = 327), 11% met for ADHD Inattentive 

Type (n = 42), 3% met for ADHD Hyperactive-Impulsive Type (n = 12), and 4% were unaffected 

(n = 17). For NCGAP [Anastopoulos et al., 2011] and IMAGE [Neale et al., 2008], DSM-IV 

ADHD diagnoses were based on parental responses to a clinical interview as well as teacher 

and/or parent responses to behavior rating scales. This study was approved by the affiliated 

institutional review boards and conducted in accordance with human subjects guidelines. 

Table I. Sample Size by Site 

Site n % of total sample 

Ireland 33 8.3 

Netherlands - Amsterdam 101 25.4 

Netherlands - Nijmegen 73 18.3 

United Kingdom 84 21.1 

IMAGE Subtotal 291 73.1 

Duke 65 16.3 

UNCG 42 10.6 

NCGAP Subtotal 107 26.9 

Total Sample 398 100 

 



Measures 

Conners' parent rating scale (CPRS; Conners, 1997) 

Parent responses to the CPRS 18-item DSM-IV ADHD total subscale, as well as 9-item 

Inattentive and Hyperactive–Impulsive subscales were summed and converted to t-scores 

adjusting for age and gender of each participant [Conners et al., 1998]. Parents were instructed to 

rate their child's ADHD symptoms when not taking medication prescribed for ADHD. The 

resulting scores were continuous measures of ADHD symptom severity and served as outcomes 

in this study. The CPRS ADHD Total (skewness = −0.81; SE = 0.12), Inattentive 

(skewness = −0.50; SE = 0.12), and Hyperactive–Impulsive (skewness = −0.85; SE = 0.12) scores 

were non-normally distributed. Therefore, transformed CPRS ADHD Total (square root of 

reflected score transformation; skewness = −0.03; SE = 0.12), Inattentive (squared 

transformation; skewness = <0.01; SE = 0.12), and Hyperactive–Impulsive scores (square root 

transformation; skewness = −0.07; SE = 0.12) were selected for analysis based on normality. 

Birth weight centile range 

Birth weight centiles were calculated for each participant adjusting for gestational age and sex, 

based on separate normative samples for the Netherlands, United Kingdom/Ireland, and United 

States participants. 

NCGAP 

Birth weight and gestational age for the NCGAP sample was retrieved through medical records, 

parental report, and state birth registry. Birth weight centiles for NCGAP were created using all 

singleton births from ps12004 from the CDC National Vital Statistics natality files. For 

consistency, individual centiles were then converted to the centile ranges described below. 

IMAGE 

For the Dutch sample, birth weight and gestational age were obtained through retrospective 

parent report. The Netherlands Perinatal Registry reference curves were used to calculate birth 

weight centiles for the Dutch sample [Visser et al., 2009]. The Netherlands Perinatal Registry 

reference curves provide 11 normative references at 2.3, 5, 10, 16, 20, 50, 80, 84, 90, 95, and 

97.7 centiles [Visser et al., 2009]. Therefore, 12 birth weight centile ranges were created (0–2.29, 

2.3–4.9, 5–9.9, 10–15.9, 16–19.9, 20–49.9, 50–79.9, 80–83.9, 84–89.9, 90–94.9, 95–97.6, 97.7–

100). Lower scores on the resulting ordinal severity scale of birth weight centile ranges 

represented higher levels of fetal growth restriction. 

Birth weight and gestational age for samples from Ireland and the UK were obtained from 

retrospective parent report. The UK reference curves [Pan et al., 2010; Cole et al., 2011] were 

used to calculate birth weight centiles for the UK and Ireland samples, based on birth weight, 



gestational age, and sex. For consistency, individual birth weight centiles were converted to birth 

weight centile ranges identical to those created in the Dutch sample. 

Genotyping 

SNP genotyping for the NCGAP subsample was performed using the Illumina Infinium 

HumanHap300 duo (Illumina, Inc., San Diego, CA) at the Center for Human Genetics at Duke 

University Medical School. Two Centre d'Etude du Polymorphism Humain (CEPH) controls and 

blinded duplicates were used for every 94 samples and required to match 100%. Additional 

quality checks of the genotyping data were examined using PLINK [Purcell et al., 2007]. Call 

rates exceeded 98% for all individuals. Individuals were excluded due to gender discrepancy and 

if per-family Mendelian errors were in excess of 1%. SNPs were excluded from analysis if they 

had Mendelian errors in >4 families or deviated from Hardy-Weinberg Equilibrium 

(HWE; P < 0.000001). 

SNP genotyping for the IMAGE subsample was performed at Perlegen Sciences (Mountain 

View, CA) on a microarray designed for the Genetic Association Information Network (GAIN). 

Quality checks were completed by the National Center for Biotechnology Information (NCBI) 

using GAIN QA/QC, version 0.7.4 [Abecasis Gopalakirshnana]. Individuals were excluded due 

to gender discrepancy and if per-family Mendelian errors were in excess of 2%. SNPs were 

excluded if the: (i) call rate was <95%; (ii) heterozygosity was >32%; (iii) discrepancy in SNP 

call was <10% in whole sample; or (iv) HWE P < 0.000001. 

Candidate genes were selected based of literature review of candidate signaling pathways 

[Reichardt, 2006; Shibuya, 2008], ischemia–hypoxia response genes [Schmidt-Kastner et 

al., 2006], ADHD etiological studies [Gizer et al., 2009; Oades et al., 2010; Oades, 2011] and 

genotyping platform coverage. SNPs within dopaminergic (COMT, DAT1, DRD2, DRD3, and 

DRD5), neurotrophic (BDNF, NGF, NT3, NGFR, NTRK1, NTRK2, and NTRK3), angiogenic 

(VEGFA, VEGFR1, VEGFR2, NRP1, NRP2, HIF1A, and HIF1AN), kynurenine (CCBL1, 

CCBL2, and KYNU) and cytokine related genes (CNTF, CNTFR, CRLF1, IL6, IL13, IL16, LIF, 

LIFR, and S100B) that passed quality control measures were considered for inclusion in the 

analysis. To increase genetic overlap across NCGAP and IMAGE, genotype data were imputed 

with the use of the phased data from the HapMap samples (CEU; build 36, release 22) and 

MACH [http://www.sph.umich.edu/csg/abecasis/MaCH/download; Li et al., 2009, 2010]. 

Imputed SNPs with an R2 value <0.3, indicating poor imputation quality, were excluded from 

analysis (see Supplementary Table SI for SNP imputation quality). Note that not all SNPs 

attributed to candidate genes in this build are attributed to the same genes in NCBI build 37. 

A total of 2,014 dopaminergic, neurotrophic, angiogenic, kynurenine and cytokine SNPs were 

available for this study and submitted for quality checks. The majority of these SNPs were not 

functional. To reduce the number of statistical tests conducted, remaining SNPs with a: (i) minor 

allele frequency (MAF) <0.1; (ii) genotype frequency below seven; or (iii) in linkage 



disequilibrium (LD; R2 ≥ 0.64) were eliminated. A total of 164 SNPs in dopaminergic, 

neurotrophic, angiogenic, kynurenine, and cytokine systems remained. 

Data Analysis 

Bivariate correlations and Pearson product-moment correlation coefficients examined the 

associations among demographic, perinatal risk, and ADHD variables. In addition, t-tests and 

ANOVAs were used to test for differences between demographic groups on perinatal and ADHD 

variables. Alpha was set at 0.01 for these analyses. 

Generalized Estimating Equations (GEEs) tested for main effects of SNP genotype and birth 

weight centile range, and the interaction between SNP and birth weight centile range in 

predicting ADHD symptom severity. Given that within family data are more correlated than 

between family data, GEEs account for the family correlation among siblings within the sample. 

An independent working correlation matrix and the model-based robust estimator covariance 

matrix were selected, which provides a reliable covariance estimate even when the correlation 

matrix is not correctly specified. 

Linear GEEs were employed to test the SNP and birth weight centile range main effects on 

ADHD symptom severity after adjusting for research site, age, and sex as covariates. Next, to 

test the hypothesis that SNP genotype moderates the association between birth weight centile and 

ADHD symptom severity, the covariates of site, age, and sex and main effects of SNP genotype 

and birth weight centile range were entered into the model, followed by the SNP × birth weight 

centile range interaction. Wald chi-square tests calculated with Type III sums of squares tested 

the significance of main and interactive effects. In addition, continuous variables were centered 

to ease the interpretation of model effects. No specific genetic model was assumed in the primary 

analysis, as the genetic model could differ depending on the genetic variant. Additive, dominant, 

and recessive genetic models were tested on a secondary basis. 

In the GEEs, alpha was set at .01 for nominally significant findings. A total of 164 independent 

GEEs were calculated. The Benjamini–Hochberg False Discovery Rate (FDR) test [Benjamini 

and Hochberg, 1995] was used to adjust for multiple comparisons. The FDR q-value threshold 

was set at 0.05 to determine statistical significance. This study is adequately powered to detect 

reasonably sized SNP × birth weight centile interactions on ADHD without accounting for 

multiple testing and is underpowered to detect interactions after FDR correction (Supplementary 

Table SII). Exploratory Sobel tests were conducted to examine if birth weight centile mediated 

the effect of SNPs on ADHD symptom severity. All analyses were completed using SAS. 

RESULTS 

Demographic, Perinatal, and ADHD Variables 



A total of 398 youth participated in the current study (see Table I for sample size by site), 

including 360 ADHD probands, 21 affected siblings, and 17 unaffected siblings. The sample had 

a mean age of 10.7 years (SD = 3.02 years; range 5–17 years) and was 83% male. In terms of 

birth characteristics, the samples' mean birth weight (M = 3,389.25 g; SD = 565 g) and gestational 

age (M = 39.56 weeks; SD = 1.94 weeks) were in the normal range. 

Table II gives a summary of the relationships between continuous demographic, perinatal, and 

ADHD variables. Older youth had lower birth weight centile range scores and higher CPRS 

ADHD Total scores. There were no differences between females and males in birth weight 

centile range (t(396) = 0.67, p = 0.50), birth weight (t(396) =N−0.707, p = 0.48), or gestational 

age (t(396) = 0.72, p = .47). 

Table II. Correlations Between Selected Demographic, Perinatal, and ADHD Variables 

  Age CPRS ADHD 

total 

Birth weight centile 

range 

Birth weight 

(g) 

Age —       

CPRS ADHD Total 0.21a —     

Birth Weight Centile 

Range 

−0.14a 0.02 —   

Birth Weight (g) −0.08 0.04 0.76a — 

Gestational Age 0.08 0.10 −0.09 0.50a 

Note: N = 398. CPRS, Conners' Parent Rating Scale. a Correlation is significant at the 0.01 level 

(2-tailed). 

Birth weight centile range scores, varied across data collection sites, F(5, 397) = 8.34, P < 0.01 

(Duke, M = 6.92, SD = 0.28; UNCG, M = 7.98, SD = 0.34; Ireland, M = 6.26, SD = 0.24; 

Netherlands–Amsterdam, M = 5.77, SD = 0.22; Netherlands–Nijmegen, M = 5.88, SD = 0.26; 

UK, M = 7.24, SD = 0.39). In addition, CPRS ADHD Total scores varied across data collection 

sites, F(5, 397) = 4.09, P < 0.01. In general, IMAGE samples had higher CPRS ADHD Total 

scores compared to the NCGAP samples (Duke, M = 74.24, SD = 13.96; UNCG, M = 75.19, 

SD = 14.49; Ireland, M = 79.27, SD = 9.26; Netherlands–Amsterdam, M = 76.35, SD = 8.22; 

Netherlands–Nijmegen, M = 78.32, SD = 7.82; UK, M = 81.58; SD = 8.33). 

Analysis of SNP main effects on ADHD symptom severity 

After controlling for site, age, sex, and multiple testing, three out of 164 SNPs had a significant 

main effect on the CPRS Inattentive score (see Table III and Supplementary Tables SVII and 

SVIII for SNP main effects from each statistical model). In the cytokine system, rs10758268 

(CNTFR; q = 0.005) and rs7044318 (CNTFR; q = 0.021) genotypes were associated with the 

CPRS Inattentive score. In the neurotrophic system, rs3825885 (NTRK3; q = 0.021) genotype 

predicted the CPRS Inattentive score. SNP main effects on ADHD Total Score and 

Hyperactivity–Impulsivity were not significant after adjusting for multiple testing (Table III). 

http://onlinelibrary.wiley.com/doi/10.1002/ajmg.b.32275/full#ajmgb32275-tbl-0001


Table III. Summary of SNP Main Effects (P < 0.01) on CPRS ADHD Total, Inattentive, and 

Hyperactive-Impulsive T-Scores 

            Minor Allele Count Mean 

(SD) 

SNP Main 

Effect 

Phenotype System Gene SNP n MAF 0 1 2 p-

value 

q-

value 

ADHD Total CYTK CNTFR rs10758268 397 (T) 

0.43 

79.90 

(8.94) 

76.94 

(11.61) 

75.28 

(8.78) 

0.001 0.083 

  DA DRD3 rs324035 396 (A) 

0.19 

77.73 

(10.18) 

76.76 

(11.17) 

84.43 

(2.88) 

0.001 0.083 

  CYTK CNTFR rs7044318 395 (T) 

0.19 

78.54 

(10.15) 

75.85 

(10.93) 

68.00 

(6.66) 

0.002 0.093 

  CYTK IL16 rs7171540 387 (G) 

0.46 

78.96 

(9.76) 

75.88 

(11.39) 

79.17 

(9.37) 

0.003 0.142 

Inattentive CYTK CNTFR rs10758268 397 (T) 

0.43 

74.75 

(9.16) 

71.19 

(10.79) 

69.28 

(8.73) 

3.1E-

05 

0.005 

  NT NTRK3 rs3825885 395 (C) 

0.32 

71.48 

(10.57) 

73.76 

(8.77) 

67.26 

(11.64) 

3.4E-

04 

0.021 

  CYTK CNTFR rs7044318 395 (T) 

0.19 

73.02 

(9.92) 

70.25 

(10.27) 

61.00 

(7.28) 

3.9E-

04 

0.021 

  CYTK CNTFR rs6476455 391 (C) 

0.49 

70.36 

(8.75) 

71.69 

(10.92) 

74.30 

(9.41) 

0.002 0.074 

  DA DAT1 rs420422 385 (C) 

0.44 

71.66 

(10.34) 

70.96 

(9.62) 

74.85 

(9.89) 

0.009 0.231 

  CYTK LIFR rs2731960 393 (T) 

0.37 

70.85 

(10.53) 

73.47 

(9.01) 

70.70 

(11.39) 

0.009 0.231 

  ANG VEGFR2 rs2067951 397 (C) 

0.48 

73.93 

(8.52) 

70.23 

(10.83) 

73.55 

(9.64) 

0.010 0.231 

Hyperactive-

Impulsive 

CYTK IL6 rs10266564 397 (C) 

0.1 

78.37 

(11.53) 

79.47 

(10.96) 

87.67 

(3.61) 

0.001 0.162 

CYTK IL16 rs7171540 387 (G) 

0.46 

79.94 

(10.99) 

76.97 

(12.04) 

81.26 

(10.26) 

0.002 0.179 

  NT NTRK3 rs1017757 390 (G) 

0.15 

79.13 

(11.15) 

77.11 

(11.92) 

86.29 

(4.86) 

0.004 0.202 

Note. MAF, minor allele frequency; CYTK, cytokine; DA, dopaminergic; NT, neurotrophic; 

ANG, angiogenic; p-value, nominal p-value; q-value, FDR corrected p-value. 

Main effect of birth weight centile range on ADHD symptom severity 

Contrary to the first hypothesis, birth weight centile range was not associated with ADHD Total 

(b = 0.26; SE = 0.21; 95% CI = −0.15–0.68; P = 0.21), Inattentive (b = 0.28; SE = 0.20; 95% 

CI = −0.11–0.67; P = 0.16) or Hyperactive–Impulsive (b = 0.14; SE = 0.23; 95% CI = −0.30–

0.59;P = 0.53) scores. Note for interpretative purposes the above statistics are from non-

transformed ADHD subscale models (P-values are consistent with transformed ADHD subscale 

models) 

Interactions between SNPs and birth weight centile on ADHD symptom severity 

Out of the 164 interaction effects tested below without assuming a specific genetic model 

(Supplementary Table SIII), multiple SNP × birth weight centile interactions predicted ADHD 



symptom severity after multiple testing correction (Table IV). Significant interactions included 

SNPs within angiogenic, neurotrophic, kynurenine, and cytokine systems. Specifically, for 

ADHD Total symptom severity, interactions between SNPs within the CCBL1, NTRK1, and 

NTRK3 genes and birth weight centile range were significant (Fig. 1). The interaction between a 

CCBL2 SNP and birth weight centile range predicted Inattentive symptom severity (Fig. 2). 

Finally, eleven SNPs in the CCBL1, CCBL2, IL16, NRP1, NRP2, NTRK1, NTRK3, and S100B 

genes moderated the association between birth weight centile range and Hyperactive-Impulsive 

symptom severity (Fig. 2). Interactions involving dopaminergic SNPs were no longer significant 

after the multiple testing correction. 

Table IV. Summary of SNP and Birth Weight Centile Range Interactions (P < 0.01) Predicting 

the Transformed CPRS ADHD Total, Inattentive, and Hyperactive-Impulsive T-Scores 

              SNP Main 

Effect 

Interaction 

Phenotype System Gene SNP NCBI n MAF p-

value 

q-

value 

p-

value 

q-value 

ADHD total NT NTRK1 rs962879 155113379 397 (C) 

0.14 

0.889 0.979 3E−06 4E−04* 

  KYN CCBL1 rs10793967 130642111 397 (A) 

0.15 

0.805 0.949 1E−04 0.009* 

  NT NTRK3 rs8037291 86308935 380 (G) 

0.18 

0.021 0.274 3E−04 0.016* 

  NT NTRK3 rs17755717 86426100 377 (A) 

0.18 

0.454 0.852 0.003 0.088 

  KYN CCBL2 rs4656076 89190875 389 (C) 

0.23 

0.261 0.697 0.003 0.088 

  NT NTRK3 rs1017757 86355556 390 (G) 

0.15 

0.097 0.507 0.006 0.161 

  ANG NRP2 rs17682318 206285589 391 (C) 

0.3 

0.998 0.998 0.008 0.188 

Inattentive KYN CCBL2 rs4656076 89190875 389 (C) 

0.23 

0.195 0.669 3E−04 0.049* 

  CYTK IL16 rs11634770 79383455 397 (T) 

0.13 

0.785 0.953 6E−04 0.051 

  NT NTRK3 rs8037291 86308935 380 (G) 

0.18 

0.048 0.426 0.003 0.159 

  NT NTRK3 rs17755717 86426100 377 (A) 

0.18 

0.36 0.773 0.007 0.262 

  ANG NRP1 rs2273466 33551053 397 (C) 

0.19 

0.269 0.689 0.008 0.262 

  CYTK IL16 rs931963 79263756 393 (T) 

0.15 

0.706 0.926 0.01 0.264 

Hyperactive-

impulsive 

NT NTRK3 rs8037291 86308935 380 (G) 

0.18 

0.153 0.719 4E−06 7E−04* 

  NT NTRK1 rs962879 155113379 397 (C) 

0.14 

0.979 0.989 9E−06 7E−04* 

  KYN CCBL2 rs10922552 89212813 387 (G) 

0.11 

0.422 0.793 8E−05 0.003* 

  NT NTRK3 rs1017757 86355556 390 (G) 

0.15 

0.004 0.202 6E−05 0.003* 



  KYN CCBL1 rs10793967 130642111 397 (A) 

0.15 

0.983 0.989 8E−05 0.003* 

  ANG NRP1 rs2065364 33634008 395 (T) 

0.29 

0.809 0.982 2E−04 0.005* 

  ANG NRP2 rs13419677 206266851 395 (C) 

0.15 

0.301 0.788 5E−04 0.013* 

  ANG NRP1 rs2073320 33593263 396 (A) 

0.4 

0.883 0.988 0.001 0.021* 

  NT NTRK3 rs2114251 86465797 384 (A) 

0.15 

0.868 0.988 0.001 0.023* 

  CYTK IL16 rs8039027 79343327 393 (A) 

0.24 

0.628 0.917 0.002 0.026* 

  CYTK S100B rs2839361 46848617 395 (C) 

0.14 

0.875 0.988 0.003 0.037* 

  ANG NRP1 rs3780867 33587815 397 (A) 

0.47 

0.879 0.988 0.005 0.069 

  NT NTRK2 rs11141486 86522947 396 (G) 

0.31 

0.862 0.988 0.008 0.099 

  DA DRD3 rs963468 115345577 397 (A) 

0.39 

0.909 0.988 0.009 0.102 

Note. MAF, minor allele frequency; KYN, kynurenine; CYTK, cytokine; DA, dopaminergic; 

NT, neurotrophic; ANG, angiogenic. 

 

 

Figure 1. Significant SNP x birth weight centile interactions predicting ADHD total symptom 

severity. 



 



Figure 2. Significant SNP x birth weight centile interactions predicting inattentive and 

hyperactive-impulsive symptom dimensions. 

Exploratory analyses were conducted assuming additive, dominant, and recessive genetic 

models. Dominant genetic models produced five interactions predicting ADHD total score, two 

interactions predicting Inattentive symptom severity, and eleven interactions predicting 

Hyperactive-Impulsive score after multiple testing correction (Supplementary Table SIV). Fewer 

interactions were observed for additive and recessive genetic models (Supplementary Tables SV 

and SVI, respectively). Finally, sobel tests did not provide evidence that the relationship between 

individual SNPs and ADHD symptom severity was mediated by birth weight centile for any of 

the models (results not shown). 

DISCUSSION 

Examining biologically informed gene by environment interactions in ADHD may aid in the 

identification of novel genes associated with ADHD and further the search for 

neurodevelopmental mechanisms underlying vulnerability for ADHD. Lower birth weight is 

commonly associated with ADHD [Nigg et al., 2010]; however, it is unclear what accounts for 

the phenotypic overlap between restricted fetal growth and ADHD. Therefore, this study 

examined whether SNPs within ischemia-hypoxia responsive systems interact with birth weight 

centile to predict ADHD symptom severity. 

Contrary to previous work, lower birth weight centile was not independently associated with 

increased ADHD symptom severity in our data set. In general, literature demonstrates there is an 

association between restricted fetal growth and ADHD symptom severity [Bhutta et al.,2002; 

Indredavik et al., 2004; Lahti et al., 2006], however, null findings have also been reported 

[Cornforth et al., 2012]. In this sample largely consisting of ADHD cases, levels of inattention 

and hyperactivity-impulsivity were elevated and represented the upper end of the ADHD risk 

spectrum. Thus, reduced variability in ADHD symptom severity in case-only [Langley et 

al., 2007] or family-based designs may have made the relationship between lower birth weight 

and ADHD more difficult to detect. These results emphasize the heterogeneity in the relationship 

between lower birth weight and ADHD risk. 

Regarding genetic main effects, one SNP within NTRK3 (described below) and two SNPs within 

CNTFR were associated with ADHD inattentive symptom severity, after adjusting for multiple 

testing. CNTFR encodes for ciliary neurotrophic factor receptor and is implicated in 

neurodevelopment and neuron survival [DeChiara et al., 1995]. In independent samples of 

children and adults, a three-marker CNTFR haplotype was associated with ADHD [Ribases et 

al., 2008]. Taken together, these findings suggest that CNTFR may be implicated in the 

development of ADHD. 

SNPs within angiogenic, neurotrophic, kynurenine, and cytokine genes moderated the 

association between birth weight centile and ADHD symptom severity. In the neurotrophic 



pathway, NTRK1 and NTRK3 SNPs moderated the association between birth weight centile and 

ADHD total and hyperactive-impulsive symptom severity. NTRK1 and NTRK3 encode for 

tyrosine kinase receptors TrkA and TrkC, respectively. Nerve growth factor (NGF) preferentially 

binds to TrkA whereas neurotrophin-3 (NT3) binds at high affinity to TrkC to promote neuron 

survival and synaptic plasticity [Lamballe et al., 1991; Reichardt, 2006], including in hypoxic 

conditions [Lee et al., 2003; Lin et al.,2006; Ishitsuka et al., 2012]. TrkA is expressed in various 

neuronal populations including cholinergic neurons in the basal forebrain and striatum 

[Holtzman et al., 1995]. TrkC is expressed throughout the brain and is most abundant in the 

hippocampus [Ernfors et al., 1992]. A previous molecular genetic study has implicated 

neurotrophic factors, especially, NT3, in ADHD risk, though not NTRK1 or NTRK3 [Ribases et 

al., 2008]. Additionally in the present study, one SNP within NTRK2 moderated the relationship 

between birth weight centile and ADHD hyperactive-impulsive symptoms at a trend level. 

Together these findings support the notion that neurotrophic receptor genotype is implicated in 

the development of ADHD and this relationship may depend on prenatal environmental 

influences, such as ischemia-hypoxia. 

The angiogenic system regulates the formation of new blood vessels. In the angiogenic system, 

NRP1 and NRP2 SNPs interacted with birth weight centile to predict hyperactive-impulsive 

symptom severity. NRP1 and NRP2 encode for neuropilin-1 and neuropilin-2, co-receptors for 

the vascular endothelial growth factor (VEGF) and semaphorin families [Pellet-Many et 

al., 2008]. NRP1 and NRP2 are expressed in the central nervous system and endothelial cells and 

play an essential role in vascular development and axonal guidance [Polleux et al., 2000; 

Rossignol et al., 2000; Gu et al., 2003; Pellet-Many et al., 2008]. Following cerebral ischemia, 

NRP1 disrupts axonal guidance near the ischemic area [Hou et al., 2008]. Further, NRP1 plays a 

central role coordinating neuronal migration and guidance of axons that project from the 

thalamus to the cortex [Lopez-Bendito et al., 2006], which has been implicated in the 

development of ADHD [Ivanov et al., 2010; Shaw, 2010] and externalizing behavior problems 

[Arcos-Burgos et al., 2012]. 

Cytokines are implicated in inflammatory, immune, and oxidative stress responses [Capuron et 

al., 2011]. Genetic variation in IL16 and S100B interacted with birth weight centile to predict 

hyperactive-impulsive symptom severity. IL16 encodes for interleukin-16 and regulates the 

inflammatory response [Cruikshank et al., 2008]. IL16 is expressed in T-cells, macrophages, and 

microglia [Cruikshank et al., 2008; Jana et al., 2009]. S100B, a calcium binding protein, is a glial 

cytokine with neurotrophic properties [Steiner et al., 2007]. S100B is released in astrocytes 

following a restricted nutrient and oxygen supply [Gerlach et al., 2006]. Similar to the current 

findings, IL16 and S100B serum levels are associated with hyperactive-impulsive symptom 

severity within ADHD cases, and ADHD total symptom severity across cases and controls 

[Oades et al., 2010]. Within ADHD cases, S100B and IL16 serum levels have also been linked to 

pre- and perinatal risk factors including birth weight, gestational age, and maternal smoking 



during pregnancy [Oades, 2011], which makes them good candidates for a role in disease 

etiology. 

The kynurenine pathway metabolizes tryptophan and plays a role in glial and dopaminergic 

functioning, as well as inflammatory and immune responses [Steiner et al., 2012; Vecsei et 

al., 2013]. SNPs within CCBL1 and CCBL2 moderated the relationship between ADHD total, 

inattentive, and hyperactive-impulsive symptom severity. CCBL1 and CCBL2 encode 

kynurenine aminotransferase I and II, respectively, which transaminate kynurenine into the 

neuroprotective kynurenic acid [Guillemin et al., 2007; Myint et al., 2007; Vecsei et al.,2013]. 

Kynurenic acid is an antagonist at the N-mehtyl D-aspartic acid (NMDA) and α7 nicotinic 

acetylochoine (α7nACH) receptors that are implicated in learning [Hilmas et al., 2001]. In rats, 

kynurenic acid in the prefrontal cortex is inversely related to glutamate, acetylcholine and 

dopamine levels, a relationship that has been detected even with minor changes in kynurenic acid 

[Wonodi et al., 2010]. In youth with ADHD, kynurenic acid in serum was positively associated 

with adverse events during the third trimester, at a trend level [Oades, 2011]. In light of these 

findings, prenatal ischemia-hypoxia may put individuals with susceptible CCBL1 and CCBL2 

genotypes at risk for ADHD by leading to suboptimal expression of kynurenine aminotransferase 

I and II. Thus, variability in cytokine and kynurenine genes may alter risk for ADHD following 

exposure to pre- and perinatal risk, potentially by affecting glial functioning [Todd and 

Botteron, 2001; Russell et al.,2006; Oades et al., 2010]. 

We are encouraged by the promising findings of this study, but also recognize there are some 

study limitations. First, this study had a modest sample size and therefore, replication studies of 

these results are warranted. Second, youth in the study were either diagnosed with ADHD or at 

genetic risk for ADHD by nature of having a sibling with ADHD. This resulted in constrained 

variability in ADHD symptom severity compared with the general population which could have 

reduced statistical power and the likelihood of significant findings. Third, birth weight centile 

range served as a proxy measure for an adverse intrauterine environment as no direct measure 

was available. Therefore, inferences about the underlying environmental pathogen were made in 

this study. Fourth, this design is unable to methodological control for genetic determinants of 

birth weight. This allows for the possibility that that genetic, rather than environmental 

determinants of birth weight are interacting with SNPs to predict the ADHD phenotype. Fifth, 

we also acknowledge that we used an earlier NCBI build of the genome and as a result, some of 

the SNPs that we analyzed are now attributed to other genes. For example, SNPs identified in 

significant interactions which are no longer attributed to the same gene include: rs962879 

(NTRK1 to CD1B), rs10793967 (CCBL1 to ABL1), rs4656076 (CCBL2 to GBP3), rs10922552 

(CCBL2 to intergenic region) and rs13419677 (NRP2 to PARD3B). Thus, it is possible that the 

association signals we detected are in LD with a genetic variant in a neighboring gene. Finally, 

the design of this study was unable to rule-out the effect of maternal genotype on the observed 

SNP x birth weight centile range interactions [Waldman, 2007]. Future research should include 

both maternal and child genotype when investigating the developmental origins of ADHD. 



Taken together, this study raises the possibility that angiogenic, neurotrophic, cytokine and 

kynurenine genetic variants moderate the association between birth weight and ADHD symptom 

severity. To our knowledge, this is the first study to support the involvement of CCBL1, CCBL2, 

IL16, NRP1, NRP2, NTRK1, NTRK3, and S100B genes in the development of ADHD which 

highlights the importance of including measures of environmental risk when searching for novel 

genetic variants associated with ADHD. Although overall the pattern of results is consistent with 

expectations, we are pursuing replication datasets to further elucidate the relationships between 

these SNPs, birth weight centile, and ADHD risk. If replicated, these results provide a basis for 

future targeted gene methylation investigations. Findings also support the use of the DOHaD 

framework [Gluckman et al., 2004] in conceptualizing the etiological underpinnings of the 

association between lower birth weight and ADHD. Further application of this framework may 

aid in isolating specific prenatal environmental pathogens and genetic/epigenetic pathways 

implicated in the development of ADHD. 
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