
INTERACTIVE PROGRAMMING SUPPORT FOR SECURE SOFTWARE
DEVELOPMENT

by

Jing Xie

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2012

Approved by:

Dr. Bill (Bei-Tseng) Chu

Dr. Heather Richter Lipford

Dr. Andrew J. Ko

Dr. Xintao Wu

Dr. Mary Maureen Brown

ii

c©2012
Jing Xie

ALL RIGHTS RESERVED

iii

ABSTRACT

JING XIE. Interactive programming support for secure software development.
(Under the direction of DR. BILL (BEI-TSENG) CHU)

Software vulnerabilities originating from insecure code are one of the leading causes

of security problems people face today. Unfortunately, many software developers have

not been adequately trained in writing secure programs that are resistant from attacks

violating program confidentiality, integrity, and availability, a style of programming

which I refer to as secure programming. Worse, even well-trained developers can still

make programming errors, including security ones. This may be either because of

their lack of understanding of secure programming practices, and/or their lapses of

attention on security.

Much work on software security has focused on detecting software vulnerabilities

through automated analysis techniques. While they are effective, they are neither

sufficient nor optimal. For instance, current tool support for secure programming,

both from tool vendors as well as within the research community, focuses on catching

security errors after the program is written. Static and dynamic analyzers work

in a similar way as early compilers: developers must first run the tool, obtain and

analyze results, diagnose programs, and finally fix the code if necessary. Thus, these

tools tend to be used to find vulnerabilities at the end of the development lifecycle.

However, their popularity does not guarantee utilization; other business priorities may

take precedence. Moreover, using such tools often requires some security expertise

and can be costly. What is worse, these approaches exclude programmers from the

iv

security loop, and therefore, do not discourage them from continuing to write insecure

code.

In this dissertation, I investigate an approach to increase developer awareness and

promoting good practices of secure programming by interactively reminding program-

mers of secure programming practices in situ, helping them to either close the secure

programming knowledge gap or overcome attention/memory lapses. More specifi-

cally, I designed two techniques to help programmers prevent common secure coding

errors: interactive code refactoring and interactive code annotation. My thesis is that

by providing reminder support in a programming environment, e.g. modern IDE, one

can effectively reduce common security vulnerabilities in software systems.

I have implemented interactive code refactoring as a proof-of-concept plugin for

Eclipse (32) and Java (57). Extensive evaluation results show that this approach

can detect and address common web application vulnerabilities and can serve as an

effective aid for programmers in writing secure code. My approach can also effec-

tively complement existing software security best practices and significantly increase

developer productivity. I have also implemented interactive code annotation, and

conducted user studies to investigate its effectiveness and impact on developers’ pro-

gramming behaviors and awareness towards writing secure code.

v

ACKNOWLEDGMENTS

I owe my deepest gratitude to my advisor, Dr. Bill Chu, a respectful and admirable

person who offered me the opportunity of being his student when I was in desperate

need of an advisor. It was him who led me on to the pleasant and fulfilling journey

of helping developing secure software. He is not only an advisor in research but also

a true mentor in life. I cannot remember how many times his wise advice cleared my

confusions towards life and helped me be a strong person. I thank him for having

faith in me from the beginning, for being patient and encouraging throughout my

PhD study. I am proud to have been his student.

I also cannot express how fortunate and grateful I am having Dr. Heather Lipford

as my advisor. The moment she showed up, my research life was illuminated and

enriched. From her live demonstration of being a passionate, dedicated, and inspiring

researcher, I learned to be passionate, dedicated and hardworking towards research,

work and life. She, with her unique perspective, can always offer constructive feedback

that polishes one’s idea. If it were not because of her, I sincerely doubt I would have

come this far with my research. I will always cherish this relationship.

My committee members, Dr. Andrew Ko, Dr. Xintao Wu, Dr. Raphael Tsu and

Dr. Mary Maureen Brown, thank you so much for investing your valuable time on

me. Without your constructive feedback, I would not have had this dissertation.

I am deeply grateful to my parents for their years of encouragement and uncondi-

tional love and support of my every adventure. They have always been there telling

me that they are proud of me for both my successes and failures. They, despite the

vi

pain inflicted by me coming alone to a foreign land, gave me freedom to chase my

dream.

This dissertation would not be made possible without the help from all participants

of the studies involved. I will never forget the help from my labmates and friends here

at UNC Charlotte who made my everyday life interesting and enjoyable, who shared

my joy and pain of being a PhD student. Thank you Leting Wu, Xianlin Hu, Xiaowei

Ying, Erin Carroll, Michael Whitney, Andrew Besmer, Berto Gonzalez, Okan Pala,

Vikash Singh, and more.

I am thankful to Tony Chen and Tony Kombol, the instructors who gave me per-

mission and helped me in recruiting student participants from their classes. I really

appreciate their willingness in making changes to course syllabus to accommodate

my study. My thanks are extended to John Melton and Will Stranathan, who have

collaborated on and offered valuable insights for my dissertation project.

I would also like to thank HP Fortify for its generous education license which

allowed me to use its product Fortify SCA for my study. Finally, I would also like

to thank the National Science Foundation for its financial support. Without that, I

would not have been pursuing a PhD in the first place.

vii

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xii

CHAPTER 1: INTRODUCTION 1

1.1 Scope of Research 4

1.2 Dissertation Overview 5

CHAPTER 2: RELATED WORK 7

2.1 Attack Detection and Prevention 7

2.2 Vulnerability Detection and Discovery 11

2.3 Secure Programming 14

2.4 Programming Errors 15

CHAPTER 3: WHY DO PROGRAMMERS MAKE SECURITY ERRORS 17

3.1 Study Methodology 18

3.2 Study Results 19

3.3 Study Discussion 26

CHAPTER 4: INTERACTIVE SECURE PROGRAMMING SUPPORT 29

4.1 Interactive Support for Software Programming 29

4.2 Interactive Secure Programming Support 30

CHAPTER 5: INTERACTIVE CODE REFACTORING 35

5.1 Target Vulnerabilities Profile 35

5.2 Interactive Code Refactoring 44

5.3 Open Source Projects Evaluation 49

viii

5.4 Developer Study 56

CHAPTER 6: INTERACTIVE CODE ANNOTATION 80

6.1 Target Vulnerabilities Profile 81

6.2 Interactive Code Annotation 82

6.3 Walkthrough Evaluation 84

6.4 CodeAnnotate 89

6.5 Performance Measurement 97

6.6 User Study 113

CHAPTER 7: CONCLUSION AND FUTURE WORK 130

7.1 Restatement of Contributions 130

7.2 Future Work 132

7.3 Closing Remarks 135

REFERENCES 136

APPENDIX A: RULES 144

APPENDIX B: STUDY MATERIALS 149

ix

LIST OF FIGURES

FIGURE 1: Software security best practices 5

FIGURE 2: Code Refactoring warnings 45

FIGURE 3: Options for input validation 46

FIGURE 4: ASIDE validates an input using OWASP ESAPI validator API. 46

FIGURE 5: CodeRefactoring warnings for Map 47

FIGURE 6: Untrusted input is logged through an Exception construction. 55

FIGURE 7: Untrusted input is used for logic test. 55

FIGURE 8: Untrusted input is parsed into harmless Boolean value. 55

FIGURE 9: CodeGen options 58

FIGURE 10: CodeGen generates code 58

FIGURE 11: Explanation warning details 59

FIGURE 12: Metrics from students with CodeGen. 63

FIGURE 13: Metrics from students with Explanation. 65

FIGURE 14: Metrics for Professional Developers with CodeGen. 71

FIGURE 15: Metrics for Professional Developers with Explanation. 73

FIGURE 16: Broken access control problem 82

FIGURE 17: Broken access control solution 83

FIGURE 18: ASIDE interactive code annotation example 85

FIGURE 19: Control flow diagram 87

FIGURE 20: Annotate access control logics. 88

FIGURE 21: Authentication in Java servlet 88

x

FIGURE 22: Code for changing profile 90

FIGURE 23: Launch CodeAnnotate 91

FIGURE 24: CodeAnnotate UI 92

FIGURE 25: CodeAnnotate offers 3 options from which a developer can select. 93

FIGURE 26: CodeAnnotate explains warning detail 94

FIGURE 27: Click me to annotate a control logic 95

FIGURE 28: CodeAnnotate UI Elements 96

FIGURE 29: Undo an annotation 97

FIGURE 30: Tunestore Login Action Servlet 100

FIGURE 31: 10 false positive cases of Tunestore 102

FIGURE 32: Complexity of annotating for Tunestore 104

FIGURE 33: iBatis implementation for loginUser() method 108

FIGURE 34: 3 false positives from Goldrush 110

FIGURE 35: Complexity of annotating for Goldrush 112

FIGURE 36: CodeAnnotate warning 118

FIGURE 37: CodeRefactoring warning for SQL Injection 118

FIGURE 38: CodeAnnotate warning for single statement 119

FIGURE 39: Summary of Think-aloud study 127

FIGURE 40: Trust boundary rule 144

FIGURE 41: Input validation rule 146

FIGURE 42: Sensitive accessor rule 147

FIGURE 43: Consent Form 149

xi

FIGURE 44: Consent Form 150

FIGURE 45: Interview Questions 151

FIGURE 46: Interview Questions 152

FIGURE 47: Consent Form 153

FIGURE 48: Consent Form. 154

FIGURE 49: Description of Programming Task 155

FIGURE 50: Description of Programming Task 156

FIGURE 51: Interview Questions 157

FIGURE 52: Consent Form 158

FIGURE 53: Consent Form. 159

FIGURE 54: Study Instructions 160

FIGURE 55: Study Instructions 161

FIGURE 56: Study Instructions 162

FIGURE 57: Development Environment Setup 163

FIGURE 58: Description of Programming Task 164

FIGURE 59: Description of Programming Task 165

FIGURE 60: IDescription of Programming Task 166

FIGURE 61: Interview Questions 167

xii

LIST OF TABLES

TABLE 1: Fortify SCA results 51

TABLE 2: SCA result details 52

TABLE 3: Access control tables 83

TABLE 4: Security issues in open source projects 86

TABLE 5: The 8 paths in Goldrush found by CodeAnnotate 109

TABLE 6: Trust boundary rule mapping. 145

TABLE 7: Trust boundary rule mapping. 146

TABLE 8: Sensitive accessor rule mapping. 148

CHAPTER 1: INTRODUCTION

Software is essential for computing and has become ubiquitous and pervasive through-

out society. Insecure software that is vulnerable to malicious attacks, therefore, poses

tremendous risks to the security of people’s daily lives. A recent attack (54) on a

large financial company’s website exploited an application vulnerability that not only

caused the company a loss of $2.7 million and its reputation but also brought its cus-

tomers huge inconveniences and potential troubles despite the free liability of their

financial loss. For example, customers needed to change payment information that

was associated with the compromised account.

The security quality of software is therefore no longer a privileged property of

critical systems such as aircraft control systems, but instead a concern of developers

of all types of software, including even a simple personal website (2). Software security

is about building software that is secure in a manner that it is resistant to malicious

attacks. Software may be insecure for various reasons. Studies show that, however,

software flaws are one of the root causes of the majority of exploitations and breaches

(78). Software flaws are essentially program bugs. When such flaws can be exploited

in a way that violates the confidentiality, integrity and availability of the information

on which the software relies, they are referred to as software vulnerabilities.

There are multiple points where software vulnerabilities can be introduced through-

2

out the software’s development life cycle. For instance, the design of a password re-

trieval system can employ a weak challenge question that leads to a logic vulnerability;

an implementation of credential verification can process user inputs without proper

validation which leads to a SQL Injection; a configuration of the deploy environment

may lead to dysfunction of the system. Vulnerabilities that are due to insecure code

written by programmers, however, are most commonly exploited by attackers (78).

Current tool support for secure programming, both from tool vendors as well as

within the research community, focuses on catching security errors after the program

is written. Static and dynamic analyzers work in a similar way as early compilers:

developers must first run the tool, obtain and analyze results, diagnose programs, and

finally fix the code if necessary. Thus, these tools tend to be used to find vulnerabilities

at the end of the development lifecycle. However, their popularity does not guarantee

utilization; other business priorities may take precedence. Moreover, using such tools

often requires some security expertise and can be costly. If programmers are removed

from this analysis process, these tools will also not help prevent them from continuing

to write insecure code.

Programmer errors, including security ones, are unavoidable even for well-trained

developers. One major cause of such errors is software developers’ heavy cognitive

load in dealing with a multitude of issues, such as functional requirements, runtime

performance, deadlines, etc. Thus, education and training software developers about

secure programming is not a satisfactory solution to preventing security errors.

In this dissertation, I discuss a different approach that provides software develop-

ers interactive support for secure programming practices in order to produce more

3

secure software. The approach reminds the developers of better secure programming

practices in situ, helping them to either close the secure programming knowledge

gap or overcome attention/memory lapses. This approach can be justified based on

cognitive theories of programmer errors (65; 39). My hypothesis is that by providing

effective reminder support in an IDE, one can effectively reduce common security

vulnerabilities. This approach is analogous to word processors’ spelling and grammar

support. While people can run spelling and grammar checks after they have written

a document, today’s word processors also provide visual cues - colored lines drawn

underneath potential errors - to help writers notice and fix problems while they are

composing text. Similarly, this approach proposes that an IDE could interactively

identify parts of the program where security considerations, such as input valida-

tion/encoding or Cross-site Request Forgery (CRSF) protection, are needed while

programmers are writing code.

This dissertation work has several technical, theoretical and Human Computer

Interaction contributions:

• Provides an in-depth understanding of why software programmers make security

errors during programming with support of empirical evidence.

• Devises a new approach which reminds software programmers of potential in-

secure code and provides them secure programming support during program

construction, to help them write secure code, in order to eventually develop

more secure software.

• Develops two techniques, interactive code refactoring and interactive code an-

4

notation, to assist programmers in producing code with fewer common code

vulnerabilities.

• Implements prototype software in the form of plugins for the Eclipse platform

and conducts an extensive study of open source projects to evaluate the effec-

tiveness of the proposed techniques in addressing common vulnerable code.

• Conducts user studies evaluating the current design of the implemented proto-

type to gain insights on how developers perceive and react to this interactive

approach.

1.1 Scope of Research

Security in Information Technology (IT) is a loaded concept. It means different

things in different contexts, to different people. It is plain and easy for the general

public as well as computing professionals to relate to data encryption, network fire-

wall, or antivirus, when talking about information security. However, my work in this

dissertation, although falls into the big umbrella of information security, it should be

categorized more precisely into software security. The term software security was first

used in 2001 by Viega and McGraw (79) as the idea of engineering software so that

it continues to function correctly under malicious attacks (47).

Security is an emergent property of a software system. A security problem is more

likely to arise associated with a normal functional part of the system (say, the interface

to the database module) than in some given security feature. This is because software

security has to do with the way software is implemented in general, including the way

security features are implemented. This is an important reason why software security

5

must be part of a full lifecycle approach. Figure 1 specifies one set of best practices

that need to be applied to the various software artifacts produced during software

development.

Figure 1: Software security best practices applied to various software artifacts (47).

While it is apparent from Figure 1 that a piece of software can be made vulnerable

at various stages of its lifecycle, my research only focuses on the coding phase. It

is at this stage where a number of code vulnerabilities are introduced by software

programmers writing insecure code.

1.2 Dissertation Overview

In this dissertation, I first present an overview of all the related work in Chapter 2.

I then report my research study of investigating the underlying causes of program-

mers making security errors in Chapter 3. In Chapter 4, I present an overview of

my proposed approach, Application Security in IDE (ASIDE), to improving the se-

curity quality of software by providing interactive secure programming support for

developers. More specifically, I introduce two techniques, interactive code refactor-

ing and interactive code annotation, to address two different types of common secure

programming issues. In Chapter 5, I detail my research efforts on implementing

6

and evaluating interactive code refactoring. I dedicate Chapter 6 to design, imple-

mentation and evaluation of interactive code annotation. I conclude my dissertation

contributions and outline future work in Chapter 7.

CHAPTER 2: RELATED WORK

Confined within the declared scope of research, the work that is relevant primarily

falls into 4 strands: attack detection and prevention, vulnerability detection and dis-

covery, secure programming, and programming errors. Attack detection and preven-

tion aims at preventing attacks launched by malicious users. Vulnerability detection

and discovery is about finding security holes in software. Secure programming and

programming errors shift the attention to software developers.

2.1 Attack Detection and Prevention

Software, for historical reasons, is developed without following a sound security

methodology. Most software is vulnerable to attacks when deployed. This is be-

cause security vulnerabilities are either overlooked or not properly addressed during

development. Being heavily influenced by the way people address security issues in

networking for the past two decades, researchers in software security identify specific

attacks as their prime target for prevention. They direct their effort to protect sys-

tems from being attacked by detecting attacks at the time they are taking place, and

preventing them when being detected to thwart potential damage to the system.

2.1.1 Learning-based Prevention

To detect attacks and further prevent them from being carried out successfully,

one needs to have a clear definition of what an attack is, or what makes an attack an

8

illegitimate interaction with the system. Thus, most techniques that are developed

function in two phases. The first phase is to build a model of legitimate interactions.

The second phase is to capture interactions and then check them for compliance

with the established model. If the interaction fits into the model, it is considered as

legitimate. Otherwise, it is viewed as an attack, and certain actions would be taken

to mitigate the attack.

To put this approach in perspective, Halfond and Orso (24) implemented a tool,

AMNESIA, that detects and neutralizes SQL Injection attacks that are commonly

seen as one of the most serious security threats to web applications. Cova et al. (18)

investigated an approach to first analyzing the internal state of a web application,

and learning the relationships between the application’s critical execution points and

the application’s internal state, then identifying attacks that attempt to bring an

application into an inconsistent, anomalous state that violates the intended workflow

of the application. Earlier efforts include developing an anomaly-based system that

learns the profiles of the normal database access performed by web-based applications

using a number of different models (77).

2.1.2 Proxy-based Prevention

Researchers also have resorted to proxies which intercept and examine incoming

requests from client side to differentiate malicious requests from legitimate ones be-

fore they are consumed by application backends. Boyd and Keromytis (9) applied

the concept of instruction-set randomization to SQL, creating instances of the lan-

guage that are unpredictable to an attacker, in order to catch potential SQL injection

9

attacks. They implemented the idea by using an intermediary proxy to translate

randomized SQL to MySQL’s standard language. Liu et al. (42) proposed an SQL

Proxy-based Blocker, which harnesses the effectiveness and adaptivity of genetic al-

gorithms to dynamically detect and extract users’ inputs for undesirable SQL control

sequences. Bisht et al. (8) designed and implemented CANDID, which dynamically

mines programmers’ intended query structure on any user input. It requires extra

instrumentation to transform the web application code, which is usually tied to a

specific programming language.

2.1.3 Dynamic Prevention

Another type of technique, which targets injection-based attacks, is to track precise

taint information about user input. It taints the input strings and tracks those taints

along the information flow of a program. Huang et al. (31) developed WebSSARI, a

tool which uses a static analysis technique based on type-based information flow to

identify possible vulnerabilities in PHP web applications. This type-based approach,

however, operates at a coarse-grain level: any data derived from tainted input is

considered fully tainted. WebSSARI can insert calls to sanitization routines that

filter potentially dangerous content from tainted values before they are passed to

security-critical functions. Nguyen-Tuong et al. (53) proposed techniques for tracking

taintedness at a much finer granularity. Their system can be more automated than

WebSSARI: all they require is that the server uses their modified a PHP interpreter to

protect all web applications running on the server. Su and Wassermann (74) presented

a formal definition of SQL Injection attacks and proposed a sound and complete

10

(under certain assumptions) algorithm, which can identify all SQL Injection attacks,

by using an augmented grammar and by distinguishing untrusted inputs from the rest

of the strings by means of a marking mechanism. Halfond et al. (25) researched along

the same line of tracking taint information at the character level and using a syntax-

aware evaluation to examine tainted input. They differ their approach by employing

a novel concept of positive tainting, which the researchers argue to be a safer way of

identifying trusted data. Positive tainting differs from traditional tainting in that it is

based on the identification, marking, and tracking of trusted, rather than untrusted,

data.

2.1.4 Vulnerability-specific Attack Prevention

Some attacks exploit vulnerabilities that have less generic characteristics, such

as the ones described above. Quite often, the defense strategies have to do with

more than just the application itself, but also involves the infrastructure, such as

the web browser, on which the application relies. For instance, Barth et al. (4) in-

troduced loginCSRF, a new variant on Cross-site Request Forgery (CSRF) attack,

which renders existing CSRF defense techniques ineffective. Therefore, they pro-

posed that browsers implement the Origin header to provide the security benefits

of the Referer header while responding to privacy concerns. Maes (44) presented a

client-side policy enforcement framework to transparently protect the end-user against

CSRF, and implemented it in the form of a Firefox extension. The framework moni-

tors all outgoing web requests within the browser and enforces a configurable cross-

domain policy. The default policy is carefully selected to transparently operate in a

11

web 2.0 context.

2.2 Vulnerability Detection and Discovery

There is a rich volume of work of finding vulnerabilities in software that is fully

developed and deployed in some cases. The major approaches taken to discovering

vulnerabilities are in three forms. The first one is to perform static analysis on source

code. The second one is to carry out dynamic analysis on running applications. The

third approach simulates attack scenarios by injecting attacks into applications.

2.2.1 Static Source Code Analysis

Chess and West (16) provided a comprehensive overview of static analysis ap-

proaches for security problems. With the shifting of the computing paradigm from

desktop to web, vulnerabilities in web applications naturally become the target of

research. Livshits and Lam (43) proposed a static analysis technique which is based

on a scalable and precise points-to analysis to find vulnerabilities that can be ab-

stracted as general tainted object propagation problem, which include SQL Injection,

Cross-site Scripting (XSS), HTTP Splitting, etc. Wassermann and Su (81) advanced

this approach by characterizing the values a string variable may assume with a con-

text free grammar, tracking the nonterminals that represent user-modifiable data,

and modeling string operations precisely as language transducers to eventually check

the conformance to the policy that an attack happens when user input changes the

intended syntactic structure of a generated query. Other efforts that have impact

include Pixy (34; 35) which is a static taint analysis for PHP. It propagates limited

string information and implements a finely tuned alias analysis. Xie and Aiken (86)

12

designed a more precise and scalable analysis for finding SQL Injection in PHP by

using block- and function-summaries. Tripp et al. (76) utilized well-studied static

taint analysis techniques and built a static analysis too that can scale to large indus-

trial web applications, model essential web application code artifacts, and generate

consumable reports for a wide range of attack vectors. More information can be found

in a survey (64) of static analysis methods for identifying security vulnerabilities in

software systems.

2.2.2 Dynamic Runtime Analysis

Another active thread of research that finds vulnerabilities in software focuses on

performing dynamic analysis on running applications. Most commonly, such dynamic

analysis is based on two well studied concepts: symbolic execution and model check-

ing. For example, Chaudhuri and Foster (14) developed a symbolic executor, Rubyx,

to look for vulnerabilities in web applications that are built on Rails. Depending on

the construction of the Rubyx specification, which is built from general assertions,

assumptions, and object invariants, Rubyx can be adapted to detect a wide range of

vulnerabilities including Cross-site Scripting, Cross-Site Request Forgery, an insuffi-

cient authentication, insufficient access control. Felmetsger et al. (20) demonstrated

the possibility of using a multi-step approach, which involves extensive dynamic anal-

ysis, to detect logic vulnerabilities in web applications. They first used dynamic anal-

ysis and observed the normal operation of a web application to infer a simple set of

behavioral specifications. Then, leveraging the knowledge of the typical execution

paradigm of web applications, they filtered the learned specifications to reduce false

13

positives, and then used model checking over symbolic input to identify program

paths that are likely to violate these specifications under specific conditions, indicat-

ing the presence of a certain type of web application logic flaw. Huang et al. (30)

formalized web application vulnerabilities as a secure information flow problem with

fixed diameters and then used bounded model checking to achieve counterexample

generation and complete verification. Fu and Qian (21) developed a tool set called

”SAFEI” to detect SQL Injection vulnerabilities in web applications by instrument-

ing the bytecode of Java web applications in conjunction with symbolic execution.

At each location that executes a SQL query, an equation is constructed to find out

the initial values of web controls that lead to the breach of database security. The

equation is solved by a hybrid string solver where the solution obtained is used to con-

struct test cases. Schwartz et al. (70) conducted a thorough review of the utilization

of dynamic analysis in detecting software security vulnerabilities.

2.2.3 Attack Injection

There is also research that takes an approach that is inline with how attackers

find vulnerabilities in software systems, which is to attack deployed systems and

see whether the systems can break. Kieyzun et al. (38) presented a technique that

generates sample inputs, symbolically tracks taints through execution, and mutates

the inputs to produce concrete exploits. These automatically generated inputs were

demonstrated to be effective in exposing SQL Injection and Cross-site Scripting at-

tacks that are common in modern web applications. Martin and Lam (45) investigated

using goal-directed model checking to automatically generate attacks exploiting taint-

14

based vulnerabilities in large web applications. The approach was implemented as a

system called QED, which accepts any Java web application that is written to the

standard servlet specification. It requires an analyst to specify the vulnerability of

interest in a specification that looks like a Java code fragment, along with a range

of values for form parameters. QED then generates a goal-directed analysis from

the specification to perform session-aware tests, optimizes to eliminate inputs that

are not of interest, and feeds the remainder to a model checker. The checker will

systematically explore the remaining state space and report example attacks if the

vulnerability specification is matched.

2.2.4 Summary

While these approaches are making it more effective in finding or preventing ex-

ploitations of vulnerabilities in software, they overlook an essential element that plays

a pivotal role in vulnerability introduction, which is software developers. Vulnera-

bilities are normally introduced into software by software developers writing insecure

code unintentionally. The approach to finding vulnerabilities after the program is

written excludes developers from the security loop, and thus exerts no influence over

preventing them from continuing to produce insecure software. Moreover, finding

vulnerabilities is not the end, given that efforts must be taken to fix what has been

found as vulnerable.

2.3 Secure Programming

The term “secure programming” is widely used but loosely defined in the security

community. In most cases, it implies a programming style that bears security implica-

15

tions of code and implements defensive code that resists malicious exploits. Another

term “secure coding” also carries a similar meaning, and is used interchangeably with

secure programming. The vast majority of effort to increase software programmers’

awareness of programming in a secure fashion has been placed on training and guide-

line generation. For instance, there is the Top 10 Secure Coding Practices (13) from

CERT (12). OWASP (60) has an open source project (61) that is dedicated to pro-

viding a quick reference guide for secure programming best practices. More formal

presentations include Viega and Messier’s secure programming cookbook (80).

An exception that deviates from the conventional training is Bishop’s Secure Pro-

gramming Clinic approach (7). Continuous reinforcement by using clinics is a common

and effective technique used to improve students’ writing ability in law schools and

English departments. Secure programming clinics thus reinforce good programming

style in a similar fashion as how writing clinic reinforce good writing style.

2.4 Programming Errors

Research into software errors has a long history starting in the early 1980s. Ko

and Myers (39) provided a comprehensive summary of related work. Moreover, they

explored the underlying cognitive mechanisms of general programming errors due to

the interaction between a programmer and a programming system based on James

Reason’s Human Error (65), and identified three types of cognitive breakdowns that

lead to programming errors. Skill-based breakdowns are where programmers fail to

perform routine actions at critical times; rule-based breakdowns are where program-

mers fail to do an action in a new context; and knowledge-based breakdowns are where

16

a programmer’s knowledge is insufficient. In addition, they formed the chains of cog-

nitive breakdowns over the course of programming activity to explain the introduction

of programming errors.

CHAPTER 3: WHY DO PROGRAMMERS MAKE SECURITY ERRORS

A great deal of effort motivated by Microsoft’s Secure Development Lifecycle (SDL)

initiative (27), has been placed on reducing the vulnerabilities in software over the

past decade. The overall security quality of software, however, is still far away from

where we need it to be. Most effort was on procedural, technical improvements which

overlooked a fundamental question, which is why do programmers make security

errors? In most cases, programmers do not write insecure code intentionally but do

so anyway.

The earliest attempt to explain this phenomenon appeared in Wheeler’s Secure

Programming for Linux and Unix HOWTO (83), where he presented a list of pur-

ported reasons that were collected and summarized by Aleph One on Bugtraq. One

of the major factors is that programmers were not educated about real-world vul-

nerabilities, let alone how to write code that does not introduce vulnerabilities. In

addition, security is considered as an inhibitor of easy programming because it costs

extra development time and additional testing. More formal effort (22) postulates

three reasons for “Why Good People Write Bad Code”: Technical factors referring

to the underlying complexity of the task itself; Psychological factors including poor

mental models or difficulty with risk assessment and real-world factors comprising

lack of financial incentives and production pressures. These opinions are informative

18

but lack empirical evidence.

More recently, Woon and Kankanhalli (84) conducted a survey investigating the

intention of information systems professionals to practice secure development and

revealed that the most important factors for the lack of intention towards secure

development are attitudes regarding career usefulness as well as the influence of social

norms. The target population, however, is too generic, thus does not reflect the

characteristics that are unique to programmers. Therefore, I expanded upon these

results by looking more in depth at developers who currently write code, and their

particular attitudes and practices.

3.1 Study Methodology

I conducted a study that involved semi-structured face-to-face and phone interviews

with 15 professional software developers with various backgrounds over a 3-month

period. Twelve of the participants are former students at UNC Charlotte, from

throughout the past 13 years. The remaining 3 were other personal contacts of Dr.

Bill Chu’s or were referred to me by personal contacts. Programming is a major

professional activity of all interviewees.

All interviewees worked for organizations including apparel manufacturing, banking

and financial corporations, independent software service providers and corporation

technology providers. They also developed a variety of software ranging from front-

end web applications, internal middleware to back-end database development. All of

them used mainstream programming languages such as Java, C++, C, Python, PHP,

and JavaScript. They averaged 12.6 years of experience, with a median of 11 years,

19

as professional software developers.

The length of each interview ranged from 30 minutes to one hour. During the con-

versations, I first asked about their professional software development backgrounds.

Then I focused on the interviewees’ opinions of the relationship between software

security and the software development life cycle. I also discussed with them the most

important security concerns for their software, and next explored the procedures,

mechanisms and tools employed by their companies for secure software development.

Throughout, I asked participants about their own personal perceptions and practices

regarding software security, and what prompts them to think about or act upon se-

curity issues. All the interviews were recorded and transcribed. I used a qualitative

data management and analysis tool, Atlas.ti, to iteratively perform open coding and

identify general themes and patterns.

3.2 Study Results

For this study, I did not seek participants with specific security knowledge. I found,

however, that most of my participants did have a reasonable awareness and knowledge

of software security issues. Seven of the participants expressed high software security

awareness. They were able to name their major security concerns and identify code

patterns which had security implications. Moreover, they were capable of elucidating

the causes of some security issues and the correct mitigations for them. Five of the

interviewees had moderate awareness. They maintained good knowledge of security

features such as using a password to authenticate, but overlooked the cases that

involve malicious users, e.g. Cross-site Scripting (XSS) attacks. One participant had

20

a low level of awareness: he was only able to discuss software security on an abstract

level. Only two participants had very little idea of the concept of software security.

While I obviously have a small sample of developers, these results suggest that the

message on the importance of software security and knowledge of security vulnerabil-

ities is getting to developers. The majority agreed that software security is important

in all phases of the software development lifecycle. Despite this general knowledge,

however, interviewees were not able to concretely describe their own personal practices

with regard to software security, even those with high security awareness. I identi-

fied several themes regarding their perceptions, which explain their lack of individual

responsibility and practices towards software security.

3.2.1 Misplaced Trust in Process

Professional software development is a collaborative process involving multiple par-

ties and individuals. Each party takes responsibility for a certain component of the

whole. For instance, designers conceive of and develop the architecture of a project,

while software developers actually write the code to implement a design. Testers

ensure that what developers did is consistent with what designers specified. Ideally,

software security should be considered by all parties at every development stage, but I

am particularly interested in software security implementation performed by software

developers.

Most of the participants had reasonable knowledge about software security. They

could identify some of the common security issues and were aware of its importance.

However, when asked about their personal practices of addressing software security

21

issues, they constantly referred me to other processes or parties that handled these

security concerns.

For example, one of the interviewees alleged that in his company, software security

was fully incorporated in the design phase and software designers were the ones who

should be responsible for taking all possibilities into consideration and formulating

the corresponding design specifications. Implementation is nothing more than just

writing code to carry out the established design. Another participant, when asked a

question about how he specifically dealt with XSS vulnerabilities, stated:

[P8] When I do my part of work, I don’t have this consideration at im-

plementation phase. To me, that’s the case we should consider at design

phase.

In three cases, the participants brought up their code review process where the

code that is written by them and their co-developers is gathered and then reviewed.

[P5] We take care of that [software security] both in code reviews which

happen while the project is in progress, being coded as well as at the end

before it gets merged into our master trunk.

Depending on how the company conducts that process, the reviewers can be either

the developers themselves for a peer review, or external auditors. As the interviewees

reported, security tools were generally involved in that process. Most of them were

commercial and open source static code analysis tools such as Coverity (19), Fortify

SCA (72), Findbugs (6), and PMD (73).

22

In another two cases, the participants declared that software testing is capable of

discovering all software bugs, and security bugs are no exception.

[P7] But I think most times we catch the security (issues) in testing.

Several participants raised the role of a specialized security group whose main focus

is software security. One participant recounted that such a group intervened in the

design phase. Another interviewee described that security experts in this group acted

as security supervisors of the whole development process.

[P8] In all groups, we have a dedicated team working on the security part.

Developers exhibited a relaxed attitude towards software security when knowing

that there were experts to back them up. In all cases, participants expressed satisfac-

tion and trust with the other people and processes that were supposed to be handling

the security issues.

3.2.2 Security in Context

In addition to describing how their organization handles software security, many

participants also explained that the security issues they are aware of do not apply to

their particular development context. For example, three of my interviewees who do

not work on web applications acknowledged the importance of common web-based

vulnerabilities and exhibited awareness and knowledge of those issues. However, they

stated that those vulnerabilities do not concern them since they do not work on

web applications. One participant, who has been a middleware developer in a large

enterprise technology provider for 7 years, expressed that he does not worry about

security since he does not build front-end applications:

23

[P13] They [the group that works on portal application] might have bigger

concerns than us because we are basically sitting in the backend.

Although some software, such as middleware, provides fewer attack vectors to at-

tackers as compared to web applications and web related software (e.g. web browsers),

there are still potential vulnerabilities due to similar programming errors, such as not

performing proper input validation.

Another reason noted by two of the interviewees was that the software they were

developing would only be used by a small and known user population. In one case, the

participant was working on internal software that would only be used by corporation

employees. The other interviewee asserted that the potential users were non-technical

managers. He believed that these users were either technically incapable of doing

anything malicious to the software or would not take the risk of losing their job

by attacking the software. The problem with this perception is that attacks can

also occur by an attacker hijacking an innocent user’s account, and then using that

account to behave maliciously.

One interviewee also argued that most of their products were based on third party

commercial software. Therefore, he believed that their software security depends on

commercial software security. As long as the commercial software was up-to-date, he

did not think his company’s software would be vulnerable to attacks.

[P15] [Q: So that means you trust other people’s software?] I have to

because, right now it’s pretty good for, like, if you have a security hole,

you can just upgrade it. You know, to get patches.

24

Similarly, participants seemed to trust reused code, even those with high security

awareness. All my interviewees acknowledged that reusing code is a common pro-

gramming practice. However, code security was never a criterion they used to help

them decide on which reused code to choose. In a study on the use of online resources

during programming, Brandt et. al (11) found a similar trust in the correctness of

reused code, which made it challenging to find bugs in that adapted code.

The fundamental characteristic of software security is that each and every security

hole contributes to the compromise of a system and breach of confidential information.

A piece of software that has only one vulnerability is still not secure. Additionally, a

piece of vulnerable software may not be the direct target of an attacker, but may still

be used in an attack to get closer to a target. Therefore, software security should be

considered within all domains and contexts. This is even more important considering

the trust placed in the security of other software and reused code.

3.2.3 External Constraints

Professional software development is influenced by a variety of external factors.

Business deadlines, planned budget, customer demands, and developer knowledge all

impact the priorities for the limited resources of a project. Security is just one con-

sideration among many. The interviewees identified a range of factors that motivate

and constrain the attention paid to various security concerns throughout the process,

influencing the attention paid by individual developers during their own activities.

A key motivator my participants mentioned for security is the concerns of the

customer or client. As one interviewee pointed out:

25

[P8] If (the) customer cares about security then the company has to care

about security.

Government regulations and organization policy also provide rules that developers

must adhere to regarding security. However, if there are no regulations or policies

that are required, then developers will not be encouraged to perform any extra se-

curity work. Developers may even be discouraged from doing additional security

development because they do not want to do go beyond the rules and do something

wrong.

[P9] I will probably just follow the rules, follow the tradition, and do what

the other people did.

Not surprisingly, the business logic of an application is the primary concern. De-

velopers perceive that security may interfere with that logic or make the software

more complicated. Participants also reported that security is seen as an expense and

potentially time consuming. So as the time or budget is limited, software security is

one of the concerns that get overlooked, either explicitly or implicitly.

[P1] Now the only way you can fit a 3-month project into 3 weeks is to

cut a whole lot of corners. Security was one of those corners that got cut.

Software security is also seen as a complex technical topic, requiring specific knowl-

edge of developers.

[P13]These days the software is so complex. You would need to have very

specific knowledge and expertise to work on that [security].

26

These concerns are certainly valid. Ensuring secure software does require additional

time and resources throughout the development process. However, I also believe that

basic secure programming practices can be a part of any development without much

added burden, preventing many common and serious vulnerabilities as a result.

3.3 Study Discussion

Throughout the study, it is clear that my interviewees showed a strong reliance

on other people, processes, and technology to take care of software security. Given

the many concerns of developers who write software code, it is not surprising that

they would lighten their load by passing responsibility of software security onto others

when possible. Fellow developers, teams, and organizational policies may even en-

courage such perceptions. The danger, however, is that vulnerabilities are introduced

and overlooked due to this lack of concern and misplaced trust in others, who may

also not be particularly concerned with their software security. Yet, many security

vulnerabilities, including some of the most common and serious, can be prevented

with relatively simple code practices. While design, code review, and testing cer-

tainly play an important and integral role in overall secure software development, the

software developers who make security errors are the best people to prevent security

errors in the first place. My interviews reveal that participants did not seem to share

this perception, which may be leading to easily preventable security errors and greater

costs in detecting and fixing vulnerabilities.

Despite numerous methods and processes (67) that have been researched by the

information security and software engineering communities to encourage secure soft-

27

ware development, the severity of the problem has not been significantly alleviated.

For instance, most efforts that aim to educate and train developers to develop secure

software have been spent on developing educational material and guidelines for the

best secure programming practices (12; 33; 1; 75; 36). However, the mere existence of

such abundant information does not guarantee its use by programmers (85). On the

other side of the spectrum, research into tool support for software security focuses

heavily on machine-related issues, such as technique advancements for vulnerability

detection effectiveness, accuracy, and vulnerability coverage, with very little concern

with human factors issues. The two prominent techniques are static and dynamic

program analyses. Static analysis typically is based on taint tracking (52; 34; 43; 15)

and dynamic analyses are often based on model checking (30; 20; 45) and symbolic

execution (14; 21; 69). As both approaches have their advantages and disadvantages,

a variety of work has explored the combination of these two techniques in an attempt

to achieve better performance (3; 46; 31).

Existing tool support, however, suffers from common drawbacks which significantly

reduce tools’ effectiveness and impede their possibility of long-term usefulness. More

specifically, it comes to play late at the end of the software development cycle, and

thus may not be guaranteed to be used when other software development priorities

take precedence. Worse, these tools, regardless of the implementation techniques, are

normally used by security experts and thus excludes programmers from the security

loop. I, therefore, believe interactive secure programming support for developers can

play a role to fill this void.

The results of this study suggest a number of design goals to help bridge this

28

gap between general security knowledge and concrete secure programming practices.

First, developers need greater awareness of specific errors in the context of their own

development. Tools that detect and flag such code during program construction, not

after code completion, may help alert them to places requiring additional attention.

Tools should also be customizable, as different types of software or domains, such as

web applications versus middleware, may have different security concerns. Developers

are also overburdened with many concerns competing for their time and attention.

Tools should be lightweight, even automatically producing or suggesting secure code

when possible. Ideally, tools would be integrated into existing development environ-

ments, such as the IDE, to reduce training needs and increase accessibility. Tools

also need to accommodate the existing development processes which already have re-

sponsibility for secure development, such as letting designers customize programming

rules for their environments or providing information to aid testing and code review.

CHAPTER 4: INTERACTIVE SECURE PROGRAMMING SUPPORT

4.1 Interactive Support for Software Programming

Software programming is a highly complex human activity, which involves cogni-

tive processes such as reading, writing, learning, reasoning, and problem solving (82).

Interactive tool support for various programming tasks has helped to successfully

improve programming productivity and to ease the cognitive burden on program-

mers (10; 37). One example is the syntax-directed editor, which colors program tokens

according to their syntactic meaning. This has become an indispensable component

of any modern Integrated Development Environment (IDE).

Interactive tool support for software programmers in performing various program-

ming activities has been extensively studied. One line of research is to improve pro-

grammer productivity by providing interactive code editing support. A prominent

success is the incremental compilation of code in Eclipse that offers immediate feed-

back on errors as well as provides quick fixes for common problems while programmers

are editing source files (40). My approach is modeled after this mechanism.

Facilitating debugging through interactive support has gained attention recently.

Hao et al. (26) proposed VIDA which continuously recommends break-points for

programmers based on the analysis of execution information and the gathered feed-

back from a programmer during his/her conventional debugging process, increasing

30

programmer efficiency. Murphy-Hill and Black (51) investigated an interactive code

analyzer that offers refactoring advice when requested. Similarly, I hope to offer se-

cure programming advice to programmers without interrupting their primary tasks

and increase their efficiency in performing secure programming.

Researchers in Human Computer Interaction and software engineering have sought

to design and evaluate more usable interactive tools to help professional developers

reduce general program errors. For example, Ko and Myers have developed a model

for program errors (39), which later led to the design and implementation of a new

approach for interactive debugging (41). Since security errors are a subset of general

programming errors, I believe they can be greatly dealt with via similar interactive

support in programming environments.

4.2 Interactive Secure Programming Support

My approach is based on the following design considerations. First, it is easiest

and most cost effective for developers to write secure code and to document security

implementation during program construction. This means that creating a tool that

integrates into the programmers’ development environment is promising.

My second consideration is the interface design principle that recognition is favored

over recall (71). Developers are provided with appropriate visual alerts on secure

programming issues and offered assistance to practice secure programming.

Third, an in-situ reminder tool can be an effective training aid that either helps

novices to learn secure programming practices or reinforces developers’ secure pro-

gramming training, making security a first class concern throughout the development

31

process. This will help developers learn to reduce their programmer errors over time,

reducing costly analysis and testing after implementation.

Fourth, I want to support sharing secure programming knowledge and standards

amongst development teams. In an industrial setting, the tool should be configured

by an organization’s software security group (SSG), which is responsible for ensuring

software security as identified by best industry practice (48). Thus, a SSG could

use the tool to communicate and promote organizational and/or application-specific

programming standards. In addition, the tool can generate logs of how security

considerations were addressed during construction, providing necessary information

for more effective code review and auditing.

Finally, integrating such support into the IDE promotes the accessibility of secure

programming knowledge.

I carried out the above design idea of integrating secure programming support into

the programming environment through the implementation of ASIDE (Application

Security in IDE) (87), which is an Eclipse plugin for Java. But before I delve into

the details of the working mechanics of ASIDE, I describe a preliminary evaluation

to understand why a tool like ASIDE might be effective at preventing software se-

curity bugs by investigating how such errors may be committed. Ko and Myers

have done a comprehensive survey of previous research on causes of programmer er-

rors (39). According to them, programmer errors can be traced to three types of

cognitive breakdowns: skill-based breakdown, rule-based breakdown, and knowledge-

based breakdown, which take place during skill-based activities, rule-based activities,

and knowledge-based activities, correspondingly.

32

Skill-based activities are routine, mechanical activities carried out by developers,

such as editing program text (39). To put common patterns of skill-based breakdown

in a security context, consider when a programmer copies a block of code to reuse

in his program. He realizes that input validation needs to be modified to suit the

new application context. This could be a routine task by changing input validation

instances to a different API call. However, this task (changing API calls in the edit

window) was interrupted, for instance, by an instant message from a colleague. When

his attention is brought back to the task, an instance of the old input validation

was missed, thus causing the software to be vulnerable. Attention shifts are the

principle cause of skill-based breakdowns. ASIDE could be effective to mitigate such

errors by alerting programmers to important security issues, refocusing the developer’s

attention on security concerns.

Ko and Myers use the term “rule” to refer to a programmer’s learned program plan/

pattern. I believe ASIDE can also be effective against common patterns of rule-based

breakdowns in security contexts. The first example relates to the inexperience of a

programmer. Suppose a programmer, who has been trained on secure programming

practices, invokes an unfamiliar API which brings untrusted input into the system.

She may not be aware (i.e. she misses a “rule”) that input validation is needed, leading

to a software vulnerability. The second example relates to information overload,

which occurs when too many rules are triggered and one of them may be missed.

One can envision a situation where the rule requiring access control is not applied

due to programmers’ information overload. In both cases, a tool like ASIDE could

be effective in preventing such errors by reminding programmers to apply security

33

related rules.

The third example relates to favoring a previously successful rule without realizing

the change of context (39). Consider a case where a block of code which may make

certain checks on file integrity is copied and reused. However, more types of checks

are needed given the new application context. A developer may not be sufficiently

aware of this context switch and mistakenly believe that the existing integrity checks

in the code are sufficient. Again, a tool like ASIDE may be helpful to mitigate such

an instance by alerting programmers of important security considerations and giving

them an opportunity to discover that a different rule might be needed. This might

be accomplished by requesting an annotation on file integrity check logic.

Knowledge-based activities typically are at a conceptual level, such as requirements

specification and algorithm design (39). For example, it is often impossible to perform

an exhaustive search of the problem space. Using black-list input validation instead

of white-list input validation is an example of a knowledge-based breakdown leading

to security vulnerabilities. A black-list is much easier to construct, based on human

cognitive heuristics of selectivity, biased reviewing and availability. Writing proper

white-list validation requires significant effort, even for common input types such as

people’s last name, address, URL, and file path, especially when taking internation-

alization issues into consideration. ASIDE helps to address this issue by making it

easier to use white-list input validation, choosing from a predefined list of options.

The design of ASIDE, in general, meets three criterion. It detects vulnerable code

while developers are writing code; it informs developers through warnings; and it

provides suggestions to mitigate the identified problems. In the following chapters,

34

I discuss about two implementations of two techniques that follow this design, in-

teractive code refactoring and interactive code annotation as well as my effort for

evaluating them.

CHAPTER 5: INTERACTIVE CODE REFACTORING

The modern IDE provides rich features that significantly alleviate programmers’

cognitive burden in writing code and ensures the correctness of programs. For in-

stance, if a variable is used before being declared under the context of a static pro-

gramming language, the IDE would annotate the corresponding line which identifies

the statement in which the variable is with an error marker that carries information

about the error. The error marker can be easily visualized by programmers. A pro-

grammer can choose to further investigate the proposed issue by hovering the cursor

over the error marker or clicking on it. Upon being hovered or clicked, the error

marker displays a message to explain the underlying cause of the error, along with

potential solutions that can be employed to solve the problem. By clicking on the item

which represents a solution the programmer considers valid and capable of solving the

issue, corresponding actions such as code refactoring that have been coded in the IDE

will be taken on behalf of the programmer. In the mean time, the error marker will

be eliminated from the IDE. Interactive code refactoring works in a similar fashion.

5.1 Target Vulnerabilities Profile

Interactive code refactoring is designed to address security vulnerabilities that stem

from improper/insufficient input validation and/or output filtering, of which many are

well-known. These range from low-level command injection in systems to high-level

36

SQL Injection and Cross-site Scripting in modern web applications. The primary

and common characteristic of such vulnerabilities is that the program takes external

inputs from users, network, file systems, etc. as they are for critical or sensitive

operations that can change states of the program. In some case, the program makes

efforts to validate the inputs, however, does it in an insufficient manner.

In this section, I present some common vulnerabilities in modern web applications

that share this characteristic.

5.1.1 Cross-site Scripting

A Cross-site Scripting (XSS) vulnerability occurs when data enters a web applica-

tion through an untrusted source. In the case of Persistent (also known as Stored)

XSS, the untrusted source is typically a database or other back-end datastore, while

in the case of Reflected XSS it is typically a web request. It also occurs when the data

is included in dynamic content that is sent to a web user without being validated for

malicious content.

The following JSP code segment queries a database for an employee with a given

ID and prints the corresponding employee’s name.

<%...

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);

if (rs != null) {

rs.next();

String name = rs.getString("name");

37

%>

Employee Name: <%= name %>

This code functions correctly when the values of name are well-behaved, but it

does nothing to prevent exploits if they are not. This code can appear less dangerous

because the value of name is read from a database, whose contents are apparently

managed by the application. However, if the value of name originates from user-

supplied data, then the database can be a conduit for malicious content. Without

proper input validation/encoding on all data stored in the database, an attacker

can execute malicious commands in the user’s web browser. This type of exploit,

known as Persistent (or Stored) XSS, is particularly insidious because the indirection

caused by the data store makes it more difficult to identify the threat and increases

the possibility that the attack will affect multiple users. XSS got its start in this

form with web sites that offered a “guestbook” to visitors. Attackers would include

JavaScript in their guestbook entries, and all subsequent visitors to the guestbook

page would execute the malicious code.

5.1.2 SQL Injection

A SQL Injection vulnerability occurs when data enters a program from an untrusted

source and then is used to dynamically construct a SQL query.

The following code dynamically constructs and executes a SQL query that searches

for items matching a specified name. The query restricts the items displayed to those

where the owner matches the user name of the currently-authenticated user.

38

...

String userName = ctx.getAuthenticatedUserName();

String itemName = request.getParameter("itemName");

String query = "SELECT * FROM items WHERE owner = ’"

+ userName + "’ AND itemname = ’"

+ itemName + "’";

ResultSet rs = stmt.execute(query);

...

Because the query is constructed dynamically by concatenating a constant base

query string and a user input string, the query only behaves correctly if itemName

does not contain a single-quote character. If an attacker with the user name wiley

enters the string “name’ OR ’a’=’a” for itemName, then the query becomes the

following:

SELECT * FROM items

WHERE owner = ’wiley’

AND itemname = ’name’ OR ’a’=’a’;

The addition of the OR ’a’=’a’ condition causes the where clause to always

evaluate to true, so the query becomes logically equivalent to the much simpler

query:

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that

the query only return items owned by the authenticated user; the query now returns

all entries stored in the items table, regardless of their specified owner.

39

5.1.3 Code Injection

Many modern programming languages allow dynamic interpretation of source in-

structions. This capability allows programmers to perform dynamic instructions

based on input received from the user. Code injection vulnerabilities occur when

the programmer incorrectly assumes that instructions supplied directly from the user

will perform only innocent operations, such as performing simple calculations on ac-

tive user objects or otherwise modifying the user’s state. However, without proper

validation, a user might specify operations the programmer does not intend.

In this classic code injection example, the application implements a basic calculator

that allows the user to specify commands for execution.

...

ScriptEngineManager scriptEngineManager = new ScriptEngineManager();

ScriptEngine scriptEngine = scriptEngineManager

.getEngineByExtension("js");

userOps = request.getParameter("operation");

Object result = scriptEngine.eval(userOps);

...

The program behaves correctly when the operation parameter is a benign value,

such as “8 + 7 * 2”, in which case the result variable is assigned a value of

22. However, if an attacker specifies languages operations that are both valid and

malicious, those operations would be executed with the full privilege of the par-

ent process. Such attacks are even more dangerous when the underlying language

40

provides access to system resources or allows execution of system commands. For

example, Javascript allows invocation of Java objects; if an attacker were to spec-

ify “ java.System.RunTime.exec("shutdown -h now")” as the value of

operation, a shutdown command would be executed on the host system.

5.1.4 Log Forging

A Log Forging vulnerability occurs when data enters an application from an un-

trusted source and then is written to an application or system log file. The following

web application code attempts to read an integer value from a request object. If

the value fails to parse as an integer, then the input is logged with an error message

indicating what happened.

String val = request.getParameter("val");

try {

int value = Integer.parseInt(val);

}

catch (NumberFormatException) {

log.info("Failed to parse val = " + val);

}

If a user submits the string “twenty-one” for val, the following entry is logged:

INFO: Failed to parse val=twenty-one

However, if an attacker submits the string “twenty-one%0a%0aINFO:+User+logged

+out%3dbadguy”, the following entry is logged:

INFO: Failed to parse val=twenty-one

41

INFO: User logged out=badguy

Clearly, attackers can use this same mechanism to insert arbitrary log entries.

5.1.5 Header Manipulation

Header Manipulation vulnerabilities occur when data enters a web application

through an untrusted source, most frequently an HTTP request and then is included

in an HTTP response header sent to a web user without being validated

The following code segment reads the name of the author of a weblog entry,

author, from an HTTP request and sets it in a cookie header of an HTTP response.

String author = request.getParameter(AUTHOR_PARAM);

...

Cookie cookie = new Cookie("author", author);

cookie.setMaxAge(cookieExpiration);

response.addCookie(cookie);

Assuming a string consisting of standard alpha-numeric characters, such as “Jing

Xie”, is submitted in the request the HTTP response including this cookie might take

the following form:

HTTP/1.1 200 OK

...

Set-Cookie: author=Jing Xie

...

42

However, because the value of the cookie is formed of unvalidated user input the

response will only maintain this form if the value submitted for AUTHOR PARAM does

not contain any CR and LF characters. If an attacker submits a malicious string, such

as “Ryan Hacker \r\nHTTP/1.1 200 OK\r\n...”, then the HTTP response would be

split into two responses of the following form:

HTTP/1.1 200 OK

...

Set-Cookie: author=Ryan Hacker

HTTP/1.1 200 OK

...

Clearly, the second response is completely controlled by the attacker and can be

constructed with any header and body content desired. The ability of attacker to

construct arbitrary HTTP responses permits a variety of resulting attacks, including:

cross-user defacement, web and browser cache poisoning, cross-site scripting and page

hijacking.

5.1.6 Path Manipulation

Path manipulation errors occur when an attacker can specify a path used in an op-

eration on the filesystem and gains a capability that would not otherwise be permitted

by specifying the resource.

For example, the following code uses input from an HTTP request to create a file

name. The programmer has not considered the possibility that an attacker could

43

provide a file name such as “../../tomcat/conf/server.xml”, which causes

the application to delete one of its own configuration files.

String rName = request.getParameter("reportName");

File rFile = new File("/usr/local/apfr/reports/" + rName);

...

rFile.delete();

5.1.7 Dangerous File Inclusion

Many modern web scripting languages enable code re-use and modularization

through the ability to include additional source files within one encapsulating file.

This ability is often used to apply a standard look and feel to an application (tem-

plating), share functions without the need for compiled code, or break the code into

smaller more manageable files. Included files are interpreted as part of the parent file

and executed in the same manner. File inclusion vulnerabilities occur when the path

of the included file is controlled by unvalidated user input.

The following code takes a user specified template name and includes it in the JSP

page to be rendered.

...

<jsp:include page="<%= (String)request.getParameter(\"template\")%>">

...

In the above example, an attacker can take complete control of the dynamic include

statement by supplying a malicious value for template that causes the program to

44

include a file from an external site.

If the attacker specifies a valid file to a dynamic include statement, the contents of

that file will be passed to the JSP interpreter. In the case of a plain text file, such

as /etc/shadow, the file might be rendered as part of the HTML output. Worse,

if the attacker can specify a path to a remote site controlled by the attacker, then

the dynamic include statement will execute arbitrary malicious code supplied by the

attacker.

5.2 Interactive Code Refactoring

I have implemented interactive code refactoring in the form of an Eclipse plugin.

My prototype implementation is analogous to how the incremental compiler works

in modern IDEs. ASIDE works as a long running process in the background that

scans a selected project for program patterns that match pre-defined heuristic rules

of security vulnerabilities in the current Eclipse workspace. During the development

session, it monitors developers’ edits to respond to the changes in the code. Whenever

a match is found, ASIDE marks the corresponding source code line using a warning

icon on the left margin of the code editor and also highlights the identified vulnerable

code using a dashed rectangle, shown in Figure 2.

As stated previously, there are many classes of vulnerabilities that originate from a

variety of code patterns. However, for my research, I only consider vulnerabilities that

are most known for their prevalence and commonness. More specifically, I care about

OWASP Top 10 (55) and SANS Top 25 programming errors (68). In this section, I

discuss an example concerning input validation to illustrate the key concepts.

45

Figure 2: ASIDE identifies vulnerable code and reminds developers through
warnings.

A developer is alerted by a marker and highlighted text in the edit window when

input validation is needed. ASIDE has a rule-based specification language, which

is XML-based, to specify sources of untrusted inputs which I formally named as

trust boundaries. Currently two types of rules are supported: Method (API) in-

vocations, for example, method getParameter(String parameter) in class

HttpServletRequest introduces user inputs from clients into the system; and

Parameter input, for instance, arguments of the Java program entrance method

main(String[] args).

With a mouse click, the developer has access to a list of possible validation op-

tions, such as a file path, URL, date, or safe text. Upon the selection of an option,

appropriate input validation code will be inserted and the red marker will be dis-

missed. Figure 3 shows a screenshot of ASIDE facilitating a developer to select an

appropriate input validation type for an identified untrusted input. The library of

input validation options can be easily reconfigured by an individual developer or an

organization.

Figure 4 illustrates how ASIDE refactors code to perform input validation using

OWASP Enterprise Security API (ESAPI) Validator (62).

46

Figure 3: The user interactively chooses the type of input to be validated using a
white-list approach.

Figure 4: ASIDE validates an input using OWASP ESAPI validator API.

Previous works employing refactoring techniques for secure programming use pro-

gram transformation rules, which operate on completed programs, and thus work best

on legacy code. One recognized limitation of the program transformation approach

is the lack of knowledge of specific business logic and context (23). In contrast, my

approach is designed to provide interactive support for secure programming and takes

full advantage of developers’ contextual knowledge of the application under develop-

ment.

There are two possible strategies for when to perform input validation. One is to

47

validate a variable containing untrusted input when it is used in a critical operation,

such as a database update, insertion, or deletion. The other is to validate an untrusted

input as soon as it is read into an application-declared variable. A major disadvantage

of the first strategy is that it is not always possible to predict what operations are

critical, and thus, fails to validate input when the context of the application evolves.

ASIDE promotes what I believe is the best practice for secure programming, validating

untrusted inputs at the earliest possible time (16). However, it is trivial to extend

ASIDE to apply the other strategy.

Another issue is that untrusted inputs could be of composite data type, such as a

List, where input types may be different for each element of the list. In the current

ASIDE implementation, the developer is warned of taint sources of a composite type

with a visually softer yellow marker as shown in Figure 5. ASIDE uses data flow

analysis to track an untrusted composite object. As soon as the developer retrieves an

element that is of primitive data type (e.g.java.lang.String), ASIDE alerts the

need to perform input validation and/or encoding in the same manner as described

above. Given that the element retrieval from a composite data type is unbound,

ASIDE leaves the marker shown in Figure 5 throughout the development to serve as

a continual reminder.

Figure 5: Visually softer marker that marks a tainted input with composite data
type: Map.

ASIDE supports two types of input validation rules: syntactic rules and semantic

48

rules. A syntactic rule defines the syntax structure of an acceptable input and is

often represented as a regular expression. Examples include valid names, addresses,

URLs, filenames, etc. Semantic rules depend on the application context. For exam-

ple, restricting the domain of URLs, files under certain directories, date range, or

extensions for uploaded files. They can also be used to validate inputs of special data

types, such as certain properties of a sparse matrix. While validation rules can be

declaratively specified by a SSG, a developer has the option to address the identi-

fied input validation issue by writing custom routines. This is then documented by

ASIDE for later security audit. A developer can also easily dismiss ASIDE warnings

if they are determined to be irrelevant. In any case, once the alert has been addressed,

the corresponding red marker and text highlights will disappear in order to reduce

programmer distraction and annoyance.

Another benefit of ASIDE is that it can help enforce secure software development

standards across the organization. For example, a company may deploy a validation

and/or encoding library and clearly define a set of trust boundaries for the purpose

of performing input validation and/or encoding. Once appropriately configured with

the defined trust boundaries and libraries, ASIDE can collect information as to where

in the source code an untrusted input was brought into the system and what actions

a developer took to address validation and/or encoding. ASIDE can also effectively

supplement the security audit process by generating rules for traditional static analyz-

ers. For example, once an untrusted input has been validated, customized Fortify (72)

rules can be generated to remove taints, thus avoiding unnecessary issues being gener-

ated during the auditing process. This can significantly reduce the time of a software

49

security audit.

My evaluation of interactive secure programming support for software developers

is conducted from three perspectives: a model-theoretic analysis which has been

covered in Section 4.2 , which applies theoretic design principles to features of tool

under examination; an open source projects analysis presented in Section 5.3; and user

studies on human subjects detailed in Section 5.4. All evaluations were conducted on

the different versions of implementation of ASIDE, the prototype that embodies the

idea of my proposed approach.

5.3 Open Source Projects Evaluation

In this section, I focus on input validation and/or encoding vulnerabilities, as they

are currently supported by code refactoring. My goals are to determine: (a) How

effective is ASIDE at discovering exploitable software vulnerabilities and preventing

them? and (b) What constitutes false positives for ASIDE? The significance of this

evaluation is the use of real world cases that help us understand the effectiveness of

ASIDE and provide guidance for further research.

5.3.1 Establishing a Baseline Using an Open Source Project

I selected Apache Roller (a full-featured blog server) (66) release version 3.0.0

because it is one of the few mature Java EE based open source web applications.

A Google search of “powered by Apache Roller” yielded over 1.8M entries including

sites such as blogs.sun.com. One of my colleagues, who is an experienced member of

a SSG at a large financial service organization, performed a software security audit

using his company’s practices to identify security vulnerabilities that are exploitable

50

in Roller.

The audit process consisted of two parts: (1) automatic static analysis using Fortify

SCA (72), and (2) manual examination of Fortify findings. Default Fortify rules

were used, followed by manual auditing to eliminate Fortify findings that are not

immediately exploitable. For each issue reported by Fortify, its source code was

reviewed to:

• determine whether appropriate input validation/encoding has been performed;

• determine whether Fortify’s environmental assumption is valid. For example, in

the case of log forging, whether the logging mechanism has not been wrapped

in any way that prevents log forging;

• determine whether Fortify’s trust boundary assumption is valid. For instance,

whether property files are considered to be trusted, and in this case, data from

property files is untrustworthy;

• scrutinize input validation and encoding routines to make sure they are proper.

For example, check if blacklist-based filtering is used. File, LDAP, DB, and

Web all require different encoders or filters because different data schemes are

used; and

• pay close attention to DOS related warnings (e.g. file handles and db con-

nections) as resources may be released in a non-standard way. Often times,

warnings are generated even when resources are released in a finally block.

Roller 3.0.0 has over 65K lines of source code. Fortify reported 3,416 issues in 80

vulnerability categories, out of which, 1,655 issues were determined to be exploitable

51

vulnerabilities. Table 1 summarizes the results of this audit process. Based on the

evaluator’s experience, Roller’s security quality is at the average level of what he has

evaluated. According to current work load estimate metrics of his enterprise, the

analysis work reported here would amount to 2.5 person days.

Table 1: Results rendered by the industry security auditing process on Apache
Roller version 3.0.0.

Critical High Medium Low
Fortify Issue Categories 8 18 2 52
Raw Issues 164 653 13 2,597
Exploitable Issues 37 397 0 1,221

ASIDE’s code refactoring is primarily aimed at preventing vulnerabilities resulting

from lack of input validation and/or encoding. Out of the 1,655 Fortify issues that

can be exploited in Roller, 922 (58%) of them are caused by lack of input validation

and/or encoding including most of the vulnerabilities from the critical bucket. The

rest, mostly in the low security risk category, are related to failure to release resources

(e.g. database connection) and other bad coding practices. Table 2 lists the details

of the audit findings for the 922 issues of input validation and/or encoding we will

compare to ASIDE.

It is common that multiple Fortify issues share the same root cause of an untrusted

input, referred to as a taint source. A single taint source may reach multiple taint

sinks, exploitable API calls, and thus generates several different vulnerabilities. For

example, a user-entered value might lead to a Log Forging vulnerability if it is inserted

into a log, and a SQL Injection if it is used in an operation that executes a dynamic

SQL statement.

52

Table 2: Detail results from security auditing against Roller using Fortify SCA.

Severity Category Name

Critical

Cross-Site Scripting: Persistent 2
Cross-Site Scripting: Reflected 2

Path Manipulation 19
SQL Injection 11

Medium

Cross-Site Scripting: Persistent 31
Denial of Service 4

Header Manipulation 52
Log Forging 252

Path Manipulation 6

Low

Cross-Site Scripting: Poor Validation 6
Log Forging (debug) 531

SQL Injection 3
Trust Boundary Violation 3

Total 922

The 922 Fortify issues are caused by 143 unique taint sources including both

primitive data types (e.g. java.lang.String) and composite data types (e.g.

java.util.Map). Variables requiring output encoding are always the result of a

taint source. Thus, I exclude them in our analysis to avoid duplications.

5.3.2 Vulnerability Coverage of ASIDE

I then imported Roller into an Eclipse platform that has ASIDE installed and

configured. ASIDE identified 131 of the 143 (92%) exploitable taint sources. The

remaining 12 cases involve JSP files and Struts form beans. The current ASIDE

implementation does not cover these cases, but they could be easily handled in future

implementations.

Forty one of the 143 are taint sources of composite data returned from APIs such as

org.hibernate.Criteria.list() and javax.servlet.ServletRequest.

getParameterMap(). ASIDE performs dataflow tracking within the method where

53

untrusted input is read. When a primitive value (e.g. java.lang.String) is

retrieved from the composite data structure instance, ASIDE will raise a regular

warning and provide assistance to validate and/or encode that input, as described in

Section 5.

While I successfully identified tainted inputs of composite data types in Roller,

in many cases, developers did not use the elements in that data object within the

immediate method. Since ASIDE only currently performs taint tracking within the

immediate method declaration, future implementations of ASIDE will be expanded

to support taint tracking for composite objects beyond the scope of the immediate

method declaration, which would then alert the programmer to all these primitive

data type uses.

My analysis also raised the issue of delayed binding. An example of delayed

binding is the access methods in a POJO (Plain Old Java Object). For example,

setBookTitle() method of a Java class Book.java with a bookTitle attribute

of String type. Binding of access methods to input streams can be delayed until

after the program is completed. Thus, at the time of writing the program, there is no

strong reason to believe the input is untrusted. After completion of the application,

an integrator may bind an untrusted input stream directly to a POJO, making the

application vulnerable.

Delayed binding is a difficult problem for existing static analysis tools as well. If

the binding specification (typically in XML format) is composed in the same IDE

environment, which is usually the case for Java EE development, one could extend

ASIDE to help developers discover input validation issues by resolving the binding

54

specifications. Further research is needed on the best approach to address delayed

bindings in ASIDE.

5.3.3 False Positives for ASIDE

As I just demonstrated, ASIDE had good coverage of the input validation/encoding

issues in Roller. In this section, I discuss the additional warnings that ASIDE gener-

ated. In analyzing false positives, I only look at taint sources of primitive data types.

Taint sources of composite types are accounted for when elements of the composite

object are retrieved and treated as a taint source of a primitive data type.

ASIDE reported 118 taint sources of primitive data types that were not identified

as exploitable Roller vulnerabilities by the Fortify software security audit. Ninety

four of them are cases that are not exploitable at the moment. For example, a taint

source does not reach any taint sink. Failure to validate/encode the untrusted input

may not be exploitable in the context of the current application. However, often

times, such untreated inputs will eventually be used, and thus cause an exploitable

security vulnerability as the software evolves. Therefore, I believe it is still a good

secure programming practice to validate/encode all untrusted inputs, regardless of

whether they will reach a taint sink or not.

Figure 6 shows another example from Roller, where a tainted request URL is di-

rectly passed into an InvalidRequestException constructor, and eventually

inserted into the error log. Fortify default rules do not acknowledge this code to be

vulnerable. However, if the logs are viewed in a web-based log viewer such as a web

browser, which is common in some organizations, this would allow an attacker to

55

launch a Cross-site Scripting attack on the system administrator reviewing the log.

Figure 6: Untrusted input is logged through an Exception construction.

Thus, from a broad secure programming best practice perspective, I believe these

94 cases should be regarded as true positives, and ASIDE’s warnings should still be

followed. However, from a circumscribed perspective of a specific application, they

may be regarded as false positives.

The remaining 24 reported taint sources I regard as false positive, where inputs

are used in ways that do not lead to any recognized security vulnerabilities. These

often involve inputs that are highly specific to the application context. For example,

as illustrated in Figure 7, an input is tested to see if it equals to a constant value,

determining the application flow.

Figure 7: Untrusted input is used for logic test.

Another such case is shown in Figure 8, where the input is cast into a Boolean

value with only two possible outcomes: true and false, which will not result in

any harm to the intended application logic.

Figure 8: Untrusted input is parsed into harmless Boolean value.

Because the false positive rate often is positively correlated to accuracy, it is diffi-

56

cult to design a highly accurate tool without false positives. Both traditional analysis

tools, such as Fortify SCA (72), and ASIDE will require manual inspection of warn-

ings to eliminate false positives. However, my analysis of Roller suggests that for

vulnerabilities due to improper input validation and/or encoding, ASIDE generates

far fewer issues than Fortify, reducing the workload for both developers as well as

software security auditors.

Additionally, I think that it may take less effort to recognize and deal with ASIDE

false positives compared to those generated by traditional static analysis. ASIDE’s

warnings are generated while the developer is actively engaged in the programming

process, making it easier to examine and understand the context of the warning.

Moreover, with a click of a button on ASIDE’s resolution menu, the developer can

dismiss a warning as false positive. In contrast, false positives generated by traditional

analysis tools such as Fortify SCA (72) are often dealt with by either software security

auditors who typically do not have full application knowledge or by developers after

the program was completed. In both cases, I believe it will take them longer to

fully understand the impact of a particular warning generated by static analysis and

to recognize it as a false positive. As excessive false positives could have a negative

impact on the usability of any tool, I conducted further research which will be detailed

in Section 5.4 to understand how false positives in ASIDE impact developer behavior.

5.4 Developer Study

The previous evaluations focused on the ability of ASIDE to detect or fix vulnerable

code. However, ASIDE must be designed in a way that fits naturally into a developer’s

57

work environment in order to be successful. To gain an understanding of program-

mers’ reactions towards real-time secure coding support and to evaluate whether real

developers could use ASIDE effectively, I conducted two comparison-based user stud-

ies to evaluate our approach for helping programmers to address potential security

vulnerabilities in their code.

In designing ASIDE, I proposed to use interactive code generation as one method

to help programmers easily modify their code and prevent security vulnerabilities.

However, I also wanted to examine an alternate approach, currently provided in part

by a commercial tool (17), providing a detailed explanation of a warning. Thus, for

this study, I implemented and evaluated two different versions of ASIDE. The first,

ASIDE CodeGen, performs automated code generation to fix the identified vulnerable

code. More specifically, CodeGen offers a developer a list of suggestions as a set

of input types/output encoding strategies upon his/her examination of a warning

through either clicking on the warning icon or hovering over the highlighted code as

shown in Figure 9. Upon choosing a type from the list, CodeGen then automatically

inserts the corresponding code segment which performs the input validation or output

encoding, as illustrated in Figure 10. The developer can also choose to dismiss the

warning if s/he does not wish to modify the code.

My other alternative, ASIDE Explanation, instead provides only two options upon

a developer’s request to address the warning. When selecting “Guide Me Through”,

s/he will be presented with a detailed explanation, Figure 11, as to why the code is

vulnerable, the consequences of not addressing the vulnerability, and the suggested

remediation. Thus, Explanation does not automatically create code, but instead

58

Figure 9: ASIDE CodeGen offers a list of suggestions that can be applied to
address the selected warning.

Figure 10: ASIDE CodeGen generates a code segment in response to the
developer’s selection of an input type.

attempts to help the programmer understand the problem and address it him/her

self. The other option, “Ignore this” dismisses the warning, and removes it from

view.

It is my hypothesis that CodeGen is more effective than Explanation in aiding

programmers, given that CodeGen reduces a programmer’s burden of creating his/

her own validation/encoding routine. Furthermore, CodeGen provides a rich list of

commonly-used, well-established input types from the security community, some of

which may not be known to the developer. This, therefore, offers a chance for devel-

59

Figure 11: ASIDE Explanation provides details of the secure programming
warning.

opers to expand their awareness of secure programming practices. However, program-

mers may not feel comfortable with code being generated for them, or understand

how to modify that code if necessary. On the other hand, Explanation demands that

the developer switch attention from programming to documentation reading, which

may lead to ignoring the warning. Even worse, Explanation does not provide concrete

solutions as to how to solve the problem beyond a more generic description of how to

perform proper input validation/output encoding. As a result, the developer has to

write the code from scratch, which may increase the developer’s cognitive load and be

challenging for someone without sufficient secure programming knowledge. However,

Explanation would let the developer decide how to best incorporate the vulnerability

60

fix into the code. My studies examine the differences in these two approaches.

My approach aims to be useful for developers at all levels of their software devel-

opment experience. However, novice programmers and expert programmers perceive

and practice software development differently (5); thus, I believe that they possess

different views towards the need of tool support for secure programming. I thus per-

formed our study in terms of two different developer populations: novice developers

who are at the stage of gaining both software development knowledge and experience;

and expert developers who have years of professional experience in industry.

5.4.1 User Study I - Students/Novice Developers

5.4.1.1 Participants and Procedure

For this study, I recruited 18 students from a graduate level Java-based web ap-

plication development course, which was offered by my college in the Spring 2011

semester. Twelve students were male and 6 female. As part of the course, students

were briefly introduced to basic secure programming techniques such as input vali-

dation and output encoding. However, project grades were assigned only based on

functional requirements, not on secure programming practices.

Part of the students’ course work was to build an online stock trading system in-

crementally over four projects throughout the semester using Java Servlet technology.

My study focused on the last increment of this project where students were asked to

implement functionality including add a banking account, display stock details, make

a buy/sell stock transaction, and display transaction history. Students added these

functions on top of their existing work artifacts, which included static web pages,

61

login, logout, and register functionalities.

5.4.1.2 Study setup

I performed a controlled comparison study, where student participants were asked

to come to a lab and work on their assignment for 3 hours. Participants were randomly

assigned to work with either CodeGen or Explanation. Each study session took 3

hours of development and fifteen minutes of debriefing. Participants were offered a

gift card as compensation for completing the study session.

The participants were first given a brief walkthrough of how the selected plugin

works. In the mean time, a technical assistant helped set up the development environ-

ment and recording software on the lab machine. He also imported the participant’s

existing project into Eclipse and made sure it was compiled and could run on the local

web server. The participant was then asked to launch the plugin before proceeding

to development. Students were told to work as they wished on the assignment for 3

hours and respond to ASIDE warnings as they wanted to. The participants worked

on various parts of their code and none completed the assignment during the study

session.

5.4.1.3 Semi-structured Interview

Each interview lasted 10 to 15 minutes. I began by asking participants to describe

their interactions with ASIDE, and the concrete actions they took to address the

warnings and why. Next, I asked our participants to explain what they liked and

disliked most about the tool that they interacted with. I also asked participants

whether they thought they would likely pay attention to and fix vulnerable code

62

without such tool support. Finally, I asked each participant whether s/he gained any

knowledge from interacting with the tool.

5.4.1.4 Result Analysis

For each participant, I collected a 3-hour screen recording of his/her application

development and a recording of the interview. Additionally, I gathered a software log

of the participant’s interaction with ASIDE as a supplement to the screen recording.

I analyzed the screen recording and logs, focusing on the many warnings ASIDE

generated. For each warning, I analyzed how participants responded either through

the tool or in their code.

The interviews provided the participants’ explanations for their behavior with

ASIDE. I transcribed all interviews into text, and performed open-coding on the

transcripts using. I identified general themes and interesting cases about their per-

ceptions towards tool support for secure programming.

Figure 12 depicts the results of the 9 participants who worked with ASIDE Code-

Gen. Over all nine participants, 101 distinctive CodeGen warnings were generated,

resulting in 11.2 warnings per participant on average. There were 83 warnings clicked

on by participants (82%), or 9.2 for each participant on average.

Out of the 83 warnings clicked, 63 were addressed (76%, or 7 per participant on

average) by clicking on one of the input/output types provided by CodeGen, leading

to code being generated. The remaining warnings were deliberately dismissed by par-

ticipants through the provided “Ignore this” option. All participants used CodeGen

to generate code and none of them wrote any customized validation or encoding rou-

63

Figure 12: Metrics from students with CodeGen.

tines. Thus, CodeGen’s interactive code generation was effective in helping students

write more secure code, even though they were not required to do so.

Multiple factors explain why certain warnings were not acted upon. Some of the

warnings were generated when the participant wrote debugging code, which was soon

deleted. Perhaps participants ignored security warnings on code that they knew

was transient. Other cases have to do with a bug in the version of CodeGen used,

which falsely warned participants of the need for output encoding. I noticed that

participants learned this warning was a false positive after one or more encounters, and

then ignored those warnings thereafter. However, at least in this study, the presence

of a false positive did not seem to cause the participants to not pay attention to other

CodeGen warnings. Thus, in cases where participants encountered false positives,

they were able to recognize them quickly and dismiss them.

ASIDE CodeGen’s code generation is designed to be intuitive and unobtrusive. In

most cases, it worked just as I expected, quickly providing useful code fixes. However,

in two cases the generated code caused difficulties. In both cases, the participant was

validating a password string passed from the client via an HTTP request. The rule

used by the validation code enforces certain restrictions on that string. However, the

64

test data used by the students did not meet those strict restrictions (for example, one

used the test string “password”). Thus, the participants were no longer able to execute

and test their code because the test password failed validation. The solution would

have been to create a new test password. However, this interrupted the participants

flow of development and instead both participants deleted the generated validation

routine.

Figure 13 depicts an overview of results of participants using ASIDE Explanation.

The 9 participants generated in total 93 warnings, of which 68 were clicked on (73%

or 7.5 per person). In contrast to CodeGen warnings, 87% (59/68) of Explanation

warnings were deliberately dismissed by clicking on “Ignore this”. Throughout the

sessions, only 20 warnings were examined by clicking on “Guide Me Through”, which

then provides the more detailed explanation. While most participants read at least

one warning, none of the participants wrote any validation routines to check the

identified vulnerable code.

As shown by the results, the warnings shown by ASIDE during the programming

process caught participants’ attention. No participant from the two groups just ig-

nored all the warnings during his/her development, and users tended to deliberately

dismiss any they were not going to attend to. However, only CodeGen resulted in

any security validation being added to the code during the session.

Not only did students in both groups notice the warnings, they also reported wel-

coming the idea of being reminded of security vulnerabilities in their code in real

time. Many expressed similar comments, such as:

65

Figure 13: Metrics from students with Explanation.

[SE5] Helpful, definitely helpful. It’s good at the moment to use it, they

come up immediately, it’s not like you have to understand them later on.

At the moment, if you do something wrong, it shows a warning symbol on

the left.

I was concerned that warnings may divert programmers from their development

flow, and thus be considered annoying. But no one reported being bothered by the

warnings because they are inline with the code, not obtrusive, and do not prevent

programs from being compiled.

[SC4] No (it does not bother me). It gives me warnings so that I can write

secure code.

Still, I observed participants deliberately dismissing warnings rather than simply

ignoring them, and leaving them on the screen.

I purposefully used the red devil-looking icon to indicate the importance of the

warning, and thus to effectively attract users’ attention. Two participants expressed

their like of the icon because it conveyed the seriousness of the issue. However, one

66

disliked the icon appearance, feeling that it is misleading since these warnings will

not prevent programs from being compiled and thus should not be falsely presented

to be as serious as compilation errors.

All but one of the participants indicated that if they were not given either CodeGen

or Explanation, they would not have been aware of security vulnerabilities in their

code. As one participant stated:

[SC1] That (the warning design of CodeGen) was good because hadn’t it

prompted me, I wouldn’t have realized I have to inspect those input values.

Similar to the behavior I observed with the Explanation participants, the CodeGen

participants reported that in the absence of auto-generated code, they would not be

likely to take the initiative to write their own secure code, and would prefer the code

generation. The participants who used CodeGen all reported trusting that using

the tool would make their code more secure. CodeGen transparently showed the

regular expressions used for each data type and the code can be viewed and further

edited by users. Thus, most participants did report feeling like they had sufficient

control over the code generation. In addition, several reported believing that the

regular-expression input validation CodeGen used is more sophisticated than what

they would come up with on their own.

[SC8] For example, the initial code for assignment 3, assignment 2, I my-

self did some password validation code in JavaScript for example. Simple

code, something like password length and some special characters. I mean

I used such thing but this was more sophisticated because it covered ev-

67

erything in a simple form. If you see my code it was there are a lot of if

statements for each and every condition. So this one is much simpler.

However, one participant did feel uncomfortable with the auto-generated code be-

cause he was not able to understand why the code was generated and how the gen-

erated code was impacting his existing code. One participant also worried that the

code generated by CodeGen would not work in a different development environment.

He tried out the code generation and thought it worked fine, but later deleted it out

of concern it would not work when he later finished his assignment in NetBeans (58).

Participants mentioned several aspects of CodeGen that need to be improved. For

instance, the most wanted feature was more information about why code was vulner-

able, and what the generated code does. One participant suggested providing a demo

package to explain and illustrate why certain programming practices are not secure.

Even though none of the students who worked with Explanation wrote any cus-

tomized validation/encoding routines, many of them still thought it was helpful since

the explanation view gave them an idea as to why the warning showed up.

[SE5] So I realize that through out my code, there are a lot of points where

possible, malicious users can take advantage of weakness in the code. So

it’s pretty interesting to know that, something looks so simple, someone

can actually try to, find loophole and something as small as that. I didn’t

know these things; it’s just interesting to see.

SE5 further acknowledged that he was motivated to learn more about input valida-

tion using regular expressions. Interestingly, he even took notes about what he read

68

on the explanation view.

While some thought Explanation was useful and helpful, they complained that the

explanation view did not provide a concrete example as to how to address the problem.

Instead, the suggestion given was too generic and abstract. Also, the content of the

explanation contained too much security jargon. Despite using graduate students

who had at least brief course content on input validation and output encoding, the

participants still had less security knowledge than we expected, and thus the content

needed to be written for a more novice audience. These results indicate a challenge

that applies to either tool: how to explain the secure programming issues and present

the content in language and examples that a broad programmer population will find

understandable and useful.

5.4.2 User Study II - Professional Developers

The other type of potential users our approach targets is professional software

developers who are experienced with application development. Thus, in addition to

studying ASIDE on novice programmers, I ran a similar comparison study on a group

of expert programmers.

5.4.2.1 Participants and Procedure

With the help from my advisor, Dr. Bill Chu, I was able to recruit in total 9 profes-

sional developers through personal contacts and referrals of personal contacts, 8 males

and 1 female. The study was conducted over the course of 3 months during summer

2011. The participants’ professional experience in the software industry ranged from

one year up to 20 years, with an average of 10 years. All of them had professional

69

programming experience with developing web applications using Java technologies,

although some of them do not currently directly work with Java Servlet (56) used in

our study application development. Most (5/8) of my participants admitted that they

do not pay additional attention or perform extra practices to ensure that the code

written by them is secure. Only two participants were ever offered training by their

employer on software security, but this did not include secure programming practices.

Instead of being brought into a controlled laboratory, these participants worked

on one of 2 laptops provided by me borrowed from my university at their pace and

schedule during a period of up to 7 days. However, I only required them to work

on the development for a cumulative 3 hours regardless of how much functionality

they could implement during the given time frame. The professionals worked with

either ASIDE CodeGen or ASIDE Explanation depending on the laptop they worked

on, which was circulated unpredictably. They were interviewed by phone after they

returned the laptops. Participants were offered the same gift cards as the previous

study when they completed the study session.

I wanted to sufficiently motivate the programmers to write code, not just interact

with my tool. Unlike the students, they did not have intrinsic motivation to complete

an assignment. Thus, to avoid priming the professional developer participants into

thinking that I was only testing ASIDE, I informed them that the purpose of the

study was to show students in my college how professional developers develop an

application. I did require the participants to run ASIDE, and encouraged them to

interact with it if they wished. But I did not provide any additional explanation of

the tool. Thus, unlike the students, these participants had no brief tutorial and less

70

priming than the students as to the purpose of the study.

5.4.2.2 Task Structure

I asked the professional developer participants to develop the same stock application

as described in the students’ study. However, instead of composing the application

from scratch, developers were provided with a base project, which had functionality

including login, logout, registration and others already implemented. Static resources

such as simplified html pages were also provided along with the base project. To create

other web page interfaces, the participant only needed to copy and paste code and

modify. Based on the lessons from the student study that 3 hours is far from enough

to complete all designated functions, I arranged the specification in a way that the

functionality they were asked to implement contained the most input code, and was

thus most likely to have ASIDE warnings.

5.4.2.3 Study Results

I gathered the same forms of data from the professional developer’s participation

as was collected from the students, namely, a 3-hour development screen recording,

an interview recording, an ASIDE log and the resultant project artifact. My results

are based on 8 valid data points out of 9 professional developers’ participation, of

which 4 worked with CodeGen and the other 4 worked with Explanation. The ninth

participant failed to use ASIDE at all, which meant her data was not useful for this

study and she was unable to be interviewed about ASIDE. I performed the same data

analysis procedure as we did with the student study.

The four professional developer participants who worked with CodeGen generated

71

in total 45 ASIDE warnings, out of which, 12 were clicked on (27% or 3 per person).

This suggests that warnings were effective to at least attract some attention. How-

ever, only one participant (PDC3), as illustrated in Figure 14, used CodeGen’s code

generation to validate the identified untrusted inputs.

Figure 14: Metrics for Professional Developers with CodeGen.

Although PDC3 utilized CodeGen to address multiple warnings, he went through

a fair amount of trouble to get everything working correctly. He selected the wrong

input type and admitted during the interview that he was still not sure what the

code does because he was not familiar with the ESAPI (59) library CodeGen uses

to perform secure input validation and/or encoding. Both issues again indicate that

CodeGen needs additional explanatory information to help users understand how it

functions.

The other three participants from the CodeGen group neither used CodeGen to

address the warnings nor put the effort into creating their own validation routines. A

common reason given by them for not further interacting with CodeGen was that the

72

given 3-hour time frame was too stringent for the development. For example, PDC2

stated:

[PDC2] No, (I didn’t take any actions to address the warnings). That’s

because of, that’s what I said, the time, because I only had 3 hours. Had

I had more time, I probably would’ve. I left a few comments that I should

probably fix this but, I was just trying to get some of (the functionalities

implemented).

As a substitute, these participants left comments in the code that indicated what

needs to be done to address those warnings. Some of them added what they intended

to do into the TODO list. Thus, the developers did seem to be influenced by the tool

in perceiving that the validation should be added at some point, even though they

chose not to address it immediately.

However, despite only being asked to implement as much functionality as they

can, developers still felt compelled to achieve a functioning application at the cost

of ignoring other concerns, which may also parallel the time pressures in the real

world. This contrasted with the students who worked much longer than the 3 hours

we observed them, and thus perhaps did not feel as much time pressure during the

study.

The other four professional developer participants worked with Explanation. As

shown in Figure 15, overall, they encountered 63 Explanation warnings and clicked on

14 of them (22% or 3.5 per person). All four participants interacted with Explanation

through the “Guide Me Through” option at least once. Moreover, two participants

73

Figure 15: Metrics for Professional Developers with Explanation.

(PDE2 and PDE4) made the effort to write customized validation routines to check

identified untrusted inputs. However, these routines were far from sufficient to prevent

the applications from being compromised. Thus, their attempts were not fully correct.

The two who decided not to write validation code provided several reasons. For

example, PDE1 pointed out that the application he developed for the study was not

realistic, and in a realistic setting, other security controls in addition to just validating

inputs against regular expressions (as suggested by Explanation) would be used and

needed, such as limiting the login attempts and logging all the login attempts for later

auditing. Furthermore, he failed to relate Java Servlet, the technology used in our

study development, to the more current application development frameworks that he

uses:

[PDE1] The industry does not use raw servlets anymore. Instead, the

industry has other technologies such as Struts, Spring MVC, and they have

components that can be directly invoked and used for validation purpose.

74

PDE2 also reasoned that the development process in an organization setting dis-

courages developers from addressing code that has security implications individually

because the development team may have more structured countermeasures that take

care of the issues.

[PDE2] There are many ways to protect the application, even in a line of

code, it looks like a security hole, but at other places we prevented it, so it

will not be an issue to release this piece of code.

During the interview, all 8 participants did state that they appreciated the concept

of real-time warning of secure programming issues and most acknowledged that the

on-the-spot warnings made them aware of the need for input validation. For example,

PDC2 left a comment in the source code about liking CodeGen while he was work-

ing, and another participant said that what he liked most is its ability to identify

problematic areas:

[PDE2] If Explanation didn’t give me warnings, I would not pay attention

to the vulnerable code.

However, ASIDE is currently a demonstration prototype, working on only one type

of secure programming issue, namely, lack of input validation/encoding. Thus, several

participants could not generalize the idea of integrating secure programming support

in the IDE from the current prototype implementation to their professional context.

These participants expressed concerns over the lack of functionality in ASIDE and

questioned the feasibility of applying the approach to more mainstream frameworks.

75

Thus, the developers’ reactions were considerably more skeptical than the students’

perceptions.

5.4.2.4 Study Discussion

The real-time detection and warning mechanism of ASIDE was universally accepted

by both students and professional developers. Almost all participants responded in

some way to the warnings and interacted with ASIDE, and perceived the warnings as

a useful way to increase awareness of security vulnerabilities in the code. Participants

also almost universally lacked detailed knowledge of secure programming practices,

which meant that while they gained knowledge through using ASIDE, they also strug-

gled to fully understand either the code generated or the explanation provided. Thus,

any tool targeted at improving secure programming for developers needs to be able

to be used and learned by those with little prior secure programming knowledge.

The real-time, interactive warnings were seen as sufficiently unobtrusive, and not

annoying at least at the volume generated in my studies. Participants reported ap-

preciating the instant feedback alongside the code they were currently working on.

However, warnings were still deliberately dismissed when participants chose not to

respond. So such warnings need to be easily removed from the view. This, however,

could have negative consequences in that programmers will not be further reminded

of any errors that they decided to ignore, and ASIDE does not currently provide any

option of showing previously dismissed warnings. I may need to periodically remind

users of unaddressed vulnerabilities, such as at the launch of the IDE, and to allow

users to re-scan previous code.

76

My two studies confirmed a main challenge of secure programming: as a non-

functional requirement, functionality will often trump security. Not surprisingly, all

participants, but particularly the professional developers, were highly motivated to

get the code functionally working, and not very motivated to spend time on secure

programming. While several professionals did use ASIDE to make note of places that

needed later validation, as one stated:

[PDE2] I looked at the requirements and they didn’t say you have to pay

attention to security problems. I just wanted to get it [the application]

done.

Similar to the results from my interview study in Chapter 3, where security was

attended to only when specifically dictated by the design, clients, or regulations,

PDE2 did not find security specifically addressed in the requirements specification I

provided, and so focused only on the functionality.

ASIDE CodeGen was not as effective as expected. One important lesson was

that the tool was designed with an expectation that the user had at least minimal

knowledge of secure programming. I expected the tool to serve as a reinforcement

and reminder of this knowledge, and as a method to reduce the burden of producing

code, making secure programming easier and more efficient. But neither group had

sufficient knowledge for the current prototype, which caused confusion. Without prior

knowledge of code security vulnerabilities, participants were not able to gain a full

understanding of the warnings and how the generated code functioned. Users need

functionality that provides more awareness, explanation, and training.

77

Interestingly, students seemed to trust the code generated by CodeGen, and used it

more often than the professional developers. The professionals had difficulty relating

the simplistic prototype to their real-world context. Given our small user popula-

tion and experimental setup, its still not clear how or when professional developers

would trust and rely on generated code for security vulnerabilities. The professional

developers also related similar concerns as my interview study in Chapter 3 noted,

that there are other ways that organizations deal with such issues than the code fixes

performed by or encouraged by ASIDE.

ASIDE Explanation was also seen as helpful, and the content of the warnings was

read in some detail by most participants. However, this approach did not result in

any successful secure code. No students attempted to create their own validation

routines. While two professionals did, they did not get that functionality correct.

Thus, explanation is not likely to be as effective as code generation in reducing warn-

ings, particularly if the code generation technique can be augmented with more useful

informational content.

The results of my study indicate that real-time warnings and code generation may

be helpful for non-functional programming requirements, such as reducing secure

programming vulnerabilities. The results of the studies also highlight several key

design issues and necessary modifications to ASIDE.

• The increased efficiency and reduced cognitive burden do seem to be important

for programmers to be willing to take the time to address security vulnerabilities

while implementing functionality. Thus, automated code generation, where

78

possible, is likely to improve software security if it is quick and easy.

• Security and secure programming are concepts with many technical details.

Many programmers have little to no background in specific vulnerabilities, tools,

and practices. Thus, tool interactions and explanations need to help people

learn and understand how and why to use the tool. This may also be necessary

so that professionals trust any advice given and code generated. At the same

time, once learned, efficiency will still be critical so explanations and help should

be available when needed and unobtrusive when not.

• Users do not mind real-time warnings, but do not seem to want them to persist,

even if they choose to ignore them.

• Even when creating secure code is relatively easy, such as through using Code-

Gen, users still need to be motivated to make needed changes. This motivation

may depend on organizational factors that encourage use amongst developers,

and discourage developers from relying solely on other processes or people to

handle all security concerns.

5.4.3 Limitation

My studies are experimental comparison studies, on non-production applications,

which has a variety of limitations. First, the participants did not work in their

normal development context, which may have added confusion and modified their

behavior. All participants were also unfamiliar with ASIDE, and had very little

training and exposure even during a 3-hour session. While students did use their own

code, all participants understood that the application was a classroom exercise, and

79

was not going to be deployed with real users. As a result, participants may have paid

less attention to ASIDE warnings as secure programming errors would have no real

impact. Alternatively, the student participants may have paid more attention to the

warnings because they were more aware that the study was related to ASIDE.

My studies were also relatively small, with 27 participants across both groups

of participants. While this limits the general conclusions we can make, I believe

that our observations on real programming tasks are still valuable and can inform

further research. Finally, ASIDE is still only a limited functionality prototype. The

unsophisticated implementation may have discouraged participants, particularly the

professional developers, from interacting with and exploring the secure programming

support.

Despite these limitations, I believe that such a lab-based study is a good first step

at understanding the potential usefulness and impact of interactive warnings and code

generation. The lessons I learned will help us improve the design of the interactive

mechanisms, and encourage me to continue to develop ASIDE into a more functional

and deployable system that I can evaluate on a larger and more realistic scale.

CHAPTER 6: INTERACTIVE CODE ANNOTATION

Interactive code annotation is a mechanism that helps developers to avoid more

subtle security vulnerabilities where code refactoring described in Chapter 5 is not

feasible, such as broken access control and Cross-Site Request Forgery (CSRF) (63).

Having developers providing programming considerations via annotations is very

powerful. For instance, Microsoft discovered that having developers annotate limits

of buffers effectively reduced buffer overflow vulnerabilities (28; 29). However, the an-

notation language used not only takes the form of extra textual syntax (e.g (28)), but

also adds an additional task for the developers to perform, thus increasing developers’

cognitive burden of developing software. Moreover, conducting code reviews to check

the presence/absence of annotations is time consuming, especially in a large code

base. It is also cost prohibitive to conduct face-to-face code reviews with developers.

Interactive code annotation works in a different fashion as follows. When poten-

tial vulnerable code that may lead to broken access control or CSRF vulnerabilities

are detected, programmers are asked to indicate where the corresponding preventive

practices were performed. The programmers may answer the questions by adding

an annotation to the code that performs the practice. The relationship between a

question and its answer is recorded for further analysis. This serves as both a re-

minder to perform best secure programming practices, and enables further analysis

81

and auditing.

6.1 Target Vulnerabilities Profile

It is fairly easy to provide a concise and general specification that captures the

essential characteristics of the vulnerabilities that are described in Section 5.1, such

as Cross-site Scripting, SQL Injection, Command Injection, Log Forging, etc. Given a

programming environment, it is possible to specify a set of functions that read inputs

that are potentially untrusted (called sources), a set of functions that represent secu-

rity sensitive operations (called sinks), such as inserting information into a log, and a

set of functions that check data for malicious content. However, not all vulnerabilities

fit into this profile. In particular, I look at vulnerabilities that result from errors in

the logic of a web application. Such errors are typically specific to a particular web

application, and might be domain-specific. For example, consider an online store web

application that allows users to use coupons to obtain a discount on certain items.

In principle, a coupon can be used only once, but an error in the implementation of

the application allows an attacker to apply a coupon an arbitrary number of times,

reducing the price to zero, or even a negative number if another error such as missing

check on whether the total price is positive exists.

Another example shown below in Figure 16 is a servlet that processes a request via

method invocation performActionOnCriticalData(HttpServletRequest,

HttpServletResponse) on a User instance only when the user is logged in and

has certain privilege. In the code, however, the developer only checked to see whether

the user has an active and valid session before invoking performActionOnCritical

82

Figure 16: An example with a broken access control vulnerability.

Data(req, resp) to process the request, which opens the door for non-privileged

users to use privileged functions and may access privileged data of the application as

a result.

If a certain function, in this case, the performActionOnCriticalData(Http

ServletRequest, HttpServletResponse) method, should only be executed

when an entity, in this context, the user with an admin privilege, the code should

perform a check explicitly to see whether the user has the admin privilege in or-

der to avoid access control bypass. This can be done by adding a test condition,

isPrivileged() at line 29, as shown below in Figure 17.

6.2 Interactive Code Annotation

To illustrate how interactive code annotation works in practice, I use an example of

access control as follows to show the workflow. Consider an online banking application

with four database tables with their primary keys underlined in table 3: user, account,

account user, and transaction, where the tables account and transaction are specified

83

Figure 17: A solution to the broken access control issue in Figure 16.

as requiring authentication in such a way that the subject must be authenticated by

the primary key of the user table, referred to as an access control table.

Table 3: Access control tables for the example online banking application.

user (username, role, surname, givenName)
account (accountNumber, nickname, balance)
account user (accountName, username)
transaction (id, accountNumber, date, payee, amount)

Figure 18(b) shows a highlighted line of code in the doGet() method of the ac-

counts servlet, which contains a query to table account. CodeAnnotate would request

the developer to identify the authentication logic in the program, for instance, using

a red marker and highlighted text in the editing window. In this case, the developer

would locate and highlight a test condition request.getsession().getAttribute

(“USER”) == null as illustrated in Figure 18(a), which is saved by CodeAnnotate

as an annotation to the query code. The annotations could be reviewed and modified

in an additional view as shown in Figure 18(b) and Figure 18(c), on which different

information corresponding to different actions the developer has taken is displayed.

84

Thus, the annotation process is seamlessly integrated into the IDE without requiring

the developer to learn any new annotation language syntax.

This annotation mechanism provides several benefits for developers. First, devel-

opers are reminded of the need to perform authentication and/or authorization. The

annotating process may help a developer to verify that intended authentication and/

or authorization logics have been included. The developer has an opportunity to add

an intended access control logic should that be missing. Second, the logged annota-

tions provide valuable information for code review. For instance, by looking at the

annotations, a security auditor can get a picture of the application’s access control

logic without wading through the code base. Third, heuristics-based static analysis

can be performed to provide more in-depth analysis of the access control logic. For

such in-depth static analysis, I will specifically look into one type of execution anal-

ysis. For example, a broken access control may be detected if there is an execution

path in the entry method leading to the database access without any identified access

control checks along the path. I believe such an analysis can also be used to help

prevent CSRF vulnerabilities. Of course, the accuracy of this analysis depends on

the accuracy of the annotation.

6.3 Walkthrough Evaluation

In order to demonstrate that the proposed mechanism has the potential to help

developers avoid writing insecure code that has broken access control and/or CSRF

vulnerabilities, I have conceptually tested this idea on real world open source projects:

Apache Roller (66) and Moodle (49).

85

(a) Developer identifies authentication logic (highlighted text) upon request from the ASIDE
(see marker and highlighted text of Figure 18(b)) and annotates it.

(b) ASIDE issues a question for proper access control check that grants/denies the access
to the highlighted data access operation. The detail of such request is displayed on the view
called Annotation below the code editing window.

(c) The Annotation view adds the annotated information as a response to the developer’s
annotating of the access control logic in above Figure 18(a).

Figure 18: An example showing how ASIDE interactive code annotation works.

86

Table 4: Security issues documented for Roller and Moodle.

Fixed issues with
Code Refactoring Code Annotation

detailed information
Roller 4 3 1
Moodle 16 1 2

The security audit performed in Section 5.3.1 did not identify any broken access

control or CSRF issues in Roller. Thus, I turned to bug tracking records to uncover

previously discovered issues. Since Apache Roller only has a small number of fully

documented security patches, I also included security patch information from Moo-

dle (49), a PHP-based open source project for course management. A Google search

of “powered by Moodle” yielded over 4.3M sites including many large universities.

A total of 20 fully documented security patches were found for the two projects,

as recorded in Table 4. Four of them are due to improper input validation and/or

encoding, which can be addressed by ASIDE’s code refactoring support. Out of the

remaining 16 vulnerabilities, 3 (1 broken access control and 2 CSRF) can be addressed

by code annotation and the path analysis heuristics outlined above.

The broken access control issue is from Roller (66). The authenticator, as illus-

trated in Figure 20, gets a web request from the client and checks to see whether

the headers of the request are valid. If they are valid, it extracts the credentials and

verifies the validity of them. If the credentials are valid, the program goes on to

access protected data in the database. If the credentials are not valid, an exception

will be thrown, thus preventing unauthenticated access. There is, however, another

path from the web entry point to the data access point where the headers do not

conform to the expected format, as shown in the control flow diagram in Figure 19.

87

Figure 19: Control flow diagram of how an authentication request is processed.

According to the logic of ASIDE code annotation, when the application code ac-

cesses the protected database resource to get all users’ information, CodeAnnotate

would prompt a request for proper access control logic on the path from the web re-

quest to the data access method call. Considering that the question should be raised

on a transaction level, line 52 in the Servlet processing the request would be high-

lighted, as shown in Figure 21. In this case, the developer could easily identify the ac-

cess logic as the logic tests which lie in the method invocation verifyUser(username,

password) in BasicAuthenticator.java, highlighted in Figure 20. In this

case, there are three tests to be annotated.

Based on the developer’s annotation, CodeAnnotate would be able to construct a

graph, as illustrated in Figure 21, that has one path from a web entry point to a data

access point with an annotated access control check on it, while another path from

88

Figure 20: Annotate access control logics.

Figure 21: Java Servlet code for processing authentication request (left) and Access
control check graph that involves processing the request (right).

the same entry point to the same data access point has no access control check on it.

Therefore, CodeAnnotate would be able to provide a warning to the developer of a

potential broken access control vulnerability.

Two CSRF vulnerabilities were recorded in Moodle’s bug tracking system. An

effective way to prevent CSRF is to assign a random token to each instance of a web

page that changes the state of the application. The token will be verified by the server

before the application state is changed. The Moodle development team is clearly

well aware of the CRSF problem since they have implemented this strategy as a set

of standard utility functions which drastically simplifies developers’ tasks. However,

89

developers still missed using this CSRF protection, introducing serious vulnerabilities

into the software.

CodeAnnotate can be designed to remind developer of places where CSRF protec-

tion is needed, such as web transactions that change application states. Whenever a

form submission/web request contains an operation to update (add, delete, modify)

database entries, the form submission needs to be checked for CSRF. I describe one

of the CSRF cases in Moodle, MSA-08-0013 (50), in detail; the other example is sim-

ilar. This CSRF vulnerability is based on editing a user’s profile page, edit.php.

Since ASIDE is currently being designed for the Java EE environment, I recast this

example in equivalent Java terms.

The edit function would have a web entry point such as in a Servlet. Function

update record() is called, as highlighted in Figure 22, to update selected database

tables through database operations. ASIDE would prompt the developer to annotate

a logic test that implements CSRF protection. The request for annotation would be

made at the line where update record() is called. In this case, CSRF protection

was omitted, so the programmer would be reminded to add such protection. Once

the CSRF protection is added with appropriate annotation, ASIDE will apply the

path analysis heuristics to further check for possible logic errors that may bypass the

CSRF protection.

6.4 CodeAnnotate

In this section, I describe a more comprehensive User Interface (UI) design which

has been implemented in the prototype, CodeAnnotate, to illustrate the interactive

90

Figure 22: A snippet of source code of the web transaction that changes user profile.

details of interactive code annotation.

6.4.1 CodeAnnotate User Interface Design

CodeAnnotate is activated when the user proactively issues the command on a

selected project by clicking on the menu item “ASIDE CodeAnnotate” from the

context menu, shown in Figure 23. This command only needs to be executed once

for each active development session. The termination of a development session by

shutting down the Eclipse workspace will terminate the process of CodeAnnotate.

Once activated, CodeAnnotate starts finding sensitive operations in the project

that are matched with specified sensitive operation patterns. These sensitive oper-

ation patterns are based on predefined rules, coded as a XML configuration file, for

common APIs that make changes to a datastore, application state, etc. An example

of such an API is java.sql.Statement.executeUpdate(String) on Java

platform. CodeAnnotate also allows one to plug in a custom rules class that reflects

one’s company’s internal needs. In a large corporate setting, a SSG can be respon-

sible for creating and plugging in the custom ruleset. For each sensitive operation,

CodeAnnotate evaluates whether it can be reached by a program entry point, for in-

91

Figure 23: CodeAnnotate has a menu item on the context menu, through which it
can be launched against a selected project.

92

Figure 24: CodeAnnotate attaches a warning icon to the statement within a
transaction that can be traced to an invocation of sensitive data operation within

the application. In this case, a query to a database table Account.

stance, the doGet and/or doPost method in a Java Servlet through function calls.

These program entry points are also predefined as rules in the format of XML. If

a path can be established between a program entry point and a sensitive operation

through a call graph of the application, CodeAnnotate reports a finding by attaching

a warning to the statement that can be traced to the sensitive operation within the

program entry point. In addition to the warning which is a red flag icon shown in

Figure 24, CodeAnnotate also highlights the statement in pink.

To further examine the warning, the user can either click on the red flag warning

icon or hover over the highlighted code. Both will bring up a prompt with a list of

options, among which the top three are from CodeAnnotate. As shown in Figure 25,

they are a) 1. Click me to read more about this warning; b) 2. Click me to annotate

93

Figure 25: CodeAnnotate offers 3 options from which a developer can select.

a control logic; c) 3. Click me to remove this warning.

The selection of the first option “Click me to read more about this warning” brings

up a page of detailed content explaining the warning in either a native Eclipse view

or an external web browser. This page starts with explaining the high-level concept

of vulnerability which is related to application access control. It then gives a scenario

within which if certain access control is not performed, a vulnerability will be present

which exposes the application to a certain attack, as shown in Figure 26.

The second option “Click me to annotate a control logic” is used by the devel-

oper to annotate code that checks access permission before executing the highlighted

statement which will eventually perform certain sensitive operations. The selection

of this option brings up a pink information box with textual information, shown in

Figure 27, urging the developer to continue the process of locating and annotating

code as well as instructing her how to do so. The information box is dismissed once

94

Figure 26: CodeAnnotate presents a developer a page of detailed content explaining
the warning in either a native view or a web page when the developer chooses the I

want to read more option.

an annotation is created for the selected highlighted statement.

Upon locating the appropriate control logic code, the developer can press keys

CTRL + 0 to attach an annotation of a green shield with the selected piece of code.

Figure 28 presents all the UI elements. This process also highlights the annotated

control logic code with green. In the meantime, it turned the original pink highlighted

code to yellow along with its attached warning icon to a yellow version. In some cases,

multiple checks are needed for an operation to be performed. CodeAnnotate allows the

developer to create and add multiple annotations to the yellow-highlighted statement.

To give developers a better understanding of the relationship of pieces of code,

CodeAnnotate provides a Relationship view which visualizes the relationship in a

tree structure. In the tree, a parent node is the path from a program entry point

to a sensitive operation in the application. A child node represents the statement

95

Figure 27: Upon selecting “Click me to annotate a control logic”, the developer was
presented an information box at the bottom right corner as a reminder of

completing the annotation process.

containing an annotated control logic check for the sensitive operation. A parent

node can have more than one child when multiple annotations for multiple logic

control tests are associated with a path. For example, Figure 28 shows a typical view

in Eclipse which includes two groups of tabs. The upper group of tabs are opened

files for editing, and the lower group of tabs are different Eclipse views displaying

information of the application other than source code. The view being selected is the

prototype implementation of the Relationship view, where a parent node is preceded

by a red flag and a child node is preceded by a green shield. When a node is selected,

its corresponding brief description is shown on the right text area.

In addition to adding a piece of control of logic on a path from an entry point

to a sensitive operation, CodeAnnotate also gives developers the option to remove

the control logic code from the path in cases where the developer considers it as a

mistake. In order to detach the annotation from the highlighted code, the developer

96

Figure 28: CodeAnnotate UI elements. Two different annotations (green and yellow)
in the upper editor view. Tree structure in the bottom view visualizes the

relationship between the annotations.

97

Figure 29: CodeAnnotate presents a developer an option to undo an annotation on
a piece of control logic code.

simply needs to click on the warning and select the option on the top of the list to

undo the check, shown in Figure 29.

The last option “Click me to remove the warning” provides the developer the ability

to dismiss the warning in cases where the warning is a false positive.

6.5 Performance Measurement

To evaluate how effective the interactive code annotation technique is in detecting

target vulnerabilities, I ran CodeAnnotate on two internally developed web applica-

tions that are immediately available: Tunestore and Goldrush. They were developed

for web development and training for secure programming in my college.

6.5.1 Case I: Tunestore

Tunestore is a Java web application which provides its users the basic functionality

of an online music store. A user can view all available songs in the store with or

98

without logging on to the application as a registered user. However, in order to

purchase songs, a user has to register and log on as a registered user of the application.

Once the user is logged in, s/he can comment on each song, make the purchase

of a song, transfer money from other external banking account to the associated

account and make changes to his/her personal profile. It also provides certain social

networking functionality such as adding a friend and gifting a song to a friend.

The design of Tunestore follows the typical 4-tier architecture of a J2EE web ap-

plication where an application presentation layer, control layer, business logic layer

and persistence layer are logically separate processes. It implements the Model-View-

Controller (MVC) design by utilizing the framework Apache Struts I. As a result, each

use case of the application is implemented by an org.apache.struts.action.

Action class. For instance, the login functionality is controlled by code in LoginAct

ion.java. Its data management for the persistence layer relies on the relational

database management system Apache Derby. Therefore, the operations on database

are performed through Java SQL APIs such as java.sql.Statement.execute

Update(String sql) to insert, update or delete a database table entry.

The measurement of performance on Tunestore is conducted from two aspects:

Section 6.5.1.1 describes in detail the findings by running CodeAnnotate on Tunestore,

and it especially focuses on analyzing and evaluating whether a warning is a false

positive or a true positive. Section 6.5.1.2 focuses on an assessment of the complexity

of the process of annotating the control logic code for a true positive as well as

dismissing a false positive.

99

6.5.1.1 False positive analysis

As I described in Section 6.5.1, all the data manipulations of the application are

done through Java SQL APIs. Thus, I mapped all those functions into CodeAnnotate

sensitive information accessor specification. Based on the specification, CodeAnno-

tate knows whether an application accesses a database table and where this access

occurs in the application code. Given this information, CodeAnnotate identified 29

cases where an entry point is able to reach a sensitive data operation through pro-

gram function calls. As shown in Figure 30, the entry point is ActionForward

execute(ActionMapping mapping, ActionForm form, HttpServlet

Request request, HttpServletResponse response) from LoginAction.

java . The reason that this function is defined as an entry point is because it over-

rides the execute() method of Struts I Action abstract class. The path ends at

a statement that invokes Statement.executeQuery(String sql), a function

that retrieves data from a database table, within LoginAction.java.

A false positive for CodeAnnotate is identifying an invocation of a data manipula-

tion function that does not require any type of access control logic check within the

context of Tunestore. To analyze false positives that were generated by this process,

I manually inspected all the findings reported by CodeAnnotate. Out of all 29 iden-

tified issues, ten are easily classified as false positives. The effort involved to locate

and annotate the corresponding access control checks for the 19 true positives is pre-

sented in following section on the complexity of annotating control access code. In

this section, I focus on analyzing the false positives.

100

Figure 30: Tunestore Login Action Servlet

101

There are 10 cases, shown in Figure 31, where the reported warnings represent

data access or manipulation operations that do not require access control. One type

of false positives which includes 5 cases, highlighted in dark green (row 7-11) in Figure

31, is where the data that is being accessed is of non-sensitive nature. For example,

all the song details and the comments of a song. Conceptually, these false positives

can be easily prevented with a feature that allows a SSG to mark tables as sensitive

and non-sensitive before this information is provided to CodeAnnotate. However, this

is not implemented in current CodeAnnotate prototype. Another 5 cases (row 2-6)

were involved with use cases such as login, logout and registration, as highlighted

in orange in Figure 31. The data manipulations happen in these use cases do not

require any access control, since these are the starting point where different users will

be granted different access rights towards data in the application.

102

F
ig

u
re

31
:

10
fa

ls
e

p
os

it
iv

e
ca

se
s

of
T

u
n

es
to

re

103

6.5.1.2 Complexity of annotating control access code

CodeAnnotate identified 19 paths that need access control checks within the con-

text of Tunestore. Some of them already have the appropriate checks implemented in

code while the rest do not. CodeAnnotate’s effectiveness in preventing broken access

control vulnerabilities during the programming process is not only dependent upon

the accuracy in detecting paths that need access control checks, but also relies on a

developer’s success in locating and annotating proper checks for identified paths.

To describe the difficulty involved in locating and annotating a control logic check

for an identified path, I use the measurement of the distance between the location of

the control logic check code and the entry point in terms of within a method, within a

class, and within a package. When a control logic check is enclosed within the entry

point method, the distance is within a method, which I assign a value 1. When an

entry point does not contain the control logic check, but shares the same enclosing

class, the distance is within a class, which is assigned a value 2. When the control

logic check is out of the scope of the enclosing class of the entry point, the distance

is within a package with a value 3. In cases where a path has several control checks,

the corresponding complexity is represented by the accumulative value of all checks.

Figure 32 shows the result of applying the distance metric to the 19 true positives.

104

F
ig

u
re

32
:

C
om

p
le

x
it

y
of

an
n
ot

at
in

g
fo

r
T

u
n

es
to

re

105

According to Tunestore application logic, ten out of the 19 cases require a user to

login and maintain an active session. Tunestore enforces this type of access control

check throughout the application by conditioning all the SQL statements with a

WHERE clause to see whether the user from the current session is null or not. E.g.

WHERE TUNEUSR = "request.getSession(true).getAttribute

("USERNAME")". Within the context of Tunestore, all these checks are within a

method distance to their entry points, thus, it is perceived to be easy to locate

and annotate. In addition to checking whether the current session is active, six

cases need CSRF check, shown in the last column of Figure 32. Tunestore does

not provide any defense against CSRF, thus the developer would need to write the

corresponding defense code in these 6 cases, she then may annotate the checks for

corresponding paths. A slightly more complicated case is gifting a song to a friend

where 5 different types of data manipulations are involved. Except the first data

manipulation statement, each succeeding manipulation depends on the success of the

preceding accessing. Despite that these checks are not as direct as a Boolean test

condition which is straightforward to be identified, they are within the same method

with the warned statement.

6.5.1.3 Discussion

With pre-defined program entry points and sensitive operations that change pro-

gram data, CodeAnnotate is capable of identifying all paths that require access con-

trols with a false positive rate of 34%(10/29) in the above case study. Further im-

provements such as allowing SSG to set control metadata for sensitive data tables

106

can remove the 5 cases that are related to reading from non-sensitive tables: CDs

and Comments. This can further lower the rate to 20.8%(5/24). It is a low false

positive rate considering that Tunestore is a small application with only 16 use cases

including login, logout and registration.

For Tunestore, it is not a complex process to locate the control logic checks since

most checks are within the same class as the entry points. These checks, however, are

not of a direct and uniform format such as a Boolean conditional test. There are

other more implicit logic controls such as WHERE clause for a SQL query, a preceding

SQL execution, a segment of code that performs certain logic, which complicate the

annotating of control checks. CodeAnnotate has implemented the most intuitive

checks, which are conditional tests that are often implemented as boolean test.

Implementing annotating the aforementioned implicit logic checks and exploring more

variants can be interesting future work.

6.5.2 Case II: Goldrush

Goldrush is another in-house built web application based on J2EE platform, which

simulates a banking application with basic functionality such as login, logout, display

account information, transfer funds from one account to another. The application im-

plements a role-based access control mechanism which assigns different access rights

to 2 major roles involved: customer and financial advisor. More specifically, a cus-

tomer can only view detail information of an account that belongs to her, she can

only make a transfer from an account that belongs to her to another account. A

customer can have only one financial advisor. On the other hand, an advisor can be

107

advising multiple customers. She is allowed to see the accounts information of her

client. She, however, is not allowed to make a transfer on the behalf of her client.

Goldrush is also a 4-tier based web application. The presentation layer is im-

plemented using JSP; the control layer is based on Java Servlet; All data is stored

in a database managed by a lightweight Database Management System (DBMS)

HSQLDB. However, instead of embedding SQL within Java to interact with database,

Goldrush employs Apache iBatis which is a data mapper framework that couples

objects with stored procedure or SQL statement using a XML descriptor or annota-

tions. For instance, the loginUser(String username, String password),

shown in Figure 33, will return the SQL execution result of the statement SELECT

username, password, role, surname, givenName FROM user WHERE

username = #{username} AND password = #{password} because of the map-

ping shown in Figure 33 in iBatis mapping file. Therefore, CodeAnnotate’s default

sensitive information accessor rules are not sufficient to cover the patterns involved

in Goldrush, since Goldrush does not have native SQL execution statement function

calls. Thus, I expanded the default accessor rule specification to cover the functions

that are mapped to SQL statements. For the previous example, the function call is

loginUser(User user) with a return type of User.

6.5.2.1 False positive analysis

Table 5 shows all the paths found in Goldrush by CodeAnnotate. My examination

confirmed that 3 of them, shown in Figure 34, are false positives, while the other 5

are true positives. Out of the 3 false positives, one (row 2) takes place in the login

108

Figure 33: iBatis implementation for loginUser() method

use case when a user is being granted access to the application. The other two (row 5

and row 9) are logically dependent on the access control checks for their preceeding

sensitive operation. For instance, row 5 retrieves all the transactions performed on a

given account for a given user. This is legitimate and safe if the account given belongs

to the user who requested the information. This check, however, should be performed

before the detailed account information is retrieved, which takes place at row 4. Since

the warning for retrieving account detail at row 4 is a true positive, the warning at

row 5 is a false positive. For the same token, row 9 which inserts a transaction of a

given source account is dependent upon row 8, where updating the source account

happens, shown in Figure 35.. To update the source account, two access checks are

needed to ensure that the user has right to view and modify the account. Therefore,

it has been reported as a true finding.

109

T
ab

le
5:

T
h
e

8
p
at

h
s

in
G

ol
dr

u
sh

fo
u
n
d

b
y

C
od

eA
n

n
ot

at
e

U
se

C
as

e
E

n
cl

os
in

g
E

n
tr

y
P

oi
n

t
S

en
si

ti
ve

E
n

cl
os

in
g

C
la

ss
(.

ja
va

)
F

u
n

ct
io

n
A

cc
es

s
P

oi
n

t
C

la
ss

(.
ja

va
)

L
og

in
L

og
in

S
er

v
le

t
L

in
e

30
:

L
in

e
48

:
m

ap
p

er
L

og
in

S
er

v
le

t
d
oP

os
t(

..
.)

.l
og

in
U

se
r(

..
.)

D
is

p
la

y
A

cc
ou

n
ts

A
cc

ou
n
ts

S
er

v
le

t
L

in
e

40
:

L
in

e
68

:
m

ap
p

er
A

cc
ou

n
ts

In
fo

rm
at

io
n

d
oG

et
(.

..
)

.m
y
A

cc
ou

n
ts

(.
..
)

S
er

v
le

t
D

is
p
la

y
T

ra
n
sa

ct
io

n
s

L
in

e
41

:
L

in
e

47
:

m
ap

p
er

T
ra

n
sa

ct
io

n
s

T
ra

n
sa

ct
io

n
s

S
er

v
le

t
d
oP

os
t(

..
.)

.g
et

A
cc

ou
n
t(

..
.)

S
er

v
le

t
T

ra
n
sa

ct
io

n
s

L
in

e
41

:
L

in
e

61
:

m
ap

p
er

T
ra

n
sa

ct
io

n
s

S
er

v
le

t
d
oP

os
t(

..
.)

.g
et

T
ra

n
sa

ct
io

n
s

S
er

v
le

t
F

or
A

cc
ou

n
t(

..
.)

T
ra

n
sf

er
M

on
ey

T
ra

n
sf

er
S
er

v
le

t
L

in
e

34
:

L
in

e
68

:
m

ap
p

er
T

ra
n
sf

er
S
er

v
le

t
d
oG

et
(.

..
)

.g
et

A
cc

ou
n
t(

..
.)

T
ra

n
sf

er
S
er

v
le

t
L

in
e

94
:

L
in

e
58

:
m

ap
p

er
T

ra
n
sf

er
S
er

v
le

t
d
oP

os
t(

..
.)

m
y
A

cc
ou

n
ts

()

T
ra

n
sf

er
S
er

v
le

t
L

in
e

94
:

L
in

e
12

3:
m

ap
p

er
T

ra
n
sf

er
S
er

v
le

t
d
oP

os
t(

..
.)

.u
p

d
at

eA
cc

ou
n
t(

..
.)

T
ra

n
sf

er
S
er

v
le

t
L

in
e

94
:

L
in

e
12

5:
m

ap
p

er
T

ra
n
sf

er
S
er

v
le

t
d
oP

os
t(

..
.)

in
se

rt
T

ra
n
sa

ct
io

n
(.

..
)

110

F
ig

u
re

34
:

3
fa

ls
e

p
os

it
iv

es
fr

om
G

ol
dr

u
sh

111

6.5.2.2 Complexity of annotating control access code

To measure the complexity of annotating the control logic checks for the 5 identified

true positives, I applied to Goldrush the same methodology described in analyzing

the complexity of annotating control access code for Tunestore. Figure 35 presents

the results. Goldrush has existing access control checks for some of the functionality

but is lacking for other. Therefore, for identified paths, the developer would need to

come up within her own check logic for each path. Since the existing checks were done

with the same methods of the warned statements, new checks could also be added in

within the same methods.

112

F
ig

u
re

35
:

C
om

p
le

x
it

y
of

an
n
ot

at
in

g
fo

r
G

ol
dr

u
sh

113

6.5.2.3 Discussion

The result generated by CodeAnnotate on Goldrush is similar to Tunestore. It is

able to identify all broken access control issues with a similar false positive rate of

37.5%(3/8). Since login and registration account for 40% of the total 5 use cases, this

is a low false positive rate. One of the false positives is related to the login function

of the application, which is the starting point of interactions with the application.

It is also clear that, for Goldrush, locating the control logic checks is not a complex

process since most checks are within the same class as the entry points. It, however,

shares the same difficulty that some control checks are not as intuitive as a Boolean

condition test, as described in the Tunestore case.

The current prototype implementation of CodeAnnotate seems to be effective in

identifying broken access control issues with a relatively low false positive rate. Such a

result, however, applies only to small web applications with very limited functionality

and simple implementations. It is not clear at this point whether it will be as effective

when used on more complex web applications that involve more functionality and

more advanced technologies.

6.6 User Study

Although my prototype implementation is limited in scope, it has demonstrated

the feasibility and potential of the theory, which is interactive code annotation for

detecting insufficient access control issues. As described in Section 6.4.1, CodeAn-

notate involves more complicated interactions with its end users. Therefore, a good

user interface and interaction design is perceived to increase CodeAnnotate’s effective-

114

ness. To evaluate the current design as well as to acquire more design requirements,

I conducted user studies on programming tasks using CodeAnnotate.

The immediate goals of the studies are as follows:

• Can participants always annotate the correct control logic for a sensitive infor-

mation access?

• If participants were able to annotate correct control logic, how long, on average,

did it take for a participant to establish a relationship between access control

logic code and sensitive information accessing code?

• If participants were NOT able to annotate correct control logic, what were the

major difficulties/obstacles preventing participants from succeeding?

• If there was any, what were the good design/implementation aspects that facil-

itated participants to interact with CodeAnnotate?

6.6.1 Study I - Controlled Lab Study

For this study, I, along with my colleagues, recruited in total 20 students from a

graduate level Java-based web application development course offered by our college

in Spring 2012 semester. This time, the course used for evaluating CodeGen and

Explanation does not cover any secure programming practices in terms of building

web applications.

Part of the students course work was to build an online stock trading system incre-

mentally over four projects throughout the semester using Java Servlet technology.

My study focused on the last increment of this project, where students were asked to

115

implement functionality including display stock details, make a buy/sell stock trans-

action, and display transaction history. Students added these functions on top of their

existing work artifacts, which included static web pages, login, logout, and register

functionality.

This was a controlled study. Student participants were asked to come to our lab and

work on their assignment for 3 hours. I installed two machines with similar hardware

and software configurations. They had Eclipse installed with both ASIDE CodeRefac-

toring and CodeAnnotate. Each study session took up to 3 hours of development and

up to 20 minutes of debriefing ensued.

In addition to investigating whether CodeAnnotate is effective in preventing devel-

opers from writing code that has broken access control issues, this study also intended

to assess whether my design and implementation of ASIDE on CodeRefactoring from

Chapter 5 has an impact on improving novice programmers’ secure programming

knowledge and awareness. Therefore, upon a participant’s arrival at our study lab,

s/he was first instructed to fill out a pre-survey which is an essential part of assess-

ing the impact of CodeRefactoring. Then, one of my co-investigators or me gave

him/her a brief walkthrough of how the two software tools work, respectively. In

the meantime, my other co-investigator helped set up the development environment

and screen recording software on the machine. He also imported the participant’s

existing project into Eclipse, and made sure it compiled and could run on the local

web server installed in Eclipse. This process prevented participants from wasting

time or being frustrated on configuration of an unfamiliar IDE - Eclipse, since most

participants were only familiar with Netbeans. The participant was then asked to

116

launch the tools before proceeding to development. Students worked as they wished

on the assignment. They were told, however, that they have to examine at least one

of the warnings show up throughout the development. When 3 hours was up, we

asked the participants to stop and instructed them to fill out a post-survey, another

essential part of evaluating impact of CodeRefactoring. Afterwards, we brought our

participants to our interview room for debriefing.

Each interview lasted from 15 to 20 minutes. We began by asking participants to

describe the types of warnings they encountered throughout the development session.

In the cases where participants encountered CodeAnnotate warnings, we made extra

effort on discussing their interactions with those warnings in terms of the difficulties

they ran into. The discussion was based on the 3 options provided by CodeAnnotate

to address a warning: read more about this warning; annotate a control logic; remove

this warning. For each option, we asked for the difficulties they had during the

interactions. Then, we switched our discussion to focus on general questions, such as

whether s/he gained any knowledge from interacting with the tools.

The study was not able to give answers to the intended research questions, however

it did provide interesting insights for designing tool evaluation studies.

First off, a study evaluating a tool should avoid involving software tools that offer

similar interactions to users. In this study, I aimed to evaluate two software tools:

CodeRefactoring and CodeAnnotate, which offer similar user interface elements, such

as warnings, and list of solutions. It was too much a burden presenting too much

information all at once to participants/students who were new to the development

environment. On average, each participant encountered more than 10 warnings raised

117

by CodeRefactoring of 3 types. For instance, the warning could be related to an input

validation issue, an output encoding issue, or a dynamic SQL issue.

Further complicating the case, each type of warning would involve different inter-

actions. For example, an input validation warning gives a user 17 options. These

options in turn can produce 3 effects. For example, one provides a user a web page

full of textual content; another generates code for the user; and the third one re-

moves the warning from view. An output encoding warning has similar formats for

presenting information. The dynamic SQL warning, however, demands that the user

to change his/her code manually in order to remove the warning from view.

The integration of CodeAnnotate requires users to juggle more issues during the

study. CodeAnnotate brought in one different warning icon, two information icons, a

relationship view and and information box. As a design option, I chose a red flag icon

for CodeAnnotate warnings which resembles CodeRefactoring warning icon. This led

to the belief that those warnings were of the same type. On average, each participant

encountered more than 10 warnings of various kinds. Thus, most participants failed

to examine CodeAnnotate.

Another interference from CodeRefactoring is caused by the warnings on statements

that execute SQL queries. By design, one of CodeRefactorings detections is about

dynamic SQL execution which is a common vulnerable code pattern for SQL Injection

vulnerabilities. A warning shows up whenever there is a method invocation of one of

the Java SQL execution functions, e.g. java.sql.Statement.execute(String

sql) with a red devil head icon attached on the left ruler of the java editor. CodeAn-

notate reports warnings on the same statements where these SQL execution method

118

Figure 36: CodeAnnotate warns a sensitive information accessing without proper
control check with a red flag icon.

Figure 37: CodeRefactoring ’s dynamic SQL warning overshadows CodeAnnotate’s
warning on the same statement.

invocations are called with a red flag icon attached on the left ruler of the java edi-

tor, shown in Figure 36. However, when these two software tools are used together, a

statement of interest would have two different warnings with only the CodeRefactoring

warning visible to the developers, as shown in Figure 37.

As mentioned above, students were introduced to use Netbeans as the primary de-

velopment tool throughout the course. For creating Java servlets, Netbeans generates

template code which is common for any Java class that inherits javax.servlet.Http

Servlet. More specifically, it creates a common method void processRequest

(HttpServletRequest request, HttpServletResponse response) in-

voked by both entrance methods void doGet(HttpServletRequest request,

HttpServletResponse response) and void doPost(HttpServletRequest

request, HttpServletResponse response), which renders the body for both

entrance methods has only one statement. Since CodeAnnotate issues a warning at

the transaction level, in this context, it is within the body of entrance methods. As

a result, the first participant encountered cases shown in Figure 38. The warning

119

Figure 38: CodeAnnotate issues a warning within an entrance method with a single
statement.

in this case offers no extra context that is essential for a user to understand. As a

result, the participant gave up any further interaction with the warning based on the

rationale that the code was generated by Netbeans.

To increase the visibility of CodeAnnotate warnings as well as to reflect the re-

lationship among entry point, information access point and access control checks, I

provided a Relationship view that displays all existing CodeAnnotate warnings of a

project. However, the view was aligned with the Eclipse Console view that displays

the application execution output. The Console view is usually the primary focus of a

developer during development. Therefore, the CodeAnnotate Relationship view was

not visible at all times throughout the development session for 2 of the participants.

As a result, they failed to be aware of the existence of CodeAnnotate warnings showing

up in their code.

6.6.2 Study II - Observation + Think Aloud

To evaluate the current user interface design of CodeAnnotate as well as to ac-

quire more requirements, I devised an exploratory study in which I observed each

participant using CodeAnnotate on a functioning web application, which was either

developed for assignment 4 used in previous study by the participant, or being in-

troduced to the participant as a target for practicing secure programming against

120

common web application vulnerabilities. I asked all participants to think aloud while

they were dealing with CodeAnnotate warnings in the applications. During the obser-

vation, I also interacted with participants when I found an action worth being probed

further by asking them questions. I recorded the screens as well as my conversations

with participants for data analysis.

6.6.2.1 Participants and Procedure

I recruited in total 8 volunteers from 3 different sources. Three of them were from

the 20 students who participated in the previous study but failed to interact with

CodeAnnotate. Two were from a secure web application course which aims to teach

students ethical hacking and secure programming. It has been offered to both under-

graduate and graduate students by my college every semester since year 2006. The

other 3 students were from a special security program at the college where students

are competitively selected to receive full cyber security scholarships. Participants

recruited from different sources were at different experience levels of web develop-

ment and secure programming. The 3 from the web development course were the

least experienced in programming, they had no prior exposure to secure program-

ming. The 2 from the secure programming course were relatively more experienced

in programming, and were in the process of acquiring secure programming knowledge.

The 3 from the special program were constantly being exposed to a variety of secu-

rity related projects. In addition to being immersed in software security, all three of

them had taken the secure web application course in current or prior semesters. All

participants were first time users of CodeAnnotate.

121

For the 3 participants recruited from the web development course, they exercised

CodeAnnotate on the project, online stock trading system, they were working on for

the assignment. For the other 5 participants, however, I used Tunestore described in

Section 6.5.1, which is a Java servlet based web application with a variety of known

vulnerabilities, developed for the purpose of ethical hacking for students who take this

course. Prior to the study, students already had knowledge about the functionality

and corresponding source code since they were asked to find the vulnerabilities of

Tunestore for one of their assignments and fixed them in another.

Upon a participant’s arrival, I gave an introduction of CodeAnnotate on a sample

web application by addressing a warning through the 3 different options provided

by CodeAnnotate: read more about this warning; annotate a control logic; remove

this warning. Then, I imported the participant’s project or Tunestore into a new

workspace of Eclipse, and started screen and voice recording. Next, I let the partici-

pant examine the warnings shown in his/her code. Each session lasted from 30 to 40

minutes.

6.6.2.2 Data Analysis

While I obviously had a small sample of participants, their performance, how-

ever, varied significantly. I extracted 3 characteristics that heavily influenced the

performance patterns emerged across the interactions with CodeAnnotate among 8

participants with different backgrounds of application development and application

security.

I sought out participants with different backgrounds with respect to building secure

122

applications. The 3 participants who were from the graduate level web application

development course were only presented, for the first time, with the potential abuse

of functionality in the previous study through CodeRefactoring. The other 5 either

had been or were taking a course on penetration testing and attacking/breaking web

applications by exploiting code level vulnerabilities, such as SQL Injection, Cross-site

Scripting, Privilege Escalation, Cross-site Request Forgery, etc. They were very fa-

miliar with common web application vulnerabilities during the secure web application

course.

All 3 participants without established attacker mentality, the mindset of manipu-

lating regular functions to do unintended things, failed to comprehend the problem

presented in explanatory material which illustrates a typical broken access control

that can result in a vertical privilege escalation attack. Moreover, none of them was

able to identify whether a warning is a true positive or a false positive, or give any

judgment as to whether the tool makes sense. For instance, participant P1 said:

[P1] I don’t know what this user.isPrivileged() means.

When asked whether she read the provided web page material explaining broken

access control problems, participant P2 responded that she had already read through.

When confronted to explain what is the problem described in the page, however,

she murmured and then switched the topic to that using PreparedStatement to

prevent SQL Injection issues, which she learned from participating in the previous

study.

Participant P3 was on his own exploring the functionality of CodeAnnotate for

123

dealing with CodeAnnotate warnings on his code for the first part of the study. He

glanced quickly through the explanatory page explaining broken access control issues,

but found no information that was relevant to his code. He dismissed the page as a

result. He then failed to identify whether a warning was indicating a real vulnerability

or not. He also failed to give reasons why he thought a warning was a false positive.

In contrast to the above 3 participants, the other 5 participants who possess an

attacker mentality were able to understand the explanatory material and attempted to

use the information to guide their examination of CodeAnnotate warnings generated

in Tunestore. All 5 participants were able to make a quick and accurate decision on

the false positives on both login servlet and register servlet. Three of them succeeded

in identifying lack of access control before changing an existing user’s password, while

the other two were able to realize the issue after I mentioned the possibility of broken

access control.

Having an attacker mentality while building an application enables a developer to

think beyond just legitimate use cases of a functionality, and to be aware of possible

illegitimate abuse cases. However, a typical web application involves a variety of at-

tack surfaces to which a developer needs to be aware. In many cases, a developer does

not have the mental capacity to keep in mind every single type of attack possibility.

For instance, a broken access control can be an authentication bypass, a privilege

escalation, an access to protected information, or a Cross-site Request Forgery issue,

etc. Therefore, having an attack mentality but not mental models of common attacks

is not sufficient for a developer to realize and prevent common vulnerabilities.

Among all 5 participants who possess an attacker mentality, none of them im-

124

mediately spotted the Cross-site Request Forgery (CSRF) vulnerabilities that were

indicated by CodeAnnotate warnings. P4 explained that the exemplar case, which

is a role-based access control issue, given in the explanatory material is hard to be

applicable to CSRF scenarios in the application:

[P4] It seems like the example (role-based access control) here, ..., it helped

understand what access control is and what you want to check for. But, it

might be hard to apply practically [to CSRF]...

All other participants also pointed out that the explanatory material did not give

an example of such type of broken access control scenario. Thus, they had difficulty

to establish the mental model of such an attack under the context of Tunestore.

Participant P7 also gave his explanation to how he understood and viewed the

material:

[P7] I’ve been programming for 20 years. Basically, when you say access

control to me, I think of some sort of role-base access control. And then

if you say, request forgery, I don’t intuitively put those two together... In

order to get me into thinking about that [CSRF vulnerability] direction,

probably this would have to been expanded a little bit so that I would have

known in this context, we are talking about role-based access control and

CSRF.

An improvement to incorporate as many examples of common vulnerabilities that

were caused by lack of or insufficient access control checks in the explanatory material

was called for by all 5 participants. Like Participant P8 said:

125

[P8] I can imagine it’s difficult to provide contextual explanations, so if

your example page had more examples, so if you had like one example of

one example of a type of check and an example of this could be Cross-site

Request Forgery.

Although it is impossible to provide explanation or case scenarios for application

specific broken access control issues, it might be helpful to provide as many exemplar

cases for possible different vulnerabilities that are caused by lack of or insufficient

access control checks.

Once a CSRF attack mental model was established in the context of Tunestore,

four out of the 5 participants successfully annotated a corresponding access control

check following the given instructions provided by the tool.

Three of the 8 participants either had experience writing professional code or were

about to be a professional developer. They were able to perform such annotation

successfully and correctly on the first trial, while the other 5 participants had trouble

to successfully locate and annotate a Boolean control check for a warning even

after given detailed description of the potential vulnerability for a warning. When

asked about whether the phrase “Boolean control check” makes sense to them, they

responded positively. For instance, F8 expressed with confidence in the following

dialog:

[Investigator] Do you consider it being easy and intuitive to find the right

check?

[P8] I think so, I think if its your code and especially if this system works

126

for the purpose of designing for it, for instance, if it’s identifying an issue

here and I have to create a check in order to verify the statement, I don’t

think finding the Boolean check is going to be the difficult part at all.

In contrast, the other 5 found it difficult to accurately explain the phrase. It is

hard to see whether there is any correlation between the programming capability of

a user with his/her perception and usage of CodeAnnotate, but it will be interesting

to investigate more comprehensively on this aspect.

Overall, CodeAnnotate has the potential to be useful for developers who are expe-

rienced in application development and are aware of how security vulnerabilities can

lead to attacks. Figure 39 gives a summary of the results from the study.

6.6.2.3 Study Discussion

Throughout the study, participants identified several User Interface issues that can

be improved to help developers use CodeAnnotate more effectively. I summarize the

possible improvements into the following items in response to participants experience

with CodeAnnotate.

• Highlight all Boolean logic checks in the current active/visible editor view.

The current design requires users to look for and locate code. The study shows

that users have difficulty locating as well as selecting the right code piece. For

instance, it’s an error prone process to select an expression that has parenthesis.

• Attach the information presentation box to the cursor and have the box move

around along with the cursor. The current design has the information box

sitting statically at the bottom right corner of the Eclipse window. It can be

127

Figure 39: Summary of Think-aloud study

easily overlooked since it is far away from the code the user is focusing on at

the moment of figuring out the control check code.

• Present a sample attack that exploits broken access control problems associated

with an identified issue, in addition to what should be done to countermeasure,

in the explanatory material.

• Visualize the relationship between path and control check graphically.

• Give more examples showing more varieties of broken access control vulnerabili-

128

ties. Participants were able to understand the given example, but were not able

to transfer the knowledge to the application context at hand since the example

problem was far from being relevant to the application issues.

• Change the visualization of a processed path in the relationship view to indicate

which path has been dealt with. A possible solution will be to gray out the item.

• Replace the information box with a different control for displaying information.

The current information box gives a false sense that the user can type notes.

An alternative design would be a controlled comparison study in which the ex-

periment group would work on the programming tasks with Eclipse equipped with

CodeAnnotate, while the control group would work within the same development en-

vironment without CodeAnnotate. While it seems to serve the goal of obtaining an

answer as to whether CodeAnnotate is helpful in helping developers writing code with

fewer broken access control vulnerabilities, it is insufficient for investigating whether

a tool like CodeAnnotate is more effective than traditional knowledge dissemination,

which is teaching in class. This problem can be addressed by adding in another group

of participants who would work without CodeAnnotate, but would be taught about

similar knowledge by an expert before the study.

This study, however, has several challenges which make the study impractical dur-

ing the period of time allotted. The foremost is how to control the equivalence of

knowledge being taught by an expert and knowledge provided by CodeAnnotate. The

second challenge lay in the complication of the vulnerabilities which could lead to the

high risk of not being able to get any data from the group taught by an expert.

129

This is also backed by the study in Section 6.6.2, which shows that participants who

have been extensively trained in secure programming might still not be able to catch

broken access control issues. The third challenge is that with intended size of partic-

ipants divided into more than two groups, the data generated would not be sufficient

to drawing any conclusions.

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Restatement of Contributions

Software vulnerabilities originating from insecure code are one of the leading causes

of security problems people face today. Unfortunately, many developers have not

been adequately trained in writing secure programs that are resistant from attacks

violating program confidentiality, integrity, and availability, a style of programming

which I refer to as secure programming. Worse, even well-trained developers can still

make programming errors, including security ones.

Much work on software security has focused on detecting software vulnerabilities

through automated analysis techniques. While they are effective, they are neither

sufficient nor optimal. For instance, current tool support for secure programming,

both from tool vendors as well as within the research community, focuses on catching

security errors after the program is written. Static and dynamic analyzers work

in a similar way as early compilers: developers must first run the tool, obtain and

analyze results, diagnose programs, and finally fix the code if necessary. Thus, these

tools tend to be used to find vulnerabilities at the end of the development lifecycle.

However, their popularity does not guarantee utilization; other business priorities may

take precedence. Moreover, using such tools often requires some security expertise

and can be costly. What is worse, these approaches exclude programmers from the

131

security loop, and therefore, do not prevent them from continuing to write insecure

code.

I dedicated my dissertation to investigating an approach to helping software pro-

grammers write secure code by interactively providing secure programming support

while they are writing code to implement software. This dissertation started from

understanding why developers make security errors that put software systems at risk

of malicious attacks. It then described the concept of interactive secure programming

in the IDE, helping developers write code that has fewer common security vulnera-

bilities. It presented my two implementations of tool support in the form of Eclipse

IDE plugins for tackling two different classes of code vulnerabilities: vulnerabilities

that are caused by improper or insufficient input validation or output encoding and

vulnerabilities originate from lack of or inadequate access control. For each, this

dissertation gives comprehensive evaluation in terms of its effectiveness in finding

targeted vulnerabilities and its usability from potential end users’ point of view. The

evaluations demonstrate that interactive secure programming support is needed and

helpful to develop more secure software.

To summarize, in this dissertation, I provide an in-depth understanding of why

software programmers make security errors during programming with support of em-

pirical evidence. I also devise a new approach that reminds software programmers of

potential insecure code and provides them secure programming support during pro-

gram construction to help them write secure code, in order to eventually develop more

secure software. I develop two techniques, interactive code refactoring and interactive

code annotation, to assist programmers in producing code with less common code vul-

132

nerabilities. Moreover, I implement prototype software in the form of a plugin for the

Eclipse platform and conducted an extensive open source projects study to evaluate

the effectiveness of the proposed techniques in addressing common vulnerable code.

Additionally, I conducted comprehensive user studies to evaluate the current design

of the implemented prototype as well as gain insights on how developers perceive this

new approach.

7.2 Future Work

Throughout the dissertation, I have pointed out areas where more work is needed

to advance and improve the interactive secure programming support approach. In

this section, I give an overview of these open areas that may become interesting and

valuable future research directions.

7.2.1 Web Frameworks

The implementation of Interactive Code Refactoring in this dissertation targets a

foundational technology, Java Servlet, for developing Java web applications. While it

is still used widely among universities for teaching students to build Java web appli-

cations, it is considered an obsolete technology in industry. Mainstream technologies

that are used, instead, are web frameworks that abstract common characteristics of

applications and provide developers implementations of these common characteris-

tics on top of Java servlet. Such web frameworks, including Apache Struts I, Struts

II, Spring MVC, JavaServer Faces and Grails, hide some interactions among an ap-

plication and its end users in configurations or conventions, thus adding a layer of

complication in analyzing applications.

133

One of the prominent examples is a concept called auto-binding, which allows a

web framework to bind web request parameters into an application’s model properties,

without explicitly invoking javax.servlet.http.HttpServletRequest.get

Parameter(String). This increases the difficulty of identifying the entry points

where untrusted inputs get into an application. To further complicate the imple-

mentation of a more sophisticated CodeRefactoring, different web frameworks have

different implementations of functionality supporting common web application char-

acteristics. In addition, each web framework adds in a variety of programming ele-

ments into an application. The current implementation solution is far from sufficient

in supporting them.

7.2.2 Larger Scale Evaluation on CodeAnnotate

In section 6.6.2, I have studied a small sample of developers using CodeAnnotate.

The study generated interesting results, such as whether a developer possesses an

attacker mentality has influence on whether she can use CodeAnnotate effectively. It,

however, is not able to pinpoint whether CodeAnnotate can help them reduce broken

access control vulnerabilities in their code. Therefore, it is interesting and of great

value to implement a more robust and sophisticated CodeAnnotate and conduct user

studies of a larger scale that investigate how developers use the tool.

7.2.3 Integration with Static Analysis Tools

Another development that can significantly increase the value of the interactive

secure programming support approach is to integrate with current static analysis

tools to reduce secure code review cost. In reality, there is a communication gap

134

between application developers and security auditors. In many cases, developers do

not understand what security auditors need and security auditors are not able to

get from developers what they want. Therefore, it is highly desirable if auditing

results from static analysis tools can be consumed by both CodeRefactoring and

CodeAnnotate to reduce noisy warnings. In the same vein, developers may provide

feedback about the application context that can drive customized security analysis.

Integrating IDE secure programming support with static analysis tools provides

a channel for developers to communicate their application logic to security auditors,

and for security auditors to convey their security knowledge to application developers.

7.2.4 Support Secure Programming Education in the IDE

This dissertation has taken the first step studying students using my prototype

implementation of interactive secure programming approach, and shown that it is

embraced by students and perceived as a useful tool in helping them write more

secure code. It is natural to be curious about whether such interactive secure pro-

gramming reminding and assistance will have any impact on novice developers’ secu-

rity awareness. Furthermore, this can be extended to investigate whether integrating

educational support into an IDE overcomes some of these challenges and provides

effective training throughout a student’s education.

Therefore, an interesting extension of this dissertation may be to (a) develop and

deploy a usable tool that can serve a wide range of students and courses; (b) im-

prove student awareness and understanding of security vulnerabilities in software; (c)

increase utilization of secure programming techniques in assignments; and (d) have

135

minimal impact on other course objectives and instructors. Through which, one can

evaluate how students use the tool, the impact on assignments, students’ vulnerability

awareness, and the impact on the course instructors.

7.3 Closing Remarks

Developers writing insecure code that lead to vulnerabilities in software is a reality.

In this dissertation, I examine a new approach that provides interactive programming

support in the IDE to help developers write more secure code that fewer common vul-

nerabilities. In particular, I investigated two techniques that aim to address vulnera-

bilities in web applications that are caused by untrusted inputs get consumed without

proper validation, and vulnerabilities that result from lacking of proper access con-

trol for sensitive application operations. The technical evaluations have demonstrated

that the techniques are able to successfully find in large open source projects with low

false positive rates. The user studies have shown that my design of the approach is

highly appreciated by developers. In addition, the research in this dissertation opens

a door for additional research, as presented in the future work section.

136

REFERENCES

[1] Shanai Ardi, David Byers, Per Hakon Meland, Inger Anne Tondel, and Nahid
Shahmehri. How can the developer benefit from security modeling? In The
Second International Conference on Availability, Reliability and Security, 2007,
pages 1017 –1025, april 2007.

[2] ARS Technica. Anonymous speaks: the inside story of the hb-
gary hack, 2011. http://arstechnica.com/tech-policy/news/2011/02/
anonymous-speaks-the-inside-story-of-the-hbgary-hack.ars.

[3] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In Proceedings of the
2008 IEEE Symposium on Security and Privacy, pages 387–401. IEEE Computer
Society, 2008.

[4] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-
site request forgery. In Proceedings of the 15th ACM conference on Computer
and communications security, CCS ’08, pages 75–88, New York, NY, USA, 2008.
ACM.

[5] Allan Bateson, Ralph A. Alexander, and Martin D. Murphy. Cognitive processing
differences between novice and expert computer programmers. Int. J. Man-
Mach. Stud., 26:649–660, June 1987.

[6] Bill Pugh. Findbugs, 2011. http://findbugs.sourceforge.net/.

[7] M. Bishop and B. J. Orvis. A clinic to teach good programming practices.
In Proceedings from the Tenth Colloquium on Information Systems Security
Education, pages 168–174, June 2006.

[8] Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. Candid: Dynamic
candidate evaluations for automatic prevention of sql injection attacks. ACM
Trans. Inf. Syst. Secur., 13:14:1–14:39, March 2010.

[9] Stephen W. Boyd and Angelos D. Keromytis. Sqlrand: Preventing sql injection
attacks. In In Proceedings of the 2nd Applied Cryptography and Network
Security (ACNS) Conference, pages 292–302, 2004.

[10] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr. Code bubbles: rethinking the user interface paradigm of integrated
development environments. In Proceedings of the 32nd ACM/IEEE Interna-

137

tional Conference on Software Engineering - Volume 1, ICSE ’10, pages 455–464,
New York, NY, USA, 2010. ACM.

[11] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R.
Klemmer. Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the 27th international conference
on Human factors in computing systems, CHI ’09, pages 1589–1598, New York,
NY, USA, 2009. ACM.

[12] CERT. CERT Secure Coding. www.cert.org/secure-coding, year = 2011.

[13] CERT. Top 10 Secure Coding Practices, 2011. https://www.securecoding.cert.
org/confluence/display/seccode/Top+10+Secure+Coding+Practices.

[14] Avik Chaudhuri and Jeffrey S. Foster. Symbolic security analysis of ruby-on-rails
web applications. In Proceedings of the 17th ACM conference on Computer and
communications security, CCS ’10, pages 585–594, New York, NY, USA, 2010.
ACM.

[15] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security and
Privacy, 2:76–79, November 2004.

[16] Brian Chess and Jacob West. Secure programming with static analysis. Addison-
Wesley Professional, first edition, 2007.

[17] Cigital. Whitebox SecureAssist. http://www.cigital.com/solutions/
secureassist/.

[18] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and Giovanni Vigna. Swad-
dler: an approach for the anomaly-based detection of state violations in web
applications. In Proceedings of the 10th international conference on Recent ad-
vances in intrusion detection, RAID’07, pages 63–86, Berlin, Heidelberg, 2007.
Springer-Verlag.

[19] Coverity Inc. Coverity static analysis, 2011. http://www.coverity.com/products/
static-analysis.html.

[20] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vi-
gna. Toward automated detection of logic vulnerabilities in web applications. In
Proceedings of the 19th USENIX conference on Security, USENIX Security’10,
pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

[21] Xiang Fu and Kai Qian. Safeli: Sql injection scanner using symbolic execution.
In Proceedings of the 2008 workshop on Testing, analysis, and verification of

138

web services and applications, TAV-WEB ’08, pages 34–39, New York, NY, USA,
2008. ACM.

[22] Mark G. Graff and Kenneth R. Van Wyk. Secure Coding: Principles and
Practices. O’Reilly & Associates, Inc., 2003.

[23] Munawar Hafiz, Paul Adamczyk, and Ralph Johnson. Systematically eradicating
data injection attacks using security-oriented program transformations. In ES-
SoS ’09: Proceedings of the 1st International Symposium on Engineering Secure
Software and Systems, pages 75–90, Berlin, Heidelberg, 2009. Springer-Verlag.

[24] William G. J. Halfond and Alessandro Orso. Amnesia: analysis and monitoring
for neutralizing sql-injection attacks. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, ASE ’05, pages
174–183, New York, NY, USA, 2005. ACM.

[25] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. Using pos-
itive tainting and syntax-aware evaluation to counter sql injection attacks. In
Proceedings of the 14th ACM SIGSOFT international symposium on Founda-
tions of software engineering, SIGSOFT ’06/FSE-14, pages 175–185, New York,
NY, USA, 2006. ACM.

[26] Dan Hao, Lingming Zhang, Lu Zhang, Jiasu Sun, and Hong Mei. Vida: Visual
interactive debugging. In Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 583–586, Washington, DC, USA, 2009.
IEEE Computer Society.

[27] Michael Howard and David E. Leblanc. Writing Secure Code. Microsoft Press,
Redmond, WA, USA, 2nd edition, 2002.

[28] Howard, Michael. A brief introduction to standard annotation language, 2011.
http://blogs.msdn.com/b/michael howard/archive/2006/05/19/602077.aspx.

[29] Howard, Michael. Windows vista security a bigger picture,
2011. http://blogs.msdn.com/b/michael howard/archive/2006/06/12/
windows-vista-security-a-bigger-picture.aspx.

[30] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, D. T. Lee, and
Sy-Yen Kuo. Verifying web applications using bounded model checking. In
Proceedings of the 2004 International Conference on Dependable Systems and
Networks, pages 199–, Washington, DC, USA, 2004. IEEE Computer Society.

[31] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee,
and Sy-Yen Kuo. Securing web application code by static analysis and runtime

139

protection. In Proceedings of the 13th international conference on World Wide
Web, WWW ’04, pages 40–52. ACM, 2004.

[32] IBM Eclipse Foundation. Eclipse, 2011. http://www.eclipse.org/.

[33] SANS Institute. SANS Institute, 2011. www.sans.org.

[34] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis
tool for detecting web application vulnerabilities (short paper). In Proceedings of
the 2006 IEEE Symposium on Security and Privacy, pages 258–263, Washington,
DC, USA, 2006. IEEE Computer Society.

[35] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Static analysis for
detecting taint-style vulnerabilities in web applications. J. Comput. Secur.,
18:861–907, September 2010.

[36] Kaarina Karppinen, Lyly Yonkwa, and Mikael Lindvall. Why developers insert
security vulnerabilities into their code. In Proceedings of the 2009 Second
International Conferences on Advances in Computer-Human Interactions, ACHI
’09, pages 289–294. IEEE Computer Society, 2009.

[37] Mik Kersten and Gail C. Murphy. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, SIGSOFT ’06/FSE-14, pages 1–11,
New York, NY, USA, 2006. ACM.

[38] Adam Kieyzun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. Au-
tomatic creation of sql injection and cross-site scripting attacks. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09, pages
199–209, Washington, DC, USA, 2009. IEEE Computer Society.

[39] Andrew J. Ko and Brad A. Myers. A framework and methodology for studying
the causes of software errors in programming systems. J. Vis. Lang. Comput.,
16:41–84, February 2005.

[40] Andrew J. Ko and Brad A. Myers. Barista: An implementation framework
for enabling new tools, interaction techniques and views in code editors. In
Proceedings of the SIGCHI conference on Human Factors in computing systems,
CHI ’06, pages 387–396, New York, NY, USA, 2006. ACM.

[41] Andrew J. Ko and Brad A. Myers. Debugging reinvented: asking and answering
why and why not questions about program behavior. In Proceedings of the 30th
international conference on Software engineering, ICSE ’08, pages 301–310, New
York, NY, USA, 2008. ACM.

140

[42] Anyi Liu, Yi Yuan, Duminda Wijesekera, and Angelos Stavrou. Sqlprob: a proxy-
based architecture towards preventing sql injection attacks. In Proceedings of
the 2009 ACM symposium on Applied Computing, SAC ’09, pages 2054–2061,
New York, NY, USA, 2009. ACM.

[43] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in
java applications with static analysis. In Proceedings of the 14th conference on
USENIX Security Symposium - Volume 14, pages 18–18, Berkeley, CA, USA,
2005. USENIX Association.

[44] Wim Maes, Thomas Heyman, Lieven Desmet, and Wouter Joosen. Browser
protection against cross-site request forgery. In Proceedings of the first ACM
workshop on Secure execution of untrusted code, SecuCode ’09, pages 3–10, New
York, NY, USA, 2009. ACM.

[45] Michael Martin and Monica S. Lam. Automatic generation of xss and sql injec-
tion attacks with goal-directed model checking. In Proceedings of the 17th con-
ference on Security symposium, pages 31–43, Berkeley, CA, USA, 2008. USENIX
Association.

[46] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application
errors and security flaws using PQL: a program query language. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 365–383, 2005.

[47] G. McGraw. Software security. Security Privacy, IEEE, 2(2):80 – 83, mar-apr
2004.

[48] G. McGraw, B. Chess, and S. Migues. Building security in maturity model, 2011.
www.bsimm2.com.

[49] Moodle. Moodle, 2011. http://moodle.org.

[50] Moodle. MSA-08-0013, 2011. http://moodle.org/mod/forum/discuss.php?d=
101405.

[51] Emerson Murphy-Hill and Andrew P. Black. An interactive ambient visualization
for code smells. In Proceedings of the 5th international symposium on Software
visualization, SOFTVIS ’10, pages 5–14, New York, NY, USA, 2010. ACM.

[52] Gleb Naumovich and Paolina Centonze. Static analysis of role-based access
control in j2ee applications. SIGSOFT Softw. Eng. Notes, 29:1–10, September
2004.

141

[53] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. Automatically hardening web applications using precise tainting. In Ry-
oichi Sasaki, Sihan Qing, Eiji Okamoto, and Hiroshi Yoshiura, editors, Security
and Privacy in the Age of Ubiquitous Computing, volume 181 of IFIP Advances
in Information and Communication Technology, pages 295–307. Springer Boston,
2005. 10.1007/0-387-25660-1 20.

[54] NYTimes.com. Thieves found citigroup site an easy entry, 2011. http://www.
nytimes.com/2011/06/14/technology/14security.html?pagewanted=all.

[55] Open Web Application Security Project. Owasp top ten project, 2011. https:
//www.owasp.org/index.php/Category:OWASP Top Ten Project.

[56] Oracle. Java Servlet. http://www.oracle.com/technetwork/java/javaee/servlet/
index.html.

[57] Oracle Corporation. Java, 2011. http://www.java.com/en/.

[58] Oracle Corporation. Netbeans ide, 2011. http://netbeans.org/.

[59] OWASP. ESAPI. https://www.owasp.org/index.php/Category:OWASP
Enterprise Security API.

[60] OWASP. Open Web Application Project. https://www.owasp.org/index.php/
Main Page.

[61] OWASP. OWASP secure coding practices.

[62] OWASP. ESAPI Validator API, 2011. http://owasp-esapi-java.googlecode.com/
svn/trunk doc/latest/org/owasp/esapi/Validator.html.

[63] OWASP Foundation. Cross-site request forgery, 2011. https://www.owasp.org/
index.php/Cross-Site Request Forgery (CSRF).

[64] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav. A survey of static analysis
methods for identifying security vulnerabilities in software systems. IBM Syst.
J., 46:265–288, April 2007.

[65] James Reason. Human Error. Cambridge University Press, Cambridge, UK,
1990.

[66] Apache Roller. Apache Roller. http://roller.apache.org, year = 2011.

[67] SAFECode.org. Fundamental practices for secure software development, 2008.

142

http://www.safecode.org/publications/.

[68] SANS Institue. Cwe/sans top 25 most dangerous software errors, 2011. http:
//www.sans.org/top25-software-errors/.

[69] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCa-
mant, and Dawn Song. A symbolic execution framework for javascript. Tech-
nical Report UCB/EECS-2010-26, EECS Department, University of California,
Berkeley, Mar 2010.

[70] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Proceedings of the 2010 IEEE Sym-
posium on Security and Privacy, SP ’10, pages 317–331, Washington, DC, USA,
2010. IEEE Computer Society.

[71] Helen Sharp, Yvonne Rogers, and Jenny Preece. Interaction Design: Beyond
Human-Computer Interaction. Wiley, 2 edition, March 2007.

[72] Fortify Software. Fortify SCA, 2011. https://www.fortify.com/products/
fortify360/source-code-analyzer.html.

[73] SourceForge.net. Pmd, 2011. http://pmd.sourceforge.net/.

[74] Zhendong Su and Gary Wassermann. The essence of command injection attacks
in web applications. In Conference record of the 33rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’06, pages 372–382,
New York, NY, USA, 2006. ACM.

[75] Blair Taylor and Shiva Azadegan. Moving beyond security tracks: integrating
security in cs0 and cs1. In Proceedings of the 39th SIGCSE technical symposium
on Computer science education, SIGCSE ’08, pages 320–324. ACM, 2008.

[76] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weis-
man. Taj: effective taint analysis of web applications. In Proceedings of the
2009 ACM SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’09, pages 87–97, New York, NY, USA, 2009. ACM.

[77] F. Valeur, D. Mutz, and G. Vigna. A Learning-Based Approach to the Detection
of SQL Attacks. In Proceedings of the Conference on Detection of Intrusions
and Malware and Vulnerability Assessment (DIMVA), pages 123–140, Vienna,
Austria, July 2005.

[78] VERACODE. State of Software Security Report Volume 1, 2, and 3, 2011.

143

http://www.veracode.com/reports/index.html.

[79] John Viega and Gary McGraw. Building secure software: how to avoid security
problems the right way. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[80] John Viega, Matt Messier, and Genen Spafford. Secure Programming Cookbook
for C and C++. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1 edition,
2003.

[81] Gary Wassermann and Zhendong Su. Sound and precise analysis of web ap-
plications for injection vulnerabilities. In Proceedings of the 2007 ACM SIG-
PLAN conference on Programming language design and implementation, PLDI
’07, pages 32–41, New York, NY, USA, 2007. ACM.

[82] G. M. Weinberg. The psychology of computer programming. Van Nostrand
Reinhold Co., New York, NY, USA, 1988.

[83] David A. Wheeler. Secure programming for linux and unix howto, 2003.

[84] Irene M. Y. Woon and Atreyi Kankanhalli. Investigation of is professionals’
intention to practise secure development of applications. Int. J. Hum.-Comput.
Stud., 65:29–41, January 2007.

[85] Jing Xie, Heather Richter Lipford, and Bill Chu. Why do programmers make
security errors? In Proceedings of 2011 IEEE Symposium on Visual Languages
and Human Centric Computing, pages 161–164, 2011.

[86] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in script-
ing languages. In Proceedings of the 15th conference on USENIX Security
Symposium - Volume 15, Berkeley, CA, USA, 2006. USENIX Association.

[87] Xie, Jing and Chu, Bill and Melton, John. Owasp aside, 2011. https://www.
owasp.org/index.php/OWASP ASIDE Project.

144

APPENDIX A: RULES

A ASIDE Code Refactoring Default Trust Boundary Rules

Figure 40 is a trust boundary rule for Java Servlet API javax.servlet.Servlet

Request.getParameter(String). Table 6 explains the mapping in detail.

Figure 40: ASIDE trust boundary rule for Java Servlet API
HttpServletRequest.getParameter(String)

.

145

T
ab

le
6:

T
ru

st
b

ou
n
d
ar

y
ru

le
m

ap
p
in

g.

R
u

le
E

le
m

en
t

A
tt

ri
b

u
te

V
a
lu

e
N

o
te

T
r
u
s
t
B
o
u
n
d
a
r
y

d
en

o
te

th
e

ru
le

is
a
p

p
li

ed
to

id
en

ti
fy

p
ro

g
ra

m
co

n
st

ru
ct

s
th

a
t

in
tr

o
d

u
ce

u
n
tr

u
st

ed
in

p
u

ts
in

to
a
p

p
li

ca
ti

o
n

s
o
r

re
n

d
er

u
n
tr

u
st

ed
o
u

tp
u

ts
fr

o
m

th
e

a
p

p
li

ca
ti

o
n

s
t
y
p
e

d
en

o
te

s
th

e
ty

p
e

o
f

p
ro

g
ra

m
co

n
st

ru
ct

s
th

is
ru

le
sh

o
u

ld
b

e
a
p

p
li

ed
to

.
T

h
er

e
a
re

tw
o

ty
p

es
o
f

co
n
st

ru
ct

s
d

efi
n

ed
:

M
et

h
o
d

In
vo

ca
ti

o
n

m
a
p

s
to

fu
n

ct
io

n
ca

ll
s;

M
et

h
o
d

D
ec

la
ra

ti
o
n

m
a
p

s
to

a
d

ec
la

ra
ti

o
n

o
r

a
d

efi
n

it
io

n
o
f

a
fu

n
ct

io
n

a
t
t

d
en

o
te

s
th

e
ty

p
e

o
f

u
n

st
ru

st
ed

d
a
ta

a
ss

o
ci

a
te

d
w

it
h

th
is

b
o
u

n
d

a
ry

ru
le

:
in

p
u

t
o
r

o
u

tp
u

t

D
e
c
l
a
r
a
t
i
o
n

j
a
v
a
x
.
s
e
r
v
l
e
t
.

d
en

o
te

s
th

e
n

a
m

es
p

a
ce

w
it

h
in

C
l
a
s
s

(
h
t
t
p
.
H
t
t
p
)
?

w
h

ic
h

m
et

h
o
d

is
d

efi
n

ed
S
e
r
v
l
e
t
R
e
q
u
e
s
t

M
e
t
h
o
d
N
a
m
e

g
e
t
P
a
r
a
m
e
t
e
r

d
en

o
te

s
th

e
d

efi
n

ed
n

a
m

e
o
f

th
e

m
et

h
o
d

R
e
t
u
r
n
T
y
p
e

j
a
v
a
.

d
en

o
te

s
th

e
n

a
m

es
p

a
ce

l
a
n
g
.

to
w

h
ic

h
th

e
re

tu
rn

o
b

je
ct

S
t
r
i
n
g

o
f

th
e

m
et

h
o
d

b
el

o
n
g
s

146

B ASIDE Code Refactoring Default Input Validation Rules

Figure 41 is an input validation rule for data type Email. Table 7 explains the

mapping in detail.

Figure 41: ASIDE input validation rule for OWASP ESAPI Email
.

Table 7: Trust boundary rule mapping.

Rule Element Attribute Value Note

Validation
denotes a rule is an input validation pattern

Pattern
label denotes the type of data

Pattern

regular denotes the regular express to
expression be used for validating against an input.
for Email If the input can be matched, it is considered

a valid email address. If it cannot
be matched, it is considered an invalid one

Default admin@gmail.com
denotes the default value to be
set if the validation fails

C ASIDE CodeAnnotate Sensitive Accessor Specification

Figure 42 is a sensitive accessor rule that defines the action updating a database

table via java.sql.Statement.executeUpdate(String). Table 8 explains

the mapping in detail.

147

Figure 42: ASIDE CodeAnnotate sensitive accessor rule example
.

148

T
ab

le
8:

S
en

si
ti

ve
ac

ce
ss

or
ru

le
m

ap
p
in

g.

R
u

le
E

le
m

en
t

A
tt

ri
b

u
te

V
a
lu

e
N

o
te

a
c
c
e
s
s
o
r

d
en

o
te

s
a

ru
le

is
a

se
n

si
ti

ve
a
cc

es
so

r
ru

le
i
d

d
en

o
te

s
th

e
fu

ll
y

q
u

a
li

fi
ed

n
a
m

e
o
f

a
m

et
h

o
d

th
a
t

a
cc

es
se

s
se

n
si

ti
v
e

in
fo

rm
a
ti

o
n

.
In

th
is

ca
se

,
it

is
m

et
h

o
d
e
x
e
c
u
t
e
U
p
d
a
t
e
(
S
t
r
i
n
g
)

m
et

h
o
d

w
it

h
in

th
e

n
a
m

es
p

a
ce

j
a
v
a
.
s
q
l
.
S
t
a
t
e
m
e
n
t

s
e
n
s
i
t
i
v
e
L
o
c
a
t
i
o
n

0
d

en
o
te

s
th

e
a
rg

u
m

en
t

in
d

ex
a
t

w
h

ic
h

th
e

se
n

si
ti

ve
in

fo
rm

a
ti

o
n

is

s
e
n
s
i
t
i
v
e
T
y
p
e

D
B
T
a
b
l
e

d
en

o
te

s
th

e
ty

p
e

o
f

se
n

si
ti

v
e

in
fo

rm
a
ti

o
n

.
In

th
is

ca
se

,
it

is
a

d
a
ta

b
a
se

ta
b

le

s
e
n
s
i
t
i
v
e
T
a
r
g
e
t

U
S
E
R

d
en

o
te

s
th

e
re

fe
re

n
ce

o
f

th
e

se
n

si
ti

ve
in

fo
rm

a
ti

o
n

.
In

th
is

ca
se

,
th

e
n

a
m

e
o
f

th
e

d
a
ta

b
a
se

ta
b

le
,

w
h

ic
h

is
U
S
E
R

149

APPENDIX B: STUDY MATERIALS

A Secure Programming Errors Study

Figure 43: Consent Form

150

Figure 44: Consent Form

151

Figure 45: Interview Questions

152

Figure 46: Interview Questions

153

Figure 47: Consent Form

154

Figure 48: Consent Form.

155

B CodeRefactoring Study

The following materials were used for study described in Section 5.4

Figure 49: Description of Programming Task

156

Figure 50: Description of Programming Task

157

Figure 51: Interview Questions

158

Figure 52: Consent Form

159

Figure 53: Consent Form.

160

Figure 54: Study Instructions

161

Figure 55: Study Instructions

162

Figure 56: Study Instructions

163

Figure 57: Development Environment Setup

164

Figure 58: Description of Programming Task

165

Figure 59: Description of Programming Task

166

Figure 60: IDescription of Programming Task

167

Figure 61: Interview Questions

