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ABSTRACT

LIHONG XIA. Essays on λ-quantile dependent convex risk measures. (Under the
direction of DR. MINGXIN XU.)

We define a class of convex measures of risk whose values depend on the random

variables only up to the λ-quantiles for some given constant λ ∈ (0, 1). For this class of

convex risk measures, the assumption of Fatou property can be strengthened, and the

robust representation theorem via convex duality method is provided. These results

are specialized to the class of λ-quantile law invariant risk measures. We define the

λ-quantile uniform preference (λ-quantile second order stochastic dominance) of two

probability distribution measures and the λ-quantile dependent concave distortion

and study their properties. The robust representation theorem of the λ-quantile

dependent Weighted Value-at-Risk is proven via two different approaches: the λ-

quantile uniform preference approach and the approach of maximizing the Choquet

integral over the core of a λ-quantile dependent concave distortion. We demonstrate

the two approaches in a classical example of Conditional Value-at-Risk and a new

example of uniform λ-quantile dependent Weighted Value-at-Risk.
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INTRODUCTION

How to measure the riskiness of financial a position is an important yet complex

topic for financial institutes such as banks and insurance companies as well as regula-

tors. The financial crisis started in 2008 has shown us how critical risk measures are.

Measuring risk, theoretically, involves how to define a proper measure to quantify

the riskiness of a financial position and to study the properties of the measure; while

practically, involves how to estimate and predict the selected measure using historic

data or other methods such as Monte Carlo simulation. My research focuses on the

first point. More precisely, we define the class of “λ-quantile dependent” convex risk

measures and study its properties.

According to Artzner, Delbaen, Eber and Heath (1999), the nature of a risk measure

lies in the capital requirements that can be added to a financial position to make it

acceptable from the point of view of an agent or a regulator. The paper of Artzner et

al. (1999) is the mathematical foundation of studying the measure of risk, in which

“a unified framework for the definition, analysis, construction and implementation”

of the measure of risk was proposed and axioms of the class of the “coherent measures

of risk” and its “robust representation” were given. In their framework, Ω denotes

the possible outcomes of market scenarios, which is assumed to be finite. A random

variable X : Ω→ R indicates the “final net worth” of a position for each element of Ω,

and the collection of all these random variables is denoted by X . Note that X is the

collection of all bounded random variables due to the finiteness of Ω. A risk measure

ρ is then a mapping from X to the real line R, ρ : X → R. From the point of view of

an agent or a regulator, a financial position is either “acceptable” or “unacceptable”

with respect to its final net worth. The collection of all acceptable financial positions

is called the “acceptance set” and denoted by A. Obviously, A ⊂ X . Given a measure

of risk ρ, its acceptance set Aρ is Aρ = {X ∈ X : ρ(X) ≤ 0}, the collection of all
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financial positions whose risk is nonpositive under the measure ρ. On the other hand,

since a risk measure is the minimum capital requirement that can to added to a

financial position to make it acceptable, start from an acceptance set A, a measure

of risk ρ can be recovered as ρ(X) = inf{m ∈ R |m + X ∈ A}, for X ∈ X . As a

special class of measure of risk, Artzner et al. defined the coherent measure of risk

by postulating axioms it must satisfy. These axioms are monotonicity, translation

invariance, subadditivity and positive homogeneity. Artzner et al. also showed that

these axioms have correspondence to the axioms of the acceptance set, and for a

coherent measure of risk ρ in the current setting (i.e., finite Ω), it is true that ρ = ρAρ .

In addition, Artzer et al. (1999) provided a representation, also known as the robust

representation, of the coherent measure of risk ρ: ρ(X) = supQ∈Q EQ[−X], where Q

is a family of probability measures on Ω. Note that Ω is assumed to be finite.

Delbaen (2002) extended the coherent measure of risk to the general space L0 :=

L0(Ω,F ,P), the space of equivalent classes of all measurable functions on the proba-

bility space (Ω,F ,P), with a general set of Ω. Since Ω can contain infinite number of

elements, the random variables in L0 are not anymore bounded. Thus, the coherent

measure of risk ρ defined on the space L0 could take infinite value. Delbaen pointed

out that the probability measure P added to the space (Ω,F) is necessary to consider

the probability space L0, however, it is not really important which particular P is

added, since the robust representation of the coherent measure of risk indicates that

only the set of probability measures that are equivalent to P matters.

A more general class of measures of risk is the convex measure of risk. The law

invariant measure of risk is a subclass of the convex measure of risk. In summary,

there are three classes of risk measures that are precisely studied so far: the coherent

measure of risk, the convex measures of risk, and the law invariant measure of risk.

The coherent measure of risk: As mentioned, this class of measures of risk was

originally defined by Artzner et al. (1999) for finite market scenarios and was
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extended by Delbaen (2002) to the general state space. A coherent measure of

risk satisfies axioms of translation invariance, monotonicity, subadditivity and

positive homogeneity. Artzner et al. (1999) proposed the robust representation

using the expectations of the random variables. Delbaen (2002) showed that for

a general state space Ω, the robust representation of a coherent measure of risk

exists under some condition. He proposed the equivalent conditions including

the Fatou property which was first time defined for a measure of risk.

The convex measure of risk: It is a generalization of the coherent measure of risk

independently made by Föllmer and Schied (2002) and Frittelli and Rosazza

Gianin (2002). For a convex measure of risk, subadditivity and positive ho-

mogeneity are replaced by the convexity. For different probability spaces, the

robust representation as well as equivalent conditions for the existence of the

robust representation were proposed by Föllmer and Schied (2002), Frittelli and

Rosazza Gianin (2002), Föllmer and Schied (2004), Biagini and Frittelli (2009),

Kaina and Rüschendorf (2009).

The law invariant measure of risk: Kusuoka (2001) first studied those coherent

measures of risk whose values depend on the random variables only through

their probability distributions, and call them the “law invariant coherent risk

measures”. He further showed that the law invariance coherent risk measure ρ

defined on the space L∞ := L∞(Ω,F ,P), the equivalent classes of essentially

bounded random variables, can be represented by the Weighted Value-at-Risk,

if ρ has the Fatou property. The definition of the “law invariance” can be

extended to the convex measure of risk, which was done by Föllmer and Schied

(2004) and Frittelli and Rosazza Gianin (2005). Later, Jouini, Schachermayer

and Touzi (2006) proved that all law invariant convex measures of risk on L∞

already have the Fatou property.



viii

In addition, as a particular subclass of the convex measure of risk, the Weighted

Value-at-Risk is of great interest to researchers.

The Weighted Value-at-Risk (WVaR): This is a subclass of the convex measure

of risk, it is coherent as well as law invariant. The WVaR includes the well-

known Conditional Value-at-Risk (CVaR). It first appeared in Kusuoka (2001)

as the one who represents the law invariant coherent measure of risk. Though

Kusuoka did not give a particular name to it, he showed that on the space L∞,

the WVaR is a law invariant and comonotonic coherent risk measure and it has

the Fatou property. Kusuoka also proposed a representation using the Choquet

integral. Acerbi (2002) named this class of risk measures the “spectral measure

of risk”. Föllmer and Schied (2004) called it the “concave distortion” and pro-

vided the robust representation using the second order stochastic dominance of

a concave core. Cherny (2006) named this class of risk measures the “Weighted

Value-at-Risk” and extended it into the space L0.

An important point on the study of the convex measure of risk (including the

coherent measure of risk) is that under what conditions the robust representation

exists. If Ω is finite, Artzner et al. (1999) showed that a measure of risk ρ is coherent

if and only if there exists a family Q of probability measures on Ω such that

ρ(X) = sup
Q∈Q

EQ[−X], for X ∈ X . (1)

The representation (1) links the coherent measure of risk to the expectations of the

financial positions, and the supremum in (1) shows the robustness of ρ in the sense

that the more probability measures are included in the representation set Q, the

more conservative is the risk measure. The representation (1) is called the “robust

representation” of a coherent measure of risk. When a general Ω (i.e., Ω may contain

infinitely many elements) is considered, more conditions are needed for a coherent

measure of risk to be representable. Delbaen (2002) proposed these conditions. For
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the coherent measure of risk ρ : L∞ → R, he defined the “Fatou property”: for

any sequence of random variables (Xn) ⊂ L∞ such that (Xn) is uniformly bounded

by some constant C, ρ has the Fatou property if ρ(X) ≤ lim infn→∞ ρ(Xn) when-

ever Xn → X P-a.s. for some X ∈ L∞. Delbaen showed that the Fatou property

is sufficient as well as necessary for the acceptance set Aρ of ρ to be weak* closed.

Then, the robust representation (1) exists due to the bipolar theorem. Moreover,

Delbaen showed that the Fatou property is in fact equivalent to that ρ is continuous

from above. Since the representation (1) is continuous from above, ρ has the Fatou

property is equivalent to that ρ has the representation (1).

For the robust representation of a convex measure of risk ρ : L∞ → R, both Föllmer

and Schied (2002) and Frittelli and Rosazza Gianin (2002) achieved the following

representation:

ρ(X) = sup
Q∈Q

(EQ[−X]− ρ∗(Q)), (2)

with ρ∗ a penalty function and Q the representation set which can be identified.

However, their approaches to show (2) are different: Föllmer and Schied used the

approach similar to Delbaen (2002), while Frittelli and Rosazza Gianin (2002) used

the Fenchel-Legendre duality.

To extend the robust representation (2) to the convex measure of risk defined on

the functional space Lp := Lp(Ω,F ,P), 1 ≤ p < ∞, the functional space such that

for any X ∈ Lp,
∫
R |X|

pdP < ∞, Biagini and Frittelli (2009) modified Delbaen’s

Fatou property: for any sequence (Xn) ⊂ Lp such that (Xn) is dominated by some

random variable Y ∈ Lp, a convex measure of risk ρ : Lp → R ∪ {∞} has the

Fatou property if ρ(X) ≤ lim inf ρ(Xn) whenever Xn → X P-a.s. for some X ∈ Lp.

The difference of the two Fatou properties is the boundedness of (Xn) required. In

Delbaen’s definition, (Xn) is bounded by some constant uniformly, while in Biagini

and Frittelli’s definition, (Xn) must be dominated by some random variable. Under

the modified Fatou property, Biagini and Frittelli provided the robust representation
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of a convex and monotone functional defined on a locally convex Frechet lattice.

Later on, Kaina and Rüschendorf (2009) specified Biagini and Frittelli’s results onto

the convex measure of risk ρ : Lp → R ∪ {∞} with 1 ≤ p ≤ ∞.

When measuring risk, we are usually more concerned with downside risk than the

upside profit of the portfolio. In fact, many convex risk measures we consider such as

the Conditional Value-at-Risk (CVaR), the Weighted Value-at-Risk (WVaR), or non-

convex risk measure such as Value-at-Risk (VaR), depend only on the lower quantiles

of the financial positions up to some fixed significant level λ ∈ (0, 1). We call this

class of convex risk measures the “λ-quantile dependent” convex risk measure and

study it from the following points:

The definition: The λ-quantile dependent convex risk measure is a convex measure

of risk ρ : Lp → R ∪ {∞}, 1 ≤ p ≤ ∞, whose value depends on the random

variables only up to a given level λ ∈ (0, 1). In other words, if the random

variables are undistinguishable up to their λ-quantiles, their values of the risk

measure must be same. Therefore, we first need to formally indicate the λ-

quantile undistinguishable random variables, and then define the λ-quantile

dependent convex risk measure.

The λ-quantile Fatou property: Since a λ-quantile dependent convex risk mea-

sure belongs to the class of the convex measures of risk, it is representable under

the Fatou property defined by Biagini and Frittelli (2009). However, since the

risk measure depends on the random variable only up to the level λ, it is more

natural to require the upper λ-quantiles of the sequence (Xn) to be uniformly

bounded above by some constant. Therefore, we define the λ-quantile Fatou

property as the following: For a sequence of random variables (Xn) ⊂ Lp such

that their upper λ-quantiles are uniformly bounded by some real number, a

convex measure of risk ρ : Lp → R ∪ {∞} has the λ-quantile Fatou property if

ρ(X) ≤ lim inf ρ(Xn) whenever Xn → X P-a.s. for some X ∈ Lp. The bound-
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edness condition we adopt in defining the λ-quantile Fatou property yields the

lower semicontinuity for the λ-quantile dependent risk measure and its robust

representation (2). When the risk measure is restricted to be λ-quantile depen-

dent, the corresponding λ-quantile Fatou property turns out to be stronger in

the sense that the boundedness on the quantile function can be more readily

satisfied than the boundedness on the entire random variable, so the continuity

property works for a larger class of sequences of random variables.

The λ-quantile law invariant risk measure: This is a subclass of the λ-quantile

dependent convex risk measure. A λ-quantile law invariant risk measure is a

convex measure of risk that depends only on the law of the random variables

up to the given significance level λ. We propose a representation theorem for

this class of risk measures.

The λ-quantile dependent WVaR: As an important subclass of the λ-quantile

dependent convex risk measure, we define the λ-quantile dependent Weighted

Value-at-Risk (λ-quantile dependent WVaR), denoted as ρµ,λ. We first define

the λ-quantile dependent Weighted Value-at-Risk for some fixed λ ∈ (0, 1) as

ρµ,λ(X) =

∫
[0,λ]

CV aRγ(X)µ(dγ), X ∈ Lp, 1 ≤ p ≤ ∞,

with µ a probability measure on [0, λ] and µ({0}) = 0. ρµ,λ is coherent, law

invariant and λ-quantile dependent. We prove the representation theorem for

the λ-quantile dependent WVaR by assuming that the probability space Ω is

atomless. Similar to Carlier and Dana (2003), two approaches to the proof

are adopted. The first one is to use the uniform preference of two probability

distribution measures, also known as the second order stochastic dominance,

which we extend the definition to the λ-quantile dependent case and study its

properties for representation. The second approach hinges upon the relation-
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ship between comonotonic law invariant risk measures and Choquet integrals

discovered by Schmeidler (1986). Showing the representation for the risk mea-

sure is reduced to finding the core of the Choquet integral. In the λ-quantile

dependent WVaR case, we establish that

ρµ,λ(X) =


∫ qX(λ)

0
(Ψ(P(X < x))− 1)dx+

∫ 0

−∞Ψ(P(X < x))dx, if qX(λ) > 0,∫ qX(λ)

−∞ Ψ(P(X < x))dx, if qX(λ) ≤ 0.

where Ψ is a λ-quantile dependent concave distortion. We verify that the above

Choquet integral is the maximum of the expectation of −X over the probability

measures in the core of Ψ◦P. As an example, we give the robust representation

of the Conditional Value-at-Risk CV aRλ using these two approaches and check

that the representation sets achieved from these different methods are indeed

the same, and they also coincide with the well-known result obtained from

Neyman-Pearson Lemma by Föllmer and Schied (2004). We also show the

robust representation in a new example which we call the uniform λ-quantile

dependent Weighted Value-at-Risk.

This thesis is organized in the following way:

In Chapter 1, we review the definition of the convex measure of risk and the theorem

of the robust representation. As a subclass of the convex measure of risk, we also

review the law invariant measure of risk and its representation, as well as the Weighed

Value-at-Risk and the corresponding representation.

In Chapter 2, we define the class of λ-quantile dependent convex risk measures and

the λ-quantile Fatou property. We show the robust representation theorem using the

λ-quantile Fatou property.

In Chapter 3, we define the class of λ-quantile law invariant risk measure and

propose a representation similar to the law invariant measure of risk.

In Chapter 4, we first define the class of λ-quantile dependent WVaR. We then
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define the λ-quantile uniform preference of two probability distribution measures

and study its properties. The robust representation of the λ-quantile dependent

WVaR is proposed via the λ-quantile uniform preference and the core of the concave

distortion respectively. As an example, we give the robust representation of the

Conditional Value-at-Risk CVaRλ using the above two approaches and check that

this robust representation coincides to the well known one. Finally, we give the

robust representation of the uniform λ-quantile dependent WVaR.
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LIST OF NOTATIONS

(Ω,F ,P): a probability space

X : the collection of the random variables on Ω

Aρ: the acceptance set of the risk measure ρ

L0 := L0(Ω,F ,P): the space of equivalent classes of all measurable functions on the
probability space (Ω,F ,P)

L∞ := L∞(Ω,F ,P): the space of equivalent classes of all essentially bounded func-
tions on the probability space (Ω,F ,P)

Lp := Lp(Ω,F ,P), 1 ≤ p <∞: the space of equivalent classes of measurable functions
on the probability space (Ω,F ,P) such that for all X ∈ Lp,

∫
|X|pdP <∞

ba := ba(Ω,F ,P): the space of all finitely additive measures µ which are absolutely
continuous to P and whose total variation is finite.

X
λ
= Y P-a.s.: the random variables X and Y are P-a.s. equal up to their λ-quantiles

Qp: the set of probability measures on (Ω,F ,P) such that Q� P and dQ
dP
∈ Lq with

1
p

+ 1
q

= 1 for 1 ≤ p ≤ ∞

qX(λ): the λ-quantile of the random variable X

q+
X(λ): the upper λ-quantile of the random variable X

q−X(λ): the lower λ-quantile of the random variable X

σ(L∞, L1): the weak* topology on L∞

X ∼ Y : the random variables X and Y have the same probability distributions

X
λ∼ Y : the random variables X and Y have the same probability distributions up

to their λ-quantiles

µ <
uni

ν: the probability measure µ is uniformly preferred (second order stochastic

dominant) over the probability measure ν

µ <
uni(λ)

ν: the probability measure µ is λ-quantile uniformly preferred over the prob-

ability measure ν



CHAPTER 1: REVIEW OF CONVEX MEASURE OF RISK AND ITS ROBUST
REPRESENTATION

Artzner et al. (1999) first defined the coherent measure of risk ρ for a finite set

of market scenarios both through adding axioms on ρ and through adding axioms

on the acceptance set of ρ. A more generalized class of risk measures is the convex

measure of risk. In this chapter, we review the axiomatic definition of the convex

measure of risk and the coherent measure of risk, the relation between the axioms

on ρ and the axioms on the acceptance set Aρ, and the robust representation of the

convex measure of risk and the coherent measure of risk.

1.1 The convex measure of risk and its acceptance set

Let Ω be a fixed set of scenarios, finite or infinite. The net worth of a financial

position at the end of a trading period is modeled by a random variable X : Ω →

R ∪ {∞}. The collection of the net worth of all financial positions is denoted by X .

Definition 1.1. (measure of risk) Let ρ : X → R ∪ {∞} be a mapping.

1. ρ is a monetary measure of risk, if it satisfies the following axioms:

• Monotonicity: For any X, Y ∈ X such that X ≤ Y , ρ(X) ≥ ρ(Y ).

• Cash invariance: For any X ∈ X and any m ∈ R, ρ(X +m) = ρ(X)−m.

2. ρ is a convex measure of risk, if it is a monetary measure of risk and satisfies:

• Convexity: For any X, Y ∈ X and any λ ∈ [0, 1],

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ).

3. ρ is a coherent measure of risk, if it is a monetary measure of risk and satisfies:

• Positive Homogeneity: For α ≥ 0, ρ(αX) = αρ(X), for any X ∈ X .
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• Subadditivity: For any X, Y ∈ X , ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Remark 1.2. We have the following remarks on Definition 1.1:

1. The definition of the convex measure of risk was proposed independently by

Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002), where ρ

was assumed to be real-valued. However, when a random variable X ∈ X is not

bounded, we can not eliminate the possibility that ρ takes infinite value. For

example, for X := L0(Ω,F ,P) with (Ω,F ,P) an atomless probability space,

Delbaen (2002) showed that there was no finite-valued coherent measure of risk

since the functional space L0 is not locally convex. Thus, we require ρ is a

mapping from X to the extended real line R ∪ {∞}.

2. Artzner et al. (1999) interpreted the axiom of subadditivity of the coherent

measure of risk as “a merger does not create extra risk”, which means that the

risk of the aggregate position is bounded by the sum of the individual risk limits.

3. For the convex measure of risk, the axiom of convexity can be explained in a

similar way: “diversification should not increase risks”. More precisely, the risk

of a diversified position λX + (1 − λ)Y is not larger than the weighted sum of

the positions X and Y . This interpretation can be found in Föllmer and Schied

(2002) and Frittelli and Rosazza Gianin (2002).

Remark 1.3. We make some remarks on the set X . In the first paper on the coherent

measure of risk by Artzner et al. (1999), the set of market scenarios Ω was assumed

to be finite. Thus, all elements in X are naturally uniformly bounded. Delbaen (2002)

considered a general set Ω which contains finite or infinite number of scenarios. He

argued that it was necessary to consider a fixed probability space (Ω,F ,P). He then

chose X := L0 := L0(Ω,F ,P), the space of all equivalence classes of measurable

functions on (Ω,F ,P), and considered the coherent measure of risk on L0. Delbaen
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(2002) pointed out that there was actually no finite-valued coherent measure of risk

ρ on L0 since the space L0 is not locally convex. Therefore, he defined the coherent

measure of risk ρ as a mapping from L0 to R ∪ {∞} which satisfied axioms of the

coherent measure of risk proposed by Artzner at al. (1999). If we choose locally convex

set such as X = L∞(Ω,F ,P), the space of equivalence classes of essentially bounded

random variables, or X = Lp(Ω,F ,P), 1 ≤ p < ∞, the space of equivalence classes

of integrable random variables, it is much more convenient to define and study the

coherent measure of risk. When defining the convex measure of risk, Föllmer and

Schied (2002) chose X = L∞ and considered ρ : X → R as a real-valued mapping.

Frettelli and Rosazza Gianin (2002) assumed the set X to be an ordered locally convex

topological vector space, where Lp := Lp(Ω,F ,P), 1 ≤ p ≤ ∞, are included. Kaina

and Rüschendorf (2009) studied the convex measure of risk defined on Lp space with

1 ≤ p ≤ ∞, i.e., ρ : Lp(Ω,F ,P)→ R ∪ {∞}.

Definition 1.4. (acceptance set) The acceptance set Aρ of a monetary measure of

risk ρ : X → R ∪ {∞} is defined as

Aρ := {X ∈ X : ρ(X) ≤ 0}. (1.1)

Definition 1.4 means that a financial position is acceptable if no additional capital

is required to make its risk be nonpositive. Artzner et al. (1999) demonstrated that

there was certain correspondence between the axioms on the acceptance set and the

axioms on the coherent measure of risk. Similar correspondence exists for the convex

measure of risk, as Föllmer and Schied (2004) showed. Before we give the details of

the correspondence, we first recall that a monetary measure of risk ρ : X → R∪{∞}

is proper, if ρ(X) < ∞ for some X ∈ X . For a proper monetary measure of risk ρ

with acceptance set Aρ, we have the following properties:

1. Aρ is non-empty.
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2. Aρ is monotone: if X ∈ Aρ and Y ∈ X such that Y ≥ X, then Y ∈ Aρ.

3. ρ is convex if and only if Aρ is convex.

4. ρ is coherent if and only if Aρ is a convex cone. Recall that a set S is a cone if

s ∈ S implies αs ∈ S for every α ≥ 0.

5. ρ can be recovered from Aρ:

ρ(X) =


∞, if m+X /∈ Aρ, ∀m ∈ R,

inf{m ∈ R : m+X ∈ Aρ}, otherwise.

Conversely, start from a non-empty set A ⊂ X such that A is convex and monotone,

and

inf{m ∈ R : m+X ∈ A} > −∞, for all X ∈ X ,

we can define a convex measure of risk as

ρA(X) := inf{m ∈ R : m+X ∈ A}, for X ∈ X . (1.2)

In addition, we have:

1. If A is a cone, then ρA is a coherent measure of risk.

2. A ⊂ AρA .

3. A = AρA if for any X ∈ A and any Y ∈ X , the set {λ ∈ [0, 1] : λX+(1−λ)Y ∈

A} is closed in [0, 1].

As examples of risk measures, we look at the Value-at-Risk, the Conditional Value-

at-Risk, and the Weighted Value-at-Risk. All these risk measures are quantile-

dependent. The Value-at-Risk at a fixed level λ ∈ (0, 1), denoted by V aRλ, is the

negative λ-quantile of the random variables. The Value-at-Risk is widely used in

practice, but it is not a convex measure of risk, which means that it may penal-

ize diversification. The Conditional Value-at-Risk at some fixed level λ, denoted by
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CV aRλ, and also known as the Average Value-at-Risk or the expected shortfall, aver-

ages the Value-at-Risk up to the level λ equally weighted. Unlike the Value-at-Risk,

the CV aRλ is a coherent measure of risk. The Weighted Value-at-Risk WV aR aver-

ages the Conditional Value-at-Risk over the interval (0, 1) with the weights given by

a probability measure µ on (0, 1). We list these examples in Example 1.5.

Let us recall some quantile-related definitions. Given a probability space (Ω,F ,P)

and a fixed number λ ∈ (0, 1), a λ-quantile of a random variable X is any real number

q such that

P(X ≤ q) ≥ λ and P(X < q) ≤ λ. (1.3)

We use qX(λ) to denote a λ-quantile of X. Note that qX(λ) may be not unique.

The lower- and upper λ-quantile of the random variable X are denoted by q−X(λ) and

q+
X(λ) respectively, and they are defined by

q−X(λ) := sup{x : P(X < x) < λ} = inf{x : P(X ≤ x) ≥ λ},

q+
X(λ) := inf{x : P(X ≤ x) > λ} = sup{x : P(X < x) ≤ λ}.

(1.4)

Note that if the random variable X is (essentially) bounded, the λ-quantiles as well

as the upper- and lower λ-quantiles are well defined (real-valued) for all λ ∈ [0, 1].

In particular, qX(0) can be taken as the lower (essential) bound of X and qX(1) can

be taken as the upper (essential) bound of X. If X is not bounded, we may use the

notation qX(0) = q−X(0) := −∞ and qX(1) = q+
X(1) :=∞.

Example 1.5. (V aR, CV aR, and WV aR)

In the following examples, we suppose X = Lp := Lp(Ω,F ,P) with 1 ≤ p ≤ ∞.

Moreover, we assume λ ∈ (0, 1) to be a fixed number.

• The Value-at-Risk V aRλ(X) of a financial position X has the following defini-

tion:

V aRλ(X) := −q+
X(λ) = q−−X(1− λ). (1.5)

V aRλ(X) controls the probability of a loss, but does not control the size of a loss



6

if it occurs. V aRλ(X) is a monetary measure of risk, however, it is not convex.

In particular, if X = L∞, we define

V aR0(X) := −ess infX = inf{m ∈ R : P(X +m < 0) = 0},

V aR1(X) := −esssupX = inf{m ∈ R : P(X −m > 0) = 0}.

• The Conditional Value-at-Risk at level λ is defined as

CV aRλ(X) :=
1

λ

∫ λ

0

V aRγ(X)dγ = −1

λ

∫ λ

0

q+
X(γ)dγ. (1.6)

CV aRλ(X) is a coherent measure of risk. Note that if X = L∞, CV aRλ is finite

for all X ∈ L∞ with CV aR0(X) := −ess infX. For an unbounded X ∈ Lp,

1 ≤ p < ∞, CV aR0(X) may be ∞. However, CV aR1(X) = −
∫ 1

0
qX(t)dt =

E[−X] <∞.

• Let µ be a probability measure on [0, 1]. The Weighted Value-at-Risk of a finan-

cial position X, denoted by ρµ(X), has the definition

ρµ(X) :=

∫
[0,1]

CV aRγ(X)µ(dγ).

ρµ is a coherent measure of risk. Note that ρµ can be infinted valued. We will

discuss more details on the Weighted Value-at-Risk in section 1.4.

1.2 The robust representation of the convex measure of risk

In this section, (Ω,F ,P) is a fixed probability space. For 1 ≤ p ≤ ∞, the Lp spaces

are Banach spaces whose norms are defined by

‖X‖p :=


(∫
|X|pdP

)1/p
, for 1 ≤ p <∞,

esssup(X) := inf{x : P(|X| > x) = 0}, for p =∞.

The Lp spaces are locally convex spaces. For 1 ≤ p <∞, the dual space of (Lp, ‖ · ‖p)

is the space (Lq, ‖ · ‖q) with q ∈ R ∪ {∞} satisfying 1
p

+ 1
q

= 1, where we let q = ∞
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for p = 1. If p = ∞, the dual space of (L∞, ‖ · ‖∞) is the space ba := ba(Ω,F ,P),

the space of all finitely additive measures µ which are absolutely continuous to P and

whose total variation is finite. The space ba contains not only probability measures,

but also the finitely additive measures.

The weak* topology on L∞, denoted as σ(L∞, L1), is the coarsest topology on L∞

to make every linear functional ` : L∞ → L1 be continuous. Endowed with the weak*

topology, the dual space of (L∞, σ(L∞, L1)) is L1. We refer the book of Dunford and

Schwartz (1964) for more details on the Lp spaces and their dual spaces.

For 1 ≤ p ≤ ∞, we define the following set of probability measures:

Qp :=

{
Q probability measure on (Ω,F ,P) : Q� P and

dQ

dP
∈ Lq

}
, (1.7)

where Lq is the dual space of Lp for 1 ≤ p < ∞, and for p = ∞, we use Lq for

convenience to denote the space L1, the dual space of (L∞, σ(L∞, L1)).

For the discussion of the robust representation of the convex measure of risk, we

first recall the definition of a lower semicontinuous function.

Definition 1.6. A function f : E → [−∞,∞] on a topological space E is lower

semicontinuous if the set {x ∈ E : f(x) ≤ α} is closed for all α ∈ R.

We refer the book of Aliprantis and Border (2006) for more related topics on the

lower semicontinuity.

The following Definition 1.7 and Theorem 1.8 are quoted from Föllmer and Schied

(2004).

Definition 1.7. (Fenchel-Legendre transform) Let E be a topological space and E ′

be its dual space. The Fechel-Legendre transform of a function f : E → R ∪ {∞} is

the function f ∗ : E ′ → R ∪ {∞} defined by

f ∗(`) := sup
x∈E

(`(x)− f(x)). (1.8)

For the following theorem, we recall that a function f : E → R∪ {∞} is proper, if
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there is some x ∈ E such that f(x) <∞.

Theorem 1.8. Let f be a proper convex function on a locally convex topological

space E. If f is lower semicontinuous with respect to the weak topology σ(E,E ′),

then f = f ∗∗, where f ∗∗ is the Fenchel-Legendre transform of f ∗.

Remark 1.9. In Theorem 1.8, the topological space E is required to be locally convex.

According to the definition, a topological space E is locally convex if it has a base of

convex sets. By this definition, the functional spaces Lp, 1 ≤ p ≤ ∞, are locally

convex, but if the probability space (Ω,F ,P) is atomless, the space L0 is not locally

convex.

For a convex measure of risk ρ defined on the space L∞, Föllmer and Schied (2002)

and Frittelli and Rosazza Gianin (2002) showed the following theorem on its robust

representation:

Theorem 1.10. Suppose ρ : L∞ → R is a convex measure of risk. Then the following

statements are equivalent:

1. ρ is lower semicontinuous with respect to the weak* topology σ(L∞, L1).

2. ρ admits the following robust representation:

ρ(X) = sup
Q∈Q1

(EQ[−X]− ρ∗(Q)), for all X ∈ L∞, (1.9)

where

ρ∗(Q) := sup
X∈L∞

(EQ[−X]− ρ(X) (1.10)

is the Fenchel-Legendre transform of ρ.

3. ρ is continuous from above: If Xn ↘ X P-a.s., then ρ(Xn)↗ ρ(X).

4. ρ has the Fatou property: For any bounded sequence (Xn) which converges P-

a.s. to some X,

ρ(X) ≤ lim inf
n→∞

ρ(Xn).
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For the convex measure of risk defined on Lp, 1 ≤ p <∞, Kaina and Rüschendorf

showed the following theorem on its representation by using the extended Namioka-

Klee theorem proven by Biagina and Frettelli (2009):

Theorem 1.11. Suppose ρ : Lp → R∪{∞}, 1 ≤ p <∞, is a proper convex measure

of risk. Then the following statements are equivalent:

1. ρ is lower semicontinuous with respect to the weak topology σ(Lp, Lq).

2. ρ has the following robust representation:

ρ(X) = sup
Q∈Qp

(EQ[−X]− ρ∗(Q)), for all X ∈ Lp, (1.11)

where

ρ∗(Q) := sup
X∈Lp

(EQ[−X]− ρ(X)) (1.12)

is the Fenchel-Legendre transform of ρ.

3. ρ is continuous from above: If Xn ↘ X P-a.s., then ρ(Xn)↗ ρ(X).

4. ρ has the Fatou property: For any sequence (Xn) such that for some Y ∈ Lp,

|Xn| ≤ Y P-a.s., if Xn converges to X P-a.s. for some X ∈ Lp, then

ρ(X) ≤ lim inf
n→∞

ρ(Xn).

Remark 1.12.

1. The main difference of Theorem 1.10 and Theorem 1.11 lies in the definition of

the Fatou property. As already mentioned in the section of Introduction, random

variables in L∞ are essentially bounded, so sequences (Xn) ⊂ L∞ uniformly

bounded by a constant are considered to define the Fatou property, as what

Artzner et al.(1999) did. However, random variables in Lp are most likely

not essential bounded when p 6= ∞, to define the Fatou property, Biagini and

Frittelli (2009) require the sequence (Xn) ⊂ Lp to be dominated by some random
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variable. This dominance allows us to use the Dominated Convergence Theorem

when prove the Theorem.

2. A similar version to Theorem 1.10 for the coherent measure of risk was shown

by Artzner et al. (1999). Since the coherent measure of risk is a subclass of the

convex measure of risk, Theorem 1.10 can be applied to the coherent measure of

risk. In particular, Föllmer and Schied (2002) showed that if a coherent measure

of risk ρ : L∞ → R can be represented by (1.9), then for each Q ∈ Q1, either

ρ∗(Q) = 0 or ρ∗(Q) =∞. Therefore, if we define

Qmax := {Q ∈ Q1 : ρ∗(Q) = 0}, (1.13)

then the coherent measure of risk ρ can be represented as

ρ(X) = sup
Q∈Qmax

EQ[−X], for X ∈ L∞. (1.14)

This representation coincides to the one proposed by Artzner et al. (1999).

Moreover, as shown by Kaina and Rüschendorf (2009), these results remain

true if the coherent measure of risk is defined on the Lp space, in which case,

Qmax is defined as

Qmax := {Q ∈ Qp : ρ∗(Q) = 0}. (1.15)

3. The equivalence of statement 1 and statement 2 in Theorem 1.10 and Theorem

1.11 is a direct consequence of Theorem 1.8, where ρ∗ is the Fenchel-Legendre

transform of ρ. This approach of the proof was first stated by Frittelli and

Rosazza Gianin (2002). When Föllmer and Schied (2002) proved Theorem 1.10,

they used the Hahn-Banach theorem. Föllmer and Schied called the function ρ∗

the “penalty function” and showed an alternative form of ρ∗, namely

ρ∗(Q) = αmin(Q) := sup
X∈Aρ

EQ[−X], for Q ∈ Q1.
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Föllmer and Schied (2002) demonstrated that if α(Q) is a penalty function, then

it must be true that α(Q) ≥ αmin(Q) for all Q ∈ Q1. This means that αmin(Q)

is the minimal penalty function of ρ.

1.3 The law invariant risk measure and its robust representation

Throughout this section, we consider the real-valued monetary measure of risk

ρ : L∞ → R defined on the space L∞. We further assume that the probability space

(Ω,F ,P) is atomless in the sense of the following definition:

Definition 1.13. (atomless probability space) Let (Ω,F ,P) be a probability space.

An atom of the probability measure P is some set A ∈ F such that P(A) > 0 and

for any B ∈ F and B ⊂ A, either P(B) = 0 or P(B) = P(A). A probability space

(Ω,F ,P) is atomless if it contains no atoms.

The study of the law invariant risk measure was mainly contributed by Kusuoka

(2001), where he defined the law invariant risk measure and proposed the robust rep-

resentation for the class of the law invariant coherent measure of risk. The following

definition is due to Kusuoka (2001).

Definition 1.14. (law invariant risk measure) A monetary measure of risk ρ : L∞ →

R is law invariant, if ρ(X) = ρ(Y ) whenever X and Y have the same probability

distribution under P.

Let ρ : L∞ → R be a convex measure of risk which is law invariant. If ρ has the

Fatou property, then Theorem 1.10 ensures that ρ admits the robust representation

(1.9). In addition, the law invariance property insures the following representation:

Theorem 1.15. Let ρ : L∞ → R be a convex measure of risk that has the Fatou

property formulated in Theorem 1.10. Then ρ is law invariant if and only if it can be

represented as

ρ(X) = sup
Q∈Q1

(∫ 1

0

qX(t)q−ϕQ
(t)dt− ρ∗(Q)

)
, (1.16)
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where ϕQ := dQ
dP

, and

ρ∗(Q) = sup
X∈L1

(∫ 1

0

qX(t)q−ϕQ
(t)dt− ρ(X)

)
= sup

X∈Aρ

∫ 1

0

qX(t)q−ϕQ
(t)dt.

(1.17)

Here we recall the set

Q1 = {Q probability measure on (Ω,F ,P) : Q� P,
dQ

dP
∈ L1},

and Aρ = {X ∈ L∞ : ρ(X) ≤ 0} is the acceptance set of ρ.

Theorem 1.15 can be found as Theorem 4.54 of Föllmer and Schied (2004), it

generalizes Lemma 10 of Kusuoka (2001) for the coherent measure of risk defined on

L∞. (1.16) and (1.17) reflects the “law invariance” of ρ, namely, ρ depends on the

random variable X and the Radon-Nikodým derivatives dQ
dP

only through their laws.

Remark 1.16. In Theorem 1.15, the Fatou property is a sufficient and necessary

condition which leads ρ to the representation (1.16). For a law invariant convex

measure of risk ρ : L∞ → R defined on L∞, Jouini et al. (2006) showed that ρ has

automatically the Fatou property. Therefore, in Theorem 1.15 we can eliminate the

condition that ρ has the Fatou property, and the conclusions remain true.

For a law invariant coherent risk measure defined on L∞, Kusuoka (2001) proposed

another representation through the Weighted Value-at-Risk ρµ introduced in section

1.1:

ρµ(X) =

∫
(0,1]

CV aRγ(X)µ(γ).

with µ a probability measure on (0, 1]. Föllmer and Schied (2004) generalized this

representation for the convex measure of risk ρ : L∞ → R that is law invariant. The

following theorem is quoted from Theorem 4.57 of Föllmer and Schid (2004).

Theorem 1.17. A convex measure of risk ρ : L∞ → R is law invariant if and only
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if ρ has the following representation:

ρ(X) = sup
µ∈M1((0,1])

(∫
(0,1]

CV aRγ(X)µ(dγ)− βmin(µ)

)
,

where M1((0, 1]) indicates the set of all probability measures on (0, 1], and

βmin = sup
X∈Aρ

∫
(0,1]

CV aRγ(X)µ(dγ).

In particular, ρ is law invariant and coherent if and only if there is some set of

probability measures on (0, 1], denoted by M0((0, 1]), such that

ρ(X) = sup
µ∈M0((0,1])

∫
(0,1]

CV aRγ(X)µ(dγ).

The proof of the theorem can be found in Kusuoka (2001) for the coherent case

and in Föllmer and Schied (2004) for the convex case. Note that we do not need to

assume ρ has the Fatou property since it is implied by the law invariance of ρ. For

the Weighted Value-at-Risk ρµ, we will take a closer look in the next section.

1.4 The Weighted Value-at-Risk and its representation

In this section, we assume that the probability space (Ω,F ,P) is atomless. The

Weighted Value-at-Risk ρµ : L∞ → R is defined on the functional space L∞ and has

the form of

ρµ(X) :=

∫
[0,1]

CV aRγ(X)µ(dγ), for X ∈ L∞, (1.18)

where µ is a probability measure on [0, 1] and CV aRγ is defined by (1.6): CV aRγ(X) =

− 1
γ

∫ γ
0
qX(t)dt, for γ ∈ [0, 1] and X ∈ L∞. In particular, CV aR0(X) := − lim inf X

and CV aR1(X) := − lim supX. The Weighted Value-at-Risk ρµ is a coherent mea-

sure of risk.
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Substituting CV aRγ(X) into (1.18) and applying the Fubini’s Theorem, we yield

ρµ(X) = µ({0})CV aR0(X) +

∫
(0,1]

−1

γ

∫ γ

0

qX(t)dtµ(dγ)

= µ({0})CV aR0(X)−
∫

(0,γ]

qX(t)

∫
(t,1]

1

γ
µ(dγ)dt.

Define

φ(t) :=

∫
(t,1]

1

γ
µ(dγ), for 0 < t < 1, (1.19)

then we obtain an alternative form for ρµ:

ρµ(X) = µ({0})CV aR0(X)−
∫

(0,1]

qX(t)φ(t)dt. (1.20)

As pointed out by Föllmer and Schied (2004), equation (1.19) defines a one-to-one

correspondence between the probability measures µ on (0, 1] and the increasing con-

cave functions Ψ : [0, 1]→ [0, 1], and the function Ψ satisfies Ψ′(t+) = φ(t), Ψ(0) = 0,

Ψ(0+) = µ(0), Ψ(1) = 1.

Equation (1.20) is a slightly modified version of Kusuoka (2001). In addition,

Föllmer and Schied (2004) showed the following equivalent form of ρµ:

ρµ(X) =

∫ 0

−∞
(Ψ(P(X > x))− 1)dx+

∫ ∞
0

Ψ(P(X > x))dx, for X ∈ L∞. (1.21)

The right hand side of (1.21) is called the Choquet integral. More precisely, we have

the following definition:

Definition 1.18. (Choquet integral) Let c : F → [0, 1] be any set function which is

normalized and monotone. The Choquet integral of a bounded measurable function X

on (Ω,F) with respect to c is defined as∫
X dc :=

∫ 0

−∞
(c(X > x)− 1)dx+

∫ ∞
0

c(X > x)dx. (1.22)

The Choquet integral
∫

Ω
Xdc was originally defined by Choquet (1954) for a bounded,

non-negative and F -measurable function X : Ω→ R with respect to a not necessarily

additive set function c : F → R. Schmeidler (1986) extended Choquet’s definition by
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eliminating the non-negativeness of X. We call (1.21) the Choquet integral by fol-

lowing Carlier and Dana (2003), though the elements in L∞ are only P-almost surely

bounded. In addition, the function Ψ ◦ P appeared in (1.21) is called the concave

distortion.

The robust representation of ρµ is given by Corollary 4.74 of Föllmer and Schied

(2004), by using the uniform preference of two probability measures (also known as

the second order stochastic dominance).

Definition 1.19. (uniform preference) Let µ, ν be two probability measures. µ is

uniformly preferred over ν, written as µ <
uni

ν, if for all utility functions u, it is true

that ∫
udµ ≥

∫
udν.

Note that a utility function u is a function u : R → R which is strictly concave and

strictly increasing.

Föllmer and Schied (2004) showed that ρµ has the following robust representation:

ρµ(X) = sup
Q∈Qµ

EQ[−X], (1.23)

where

Qµ :=

{
Q ∈ Qp : P ◦

(
dQ

dP

)−1

<
uni
L ◦ (φ)−1

}
, (1.24)

and L denotes the Lebesgue measure. Note that the supremum in (1.23) can be

attained if and only if µ({0}) = 0, and in this case, an “optimal” measure QX has

the density dQX

dP
=: f(X) given by

f(x) =


Ψ′(FX(x)), if x is a continuous point of FX ,

1
FX(x)−FX(x−)

∫ FX(x)

FX(x−)
Ψ
′
(t)dt, otherwise.



CHAPTER 2: λ-QUANTILE DEPENDENT CONVEX RISK MEASURE AND
ITS ROBUST REPRESENTATION

In Chapter 1, as examples, we looked at risk measures including the Value-at-

Risk and the Conditional Value-at-Risk. Both risk measures depend on the random

variables only up to some pre-determined level. This level, also called the significance

level and denoted by λ, is some real number between 0 and 1. When the value of

λ is fixed, the value of the financial positions beyond λ are irrelevant to the value

of V aRλ and CV aRλ. We call these kind of risk measures the λ-quantile dependent

risk measures. In this chapter, we give the mathematical definition of the λ-quantile

dependent convex risk measure and propose its robust representation.

2.1 The λ-quantile dependent convex risk measure

The idea behind the λ-quantile dependent convex risk measure is that the value of

the convex risk measure only depends on the tail behavior of the random variables.

More precisely, if two random variable are P-a.s. equal up to some fixed level λ, then

the value of the convex risk measures must be same. We first define the λ-quantile

P-a.s. equality of random variables.

Definition 2.1. (λ-quantile P-a.s. equality of two random variables) Fix λ ∈ (0, 1).

Two random variables X, Y on the probability space (Ω,F ,P) are P-a.s. equal up to

their λ-quantiles if there exists some set A ∈ F and some λ-quantiles qX(λ), qY (λ)

of X and Y respectively, such that the following conditions are satisfied:

{X < qX(λ)} ∪ {Y < qY (λ)} ⊂ A a.e.,

A ⊂ {X ≤ qX(λ)} ∩ {Y ≤ qY (λ)} a.e.,

P(A) ≥ λ, and X1A = Y 1A P− a.s.

(2.1)



17

If X and Y are P-a.s. equal up to their λ-quantiles, we denote it as X
λ
= Y P-a.s.

As mentioned earlier, for fixed λ ∈ (0, 1), if two random variables are indistinguish-

able up to their λ-quantiles, they must have the same value of the risk measure if the

convex risk measure is λ-quantile dependent. We give the formal definition as the

following:

Definition 2.2. (λ-quantile dependent convex risk measure) Fix λ ∈ (0, 1). A convex

measure of risk ρ : Lp → R ∪ {∞} is λ-quantile dependent if for any X, Y ∈ Lp the

following is true:

X
λ
= Y P− a.s. implies ρ(X) = ρ(Y ). (2.2)

The definition postulates the value of the risk measure ρ depends on the random

variables only up to a given significance level λ.

If X
λ
= Y P-a.s., then the set A which satisfies (2.1) exists. However, the choices of

A, qX(λ), and qY (λ) in Definition 2.1 are not unique. The following Lemma 2.4 and

Lemma 2.5 discuss the structure of these choices which lead to an equivalent defini-

tion to Definition 2.1, given in Definition 2.3. Further discussions of λ-quantile equal

random variables for the cases of atomless probability space, and continuously dis-

tributed random variables are given by Proposition 2.7 and Proposition 2.8. Example

2.11 contains computational examples for discretely distributed random variables.

We define the following random variables which are useful in this section and the

rest of the chapters:

Xq := X1{X≤qX(λ)} + qX(λ)1{X>qX(λ)},

Yq := Y 1{Y≤qY (λ)} + qY (λ)1{Y >qY (λ)},

(2.3)

where qX(λ) is a λ-quantile of random variable X and qY (λ) is a λ-quantile of random
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variable Y . We also define random variables

Xqλ := X1{X≤qλ} + qλ1{X>qλ},

Yqλ := Y 1{Y≤qλ} + qλ1{Y >qλ},

(2.4)

provided that qλ ∈ R is some common λ-quantile of X and Y .

Definition 2.3. Fix λ ∈ (0, 1). Two random variables X, Y on the probability space

(Ω,F ,P) are P-a.s. equal up to their λ-quantiles if there is some qλ ∈ R such that

qλ is a λ-quantile of X and Y , and

P({X ≤ qλ} ∩ {Y ≤ qλ}) ≥ λ, and Xqλ = Yqλ P− a.s. (2.5)

To show the equivalence between Definition 2.1 and Definition 2.3, we use the

following two lemmas:

Lemma 2.4. Fix λ ∈ (0, 1). Let X and Y be two random variables on (Ω,F ,P) such

that X
λ
= Y P-a.s. Denote qX := qX(λ) and qY := qY (λ). Then one of the following

cases must be true for the sets described in (2.1):

Case 1: {X < qX} = {Y < qY } ( A a.e., and P(A) ≥ λ.

Case 2: {X < qX} = {Y < qY } = A a.e., and P(A) = λ.

Case 3: Either {X < qX} ( {Y < qY } = A or {Y < qY } ( {X < qX} = A a.e.,

and P(A) = λ.

Proof. We use Figure 2.1 to illustrate the partition of the probability space Ω. Since

X
λ
= Y , there exists set A ∈ F satisfying (2.1), where X1A = Y 1A P-a.s. Thus,

X = Y P−a.s on both sets {X < qX} ∪ {Y < qY } and A\({X < qX} ∪ {Y < qY }).

(2.6)

Notice that

X = qX and Y = qY P− a.s. on the set A\({X < qX} ∪ {Y < qY }). (2.7)
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Figure 2.1: Partition of the probability space Ω

First, we assume

P(A\({X < qX} ∪ {Y < qY })) > 0.

Then (2.6) and (2.7) imply qX = qY . Consequently, from (2.6), we conclude

P({X = qX} ∩ {Y < qY }) = 0.

Similar argument yields

P({X < qX} ∩ {Y = qY }) = 0.

Hence, we obtain Case 1 in the Lemma:

{X < qX} = {Y < qY } ( A a.e.

Second, assume

P(A\({X < qX} ∪ {Y < qY })) = 0.
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For the sets {X = qX}∩ {Y < qY } and {X < qX}∩ {Y = qY }, we have the following

possible cases:

• P({X = qX} ∩ {Y < qY }) = P({X < qX} ∩ {Y = qY }) = 0. In this case

A = {X < qX} = {Y < qY } a.e., which is Case 2 of the lemma. In addition,

we note that λ ≤ P(A) = P({X < qX}) = P({Y < qY }) ≤ λ, which implies

P(A) = λ.

• One of the sets {X = qX} ∩ {Y < qY } and {X < qX} ∩ {Y = qY } has positive

probability, and the other set has 0 probability. Without loss of generality,

assume P({X = qX}∩{Y < qY }) > 0 and P({X < qX}∩{Y = qY }) = 0. Thus

Case 3 of the lemma is obtained. And again, we have λ ≤ P(A) = P(Y <

qY ) ≤ λ.

• Both sets {X = qX} ∩ {Y < qY } and {X < qX} ∩ {Y = qY } have positive

probability. Then on the set {X = qX} ∩ {Y < qY }, qX = X = Y < qY P-a.s.

On the other hand, on the set {X < qX} ∩ {Y = qY }, qY = Y = X < qX . A

contradiction occurs. �

In Lemma 2.4, the quantiles qX and qY are not necessarily same. The following

lemma shows that qX and qY can be chosen as a common number, and Case 1 and

Case 3 can be combined.

Lemma 2.5. Under the same assumptions as of Lemma 2.4, the λ-quantiles qX(λ),

qY (λ) of X and Y can be chosen as the same number qλ := qX(λ) = qY (λ) and the

sets {X < qλ} and {Y < qλ} described in (2.1) are almost everywhere equal, i.e.,

{X < qλ} = {Y < qλ} a.e. In particular, they can be chosen as one of the following

cases:

Case 1’: {X < qλ} = {Y < qλ} ( A a.e. and P(A) ≥ λ.

Case 2’: {X < qλ} = {Y < qλ} = A a.e. and P(A) = λ.
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Proof. We discuss each of the Case 1 through Case 3. In particular, Case 1 and

Case 3 can be combined into Case 1’, and Case 2 can be rewritten into Case 2’.

Case 1: We already obtained qX = qY in the proof of this case in Lemma 2.4, where

qX := qX(λ) and qY := qY (λ). Take qλ = qX = qY , then {X < qλ} = {Y <

qλ} ( A and P(A) ≥ λ.

Case 2: Without loss of generality, suppose qX < qY . Then

A = {Y < qX} ∪ {qX ≤ Y < qY },

and these two subsets are disjoint. Since X1A = Y 1A P-a.s., on the set {qX ≤

Y < qY }, we have X = Y ≥ qX P-a.s. Since {qX ≤ Y < qY } ⊂ A = {X < qX},

we conclude that P({qX ≤ Y < qY }) = 0. Therefore,

A = {Y < qX} a.e. and P({Y < qX}) = P(A) = λ,

which implies that qX is a λ-quantile of Y . Take qλ := qX , A can be chosen as

A = {X < qλ} = {Y < qλ} a.e., and P(A) = λ.

Case 3: We discuss the case of {X < qX} ( {Y < qY } = A a.e., the proof for the

other case {Y < qY } ( {X < qX} = A will be in a similar way.

As a first step, we show that qX is a λ-quantile of Y . From (2.1), A ⊂ {X ≤ qX}

a.e., this implies

X = qX P− a.s. on the set A\{X < qX}. (2.8)

Together with X1A = Y 1A P-a.s.,

X = Y = qX P− a.s. on the set A\{X < qX}. (2.9)

(2.9) and the condition A = {Y < qY } imply

Y = qX < qY P− a.s. on A\{X < qX}.
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Thus, {Y < qX} ⊂ {Y < qY } = A, which implies P({Y < qX}) ≤ λ. On the

other hand,

Y = qX on the set A\{X < qX},

and

Y = X < qX on the set {X < qX},

imply A ⊂ {Y ≤ qX}. Hence, P(Y ≤ qX) ≥ P(A) = λ. Therefore, qX is a

λ-quantile of Y .

As a second step, we show that {X < qX} = {Y < qX}. This is the direct

consequence of

{Y < qX} ⊂ A and {X < qX} ⊂ A,

X = Y < qX P− a.s. on the set {X < qX},

X = Y = qX P− a.s. on the set A\{X < qX}.

Take qλ := qX , we have {X < qλ} = {Y < qλ} ( A a.e. and P(A) = λ. �

We now show the equivalence of Definition 2.1 and Definition 2.3.

Proposition 2.6. Definition 2.3 is equivalent to Definition 2.1.

Proof. “ ⇐ ”: If X
λ
= Y P-a.s. in the sense of Definition 2.1, then due to Lemma

2.5, there is some qλ ∈ R such that either Case 1’ or Case 2’ is true. In summary,

X = Y P-a.s. on the set {X < qλ} = {Y < qλ}. This implies Xqλ = Yqλ P-a.s.

“⇒ ”: Suppose for X and Y there exists some qλ satisfying the conditions expressed

in Definition 2.3. We show the existence of set A that satisfies the conditions given

by (2.1). First, Xqλ = Yqλ P-a.s. implies {X < qλ} = {Y < qλ} a.e. If this is not the

case, let

BX := {ω : ω ∈ {X < qλ} and ω /∈ {Y < qλ}},

BY := {ω : ω /∈ {X < qλ} and ω ∈ {Y < qλ}},

then either BX or BY has positive probability. Without loss of generality, suppose
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P(BX) > 0. This implies that Y (ω) ≥ qλ while X(ω) < qλ for all ω ∈ BX . This

further implies for all ω ∈ BX , Xqλ(ω) = X(ω) < qλ and Yqλ(ω) = qλ, which is a

contradiction to the fact that Xqλ = Yqλ P-a.s. Take A := {X ≤ qλ} ∩ {Y ≤ qλ},

then A satisfies (2.1). Thus, X
λ
= Y P-a.s. in the sense of Definition 2.1. �

The following proposition discusses the atomless probability space case based on

the results of Lemma 2.4.

Proposition 2.7. Fix λ ∈ (0, 1). Suppose X and Y are two random variables on

(Ω, F,P) such that X
λ
= Y P-a.s. If the probability space (Ω,F ,P) is atomless, then

the set A which satisfies (2.1) can be chosen such that P(A) = λ.

Proof. If Case 2 or Case 3 in Lemma 2.4 arise, the proof of the lemma shows

that the set A satisfying (2.1) must satisfy P(A) = λ. What remains is Case 1

in Lemma 2.4. If {X < qX} = {Y < qY } ( A a.e. occurs, where P(A) ≥ λ and

P({X < qX}) = P({Y < qY }) ≤ λ, then we can always choose some subset B such

that {X < qX} = {Y < qY } ⊂ B ⊂ A and P(B) = λ due to the atomlessness of the

probability space. Moreover, the set B satisfies condition (2.1). �

Next, we discuss the continuous distribution case.

Proposition 2.8. Fix λ ∈ (0, 1). Let X and Y be two random variables on (Ω,F ,P).

If both X and Y have continuous probability distribution, then

X
λ
= Y P− a.s. ⇔ X1{X≤qX(λ)} = Y 1{Y≤qY (λ)} P− a.s., (2.10)

where qX(λ) and qY (λ) are any λ-quantiles of X and Y respectively.

Proof. “ ⇒ ”: Suppose X
λ
= Y P-a.s. Then there is a set A which satisfies

conditions given by (2.1). Therefore, we have

{X < qX(λ)} ⊂ A ⊂ {X ≤ qX(λ)} ⇒ A = {X < qX(λ)} = {X ≤ qX(λ)} a.e.

Similarly, A = {Y < qY (λ)} = {Y ≤ qY (λ)} a.e. By (2.1), X1A = Y 1A P-a.s. implies

X1{X≤qX(λ)} = Y 1{Y≤qY (λ)} P-a.s.
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“ ⇐ ”: Suppose X1{X≤qX(λ)} = Y 1{Y≤qY (λ)} P-a.s. If we can show

{X < qX(λ)} = {Y < qY (λ)} = {X ≤ qX(λ)} = {Y ≤ qY (λ)} a.e., (2.11)

then A can be chosen as any of the four sets and X
λ
= Y is proven. To be this

end, we use contradiction. Suppose P({X ≤ qX(λ)} ∩ {Y > qY (λ)}) > 0. Due to

the condition of X1{X≤qX(λ)} = Y 1{Y≤qY (λ)} P-a.s., we obtain X = 0 a.e. on the

set {X ≤ qX(λ)} ∩ {Y > qY (λ)}, which is a contradiction to the fact that X has

continuous probability distribution. Thus, P({X ≤ qX(λ)} ∩ {Y > qY (λ)}) = 0.

Similarly, P({Y ≤ qY (λ)} ∩ {X > qX(λ)}) = 0. Thus, we can conclude that {X ≤

qX(λ)} = {Y ≤ qY (λ)} a.e. Due to the continuity of the distributions of X and Y ,

we obtain (2.11). �

We give an example which we will frequently use in the sequel.

Example 2.9. For X ∈ Lp, 1 ≤ p ≤ ∞, we recall the definition of Xq as (2.3), i.e.,

Xq := X1{X≤qX(λ)} + qX(λ)1{X>qX(λ)}, (2.12)

where qX(λ) is some λ-quantile of X. We check that X
λ
= Xq P-a.s. by the definitions.

• Choose A = {X ≤ qX(λ)}, then by Definition 2.1, X
λ
= Xq P-a.s.

• Let Y := Xq = X1{X≤qX(λ)} + qX(λ)1{X>qX(λ)}. Take qλ := qX(λ), we then

conclude X
λ
= Xq by Definition 2.3.

If ρ is λ-quantile dependent, then we conclude ρ(X) = ρ(Xq) P-a.s. according to

Definition 2.2.

Remark 2.10. In general, when we check whether two random variables are λ-

quantile P-a.s. equal, we can use Definition 2.1 or Definition 2.3. If the random

variables have continuous probability distribution, then we can also check whether the

condition

X1{X≤qX(λ)} = Y 1{Y≤qY (λ)} P− a.s. (2.13)
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is fulfilled due to Proposition 2.10. However, in the case the random variables do not

have continuous distributions, (2.13) is not applicable. Here is a counter example: Fix

λ ∈ (0, 1). Let X be a random variable which has the standard normal distribution.

Let Xq be defined by (2.12) and Y := Xq. Note that in this case qX(λ) and qY (λ)

are unique. We have qY (λ) = qX(λ), and P(Y = qY (λ)) = 1 − λ while P(X =

qX(λ)) = 0. From Example 2.9, X
λ
= Y P-a.s. However, we can not conclude that

X1{X≤qX(λ)} = Y 1{Y≤qY (λ)} P− a.s.

We continue the discussion on Definition 2.1 and Definition 2.3 with examples of

discretely distributed random variables.

Example 2.11. ( a trinomial example) Let Ω = {ω1, ω2, ω3}, and suppose X and Y

are two random variables on Ω.

Case I: P(ω1) = λ−ε,P(ω2) = 2ε,P(ω3) = 1−λ−ε, for some small ε > 0. Suppose

X(ω1) = Y (ω1), X(ω2) = Y (ω2), X(ω3) 6= Y (ω3),

X(ω1) < X(ω2) < X(ω3), and Y (ω1) < Y (ω2) < Y (ω3).

According to Definition 2.1 or Definiton 2.3, X
λ
= Y P-a.s. We check Lemma

2.4 and Lemma 2.5 for this case. Since

q−X(λ) = q+
X(λ) = X(ω2) = Y (ω2) = q+

Y (λ) = q−Y (λ),

we have unique choices of qX , qY and A with A = {ω1, ω2} and qX = qY .

Therefore, we have

{ω1} = {X < qX} = {Y < qY } ( A, and P(A) ≥ λ,

this is Case 1 of Lemma 2.4, and also is Case 1’ of 2.5.
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Case II: P(ω1) = λ,P(ω2) = P(ω3) = 1−λ
2

. Suppose

X(ω1) = Y (ω1), X(ω2) 6= Y (ω2),

X(ω1) < X(ω2) < X(ω3), and Y (ω1) < Y (ω2) < Y (ω3).

According to Definition 2.1 or Definition 2.3, X
λ
= Y P-a.s.

We now check Lemma 2.4 and Lemma 2.5 for this case. Note that

q−X(λ) = q−Y (λ) = X(ω1) = Y (ω1),

q+
X(λ) = X(ω2) 6= Y (ω2) = q+

Y (λ).

If we choose qX = q−X(λ), qY = q−Y (λ), and A = {ω1}, then

∅ = {X < qX} = {Y < qY } ( A and P(A) = λ.

This is Case 1 of Lemma 2.4. Note that this is also Case 1’ of Lemma 2.5.

An alternative choice is to take qX ∈ (q−X(λ), q+
X(λ)], qY ∈ (q−Y (λ), q+

Y (λ)], and

A = {ω1}, then

{ω1} = {X < qX} = {Y < qY } = A and P(A) = λ.

We see that this is Case 2 of Lemma 2.4. Note that qX and qY do not have to

be equal. If we maintain qX = qY = qλ, then we obtain Case 2’ of Lemma 2.5.

The choices of the quantiles and the set A in Definition 2.1 are not unique,

therefore, they can fall into the different cases of Lemma 2.4 and Lemma 2.5.

Case III: P(ω1) = λ, P(ω2) = ε, and P(ω3) = 1 − λ − ε, for some small ε > 0.

Suppose

X(ω1) = Y (ω1), X(ω1) = X(ω2) < X(ω3), Y (ω1) < Y (ω2) < Y (ω3).

Then X
λ
= Y P-a.s. according to Definition 2.1 or Definition 2.3.
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To check Lemma 2.4 and Lemma 2.5 for this case, we note that

q−X(λ) = q+
X(λ) = X(ω1), q−Y (λ) = Y (ω1), q+

Y (ω) = Y (ω2).

The choice of qX is unique. If we choose qY = q−Y (λ), then

∅ = {X < qX} = {Y < qY } ( A and P(A) = λ.

This is Case 1 of Lemma 2.4.

Alternatively, we can choose qY ∈ (q−Y (λ), q+
Y (λ)], and A = {ω1}, then

∅ = {X < qX} ( {Y < qY } = {ω1} = A, and P(A) = λ.

This is Case 3 of Lemma 2.4.

For Lemma 2.5, we have to choose qY = qX = qλ, then

∅ = {X < qλ} = {Y < qλ} ( A, and P(A) = λ,

which is Case 1’ of Lemma 2.5.

Case IV: P(ω1) = λ − ε, P(ω2) = 2ε, P(ω3) = 1 − λ − ε, for some small ε > 0.

Suppose

X(ω1) = Y (ω1), X(ω1) = X(ω2) < X(ω3), Y (ω1) < Y (ω2) < Y (ω3).

Then we can not find a set A satisfying the conditions in Definition 2.1. Note

that

q−X(λ) = q+
X(λ) = X(ω1), q−Y (λ) = q+

Y (λ) = Y (ω2),

{X < q+
X(λ)} = ∅, {X ≤ q+

X(λ)} = {ω1, ω2},

{Y < q+
X(λ)} = {ω1}, {Y ≤ q+

Y (λ)} = {ω1, ω2}.

If we chose A = {ω1}, then P(A) = λ− ε < λ. If we chose A = {ω1, ω2}, then

on A, P(X1A 6= Y 1A) = P(ω2) > 0. In this case, we can not find a proper set
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A such that (2.1) is satisfied. Therefore, we can not conclude X
λ
= Y P-a.s.

2.2 The λ-quantile Fatou property

As discussed in Chapter 1, for a convex measure of risk on Lp, the Fatou property

is an essential condition to make it representable. This is also true for the λ-quantile

dependent convex measures of risk. However, in this case, we can use the λ-quantile

Fatou property to substitute the Fatou property while maintaining the representabil-

ity of the risk measure.

Definition 2.12. (λ-quantile Fatou property) Fix λ ∈ (0, 1). A convex measure of

risk ρ : Lp → R∪{∞} has the λ-quantile Fatou property if for any sequence (Xn) ⊂ Lp

such that q+
Xn

(λ) ≤ cλ for some cλ ∈ R and for all n ∈ N, Xn → X P-a.s. for some

X ∈ Lp implies ρ(X) ≤ lim inf ρ(Xn).

Remark 2.13. We have the following remarks on the evolution of the Fatou property

developed over time for different spaces:

1. Let us recall the original Fatou property defined by Delbaen (2002) for a finite

coherent measure of risk ρ on the space L∞: for any sequence (Xn) ⊂ L∞

with |Xn| ≤ C for some constant C, Xn → X P − a.s. for some X ∈ L∞

implies ρ(X) ≤ lim infn→∞ ρ(Xn). We also recall the Fatou property of a convex

measure of risk defined on the space Lp, 1 ≤ p ≤ ∞, given by Biagini and

Frettelli (2009): for any sequence (Xn) ⊂ Lp such that for some Y ∈ Lp, |Xn| ≤

Y P-a.s., Xn → X P-a.s. for some X ∈ Lp implies ρ(X) ≤ lim infn→∞ ρ(Xn).

In the definition of the λ-quantile Fatou property given by Definition 2.2, the

upper λ-quantiles of the sequence (Xn) is uniformly bounded above by some

constant which depends on the level λ. This boundedness is the weakest compared

to the boundedness in the Fatou property of Delbaen’s and Biagini and Frettelli’s

in the sense that more sequences of random variables satisfy this condition, and

therefore, the continuity condition turns out to be the strongest. In conclusion,
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we have the following implication: ρ has λ-quantile Fatou property ⇒ρ has the

Fatou property of Biagini and Frittelli’s⇒ρ has the Fatou property of Delbaen’s.

2. The uniform boundedness of the upper quantiles q+
Xn

in Definition 2.12 is easier

to handle compared with finding a dominant random variable Y for the whole

sequence (Xn). As in practice we are mostly concerned about the losses of the

financial positions, a natural choice of cλ = 0 is already included.

2.3 The robust representation of the λ-quantile dependent convex risk measure

We defined the λ-quantile dependent convex risk measure in Definition 2.2 and the

λ-quantile Fatou property in Definition 2.12, and mentioned that the λ-quantile Fatou

property enables the λ-quantile dependent convex risk measure to be representable. In

this section, we will develop a theorem on the robust representation of the λ-quantile

dependent convex measure.

For the preparation of the proof, we first recall some theorems and Lemmas.

Theorem 2.14. (S.Mazur) The closure and weak closure of a convex subset of a

normed space are the same. In particular, a convex subset of a normed space is closed

if and only if it is weakly closed.

The following Lemma appeared as Exercise 2.84 of Megginson (1988). It states an

result between the norm and weak topologies, this result is analogues to the Krein-

Šmulian theorem on weakly* closed convex sets. For completeness, we give the proof

here.

Lemma 2.15. Let C be a convex subset of a normed space (X, ‖ · ‖).

1. C is closed if and only if C ∩ {x ∈ X : ‖x‖ ≤ t} is closed for all t > 0.

2. C is weakly closed if and only if C ∩ {x ∈ X : ‖x‖ ≤ t} is weakly closed for all

t > 0.
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Proof.

1. If C is closed, then it is obvious that C ∩{x ∈ X : ‖x‖ ≤ t} is closed. Suppose now

for any t > 0, C ∩{x ∈ X : ‖x‖ ≤ t} is closed. Let (cn) be a sequence in C converging

to some c in norm. Then for ε > 0 there is some N ∈ N such that for every n ≥ N ,

‖cn‖ ≤ ‖c‖+ ε. Taking t = ‖c‖+ ε, then (cn)n>N ⊂ C ∩ {x ∈ X : ‖x‖ ≤ t}. Since the

set C ∩ {x ∈ X : ‖x‖ ≤ t} is closed, c ∈ C ∩ {x ∈ X : ‖x‖ ≤ t} and therefore c ∈ C.

2. Since for any t > 0 the closed ball {x ∈ X : ‖x‖ ≤ t} is convex, it is weakly

closed by Theorem 2.14. Therefore, if C is weakly closed, so is C ∩{x ∈ X : ‖x‖ ≤ t}.

Conversely, suppose for any t > 0, C ∩ {x ∈ X : ‖x‖ ≤ t} is weakly closed, then since

the intersection of two convex sets is still convex, again by Theorem 2.14, C ∩ {x ∈

X : ‖x‖ ≤ t} is strongly (norm) closed. Thus C is strongly closed. Since C is convex,

it is weakly closed. �

The following two Lemmata, Lemma 2.16 and Lemma 2.17, are quoted from

Föllmer and Schied (2004), where a short proof was given to Lemma 2.16 and a

more precise proof was proposed to Lemma 2.17.

Lemma 2.16. Suppose that E is a locally convex space and that C is a convex subset

of E. Then C is weakly closed if and only if C is closed in the original topology of E.

Lemma 2.17. A convex subset C of L∞ is weak* closed if for every r > 0, the set

Cr := C ∩ {X ∈ L∞ : ‖X‖∞ ≤ r}

is closed in L1.

For the λ-quantile dependent convex risk measure ρ considered below, we make the

following assumption:

Assumption 2.18. Let λ ∈ (0, 1) be given. ρ : Lp → R ∪ {∞}, 1 ≤ p ≤ ∞, is a

proper λ-quantile dependent convex measure of risk.

The following theorem states the robust representation of the λ-quantile dependent



31

convex risk measure as well as the equivalent conditions. This theorem is comparable

to Theorem 1.10 and Theorem 1.11 for the convex measure of risk.

Theorem 2.19. Suppose Assumption 2.18 holds. The following statements are equiv-

alent:

1. For 1 ≤ p <∞, ρ is σ(Lp, Lq)-lower semicontinuous, where σ(Lp, Lq) indicates

the weak topology on Lp; For p = ∞, ρ is σ(L∞, L1)-lower semicontinuous,

where σ(L∞, L1) indicates the weak* topology on L∞.

2. For all X ∈ Lp, ρ(X) has the following representation:

ρ(X) = sup
Q∈Qp

(EQ[−X]− ρ∗(Q)), (2.14)

where ρ∗ is the Fenchel-Legendre transformation of ρ:

ρ∗(Q) = sup
X∈Lp

(EQ[−X]− ρ(X)), (2.15)

and Qp is as defined by (1.7):

Qp :=

{
Q probability measure on (Ω,F ,P) : Q� P and

dQ

dP
∈ Lq

}
.

3. For all X ∈ Lp, ρ(X) has the following representation:

ρ(X) = sup
Q∈Qp

(
EQ[−X1{X≤qX(λ)}]− qX(λ)Q(X > qX(λ))− ρ∗(Q)

)
, (2.16)

with

ρ∗(Q) = sup
X∈Aρ

EQ[−X] = sup
X∈Aρ

(
EQ[−X1{X≤qX(λ)}]− qX(λ)Q(X > qX(λ))

)
,

(2.17)

where qX(λ) is a λ-quantile of X and Aρ := {X ∈ Lp | ρ(X) ≤ 0} is the

acceptance set.

4. ρ is continuous from above: For any sequence (Xn) in Lp, Xn ↘ X P-a.s.
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implies ρ(Xn)↗ ρ(X).

5. ρ has the λ-quantile Fatou property.

Proof. We adapt the proof of Theorem 4.31 of Föllmer and Schied (2004) and of

Theorem 3.1 of Kaina and Rüschendorf (2009) to prove the equivalence of statements

1, 2, and 4. First, we show that “ 1⇒2⇒4⇒1 ”.

“ 1⇒2 ”: This is true due Theorem 1.8. Note that for 1 ≤ p <∞, the dual space of

(Lp, ‖ · ‖p) is Lq with 1
p

+ 1
q

= 1, and for p = ∞, the dual space of (L∞, σ(L∞, L1))

is L1. Therefore, due to Theorem 1.8, we have ρ = ρ∗∗, where ρ∗∗ is the Fenchel-

Legendre transform of ρ∗, the Fenchel-Legendre transform of ρ defined by Definition

1.8. We need to verify ρ∗ and ρ∗∗ of the form (2.15) and (2.14). First, consider the

case of 1 ≤ p <∞. Let ` be the linear functional from Lp to R. By Definition 1.8,

ρ∗(`) = sup
X∈Lp

(`(X)− ρ(X)),

and

ρ∗∗(X) = sup
`∈Lq

(`(X)− ρ∗(`)).

The monotonicity and cash invariance of ρ (Definition 1.1) implies that `(X) ≤ 0 for

X ≥ 0, and `(1) = −1 for all ` ∈ Lq such that ρ∗(`) <∞. More precisely, for X ∈ Lp

and X ≥ 0, nX ≥ X. If ρ∗(`) <∞, then

`(nX)− ρ(nX) ≤ ρ∗(`) ⇒ n`(X) ≤ ρ(nX) + ρ∗(`) ≤ ρ(X) + ρ∗(`),

the last inequality is due to the monotonicity of ρ. Therefore,

`(X) ≤ 1

n
(ρ(X) + ρ∗(`))→ 0, as n→∞,

which implies `(X) ≤ 0 for all X ≥ 0. In particular, due to the cash invariance of ρ,
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for natural number n,

`(n)− ρ(n) ≤ ρ∗(`) ⇔ n`(1)− ρ(0) + n ≤ ρ∗(`)

⇔ `(1) ≤ ρ(0) + ρ∗(`)− n
n

→ −1, as n→∞,

and

`(−n)− ρ(−n) ≤ ρ∗(`) ⇔ −n`(1)− ρ(0)− n ≤ ρ∗(`)

⇔ `(1) ≥ −ρ(0) + ρ∗(`) + n

n
→ −1, as n→∞.

These imply `(1) = −1. Thus, given ` ∈ Lq with ρ∗(`) < ∞, we can define a

probability measure Q` in the way that Q`(A) := −`(1A) = −
∫
A
`dP, for A ∈ F .

The Radon-Nikodým derivative of Q` is given by dQ`

dP
= −`. Therefore, for X ∈ Lp,

`(X) = EQ`
[−X], and ρ∗(`) = ρ∗(Q) = supX∈Lp(EQ[−X] − ρ(X)). If we define Qp

as of (1.7), then ρ∗∗(X) = supQ∈Qp(EQ[−X]− ρ∗(Q)). Thus, we obtain statement 1

for 1 ≤ p <∞. For the p =∞, the argument is exactly same.

“ 2⇒4 ”: Let (Xn) ⊂ Lp and Xn ↘ X P-a.s. for X ∈ Lp. We need to show

ρ(Xn)↗ ρ(X), where ρ(Xn) and ρ(X) are given by statement 2. Due the Monotone

Convergence Theorem,

ρ(X) = sup
Q∈Qp

(EQ[−X]− ρ∗(Q))

≤ sup
Q∈Qp

( lim
n→∞

EQ[−Xn]− ρ∗(Q))

≤ lim inf
n→∞

sup
Q∈Qp

(EQ[−Xn]− ρ∗(Q))

= lim inf
n→∞

ρ(Xn).

On the other hand, by the monotonicity of ρ, ρ(Xn) ≤ ρ(X), for all n, implies that

lim supn→∞ ρ(Xn) ≤ ρ(X). Thus, we obtain

lim sup
n→∞

ρ(Xn) ≤ ρ(X) ≤ lim inf
n→∞

ρ(Xn),

which implies ρ(Xn)↘ ρ(X).
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“ 4⇒1 ”: Recall Definition 1.6, that ρ is lower semicontinuous is equivalent to that

the set C := {ρ ≤ c} is weakly closed for 1 ≤ p < ∞ or weak* closed for p = ∞, for

all c ∈ R. We first look at the case of 1 ≤ p <∞. Let

Cr := C ∩ {X ∈ Lp : ‖X‖p ≤ r}

with r > 0. From Lemma 2.15, we need to show that Cr is weakly closed. Let (Xn)

be a sequence in Cr such that Xn → X in Lp, then there is a subsequence (Xnk)

such that Xnk → X P-a.s. Define Yn := supnj≥nXnj , then Yn ↘ X, and from 4,

ρ(Yn)↗ ρ(X). Thus,

ρ(X) = lim
n→∞

ρ(Yn) ≤ lim inf
n→∞

ρ(Xn) ≤ c,

which implies that X ∈ C. Moreover, Xn → X in Lp implies that ‖X‖p ≤ r. Thus,

we achieve X ∈ Cr, which means the set Cr is norm (strongly) closed. Due to Lemma

2.16, Cr is weakly closed.

For the case of p =∞, the proof is very similar to the case of 1 ≤ p <∞ except that

in the last step, instead of using Lemma 2.16, we need the Lemma 2.17.

We now show the equivalence of 2, 3, and 5.

“ 2 ⇔3 ”: Example 2.9 showed thatXq
λ
= X withXq = X1{X≤qX(λ)}+qX(λ)1{X>qX(λ)}.

If ρ has the representation (2.14), then

ρ(X) = sup
Q∈Qp

(EQ[−X]− ρ∗(Q)) ≤ sup
Q∈Qp

(EQ[−Xq]− ρ∗(Q)) = ρ(Xq) = ρ(X),

where the inequality is due to the fact of X ≥ Xq. Thus, we obtain (2.16).

Note that ρ∗(Q) given by equation (2.15) in 2 is known as the penalty function of

the representation (2.14). For (2.17), we have

ρ∗(Q) = sup
X∈Lp

(EQ[−X]− ρ(X)) ≥ sup
X∈Aρ

(EQ[−X]− ρ(X)) ≥ sup
X∈Aρ

EQ[−X].
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And on the other hand, for any X ∈ Lp, X + ρ(X) ∈ Aρ, therefore,

sup
X∈Lp

(EQ[−X]− ρ(X)) = sup
X∈Lp

(EQ[−(X + ρ(X)])) ≤ sup
X∈Aρ

EQ[−X].

Therefore, ρ∗(Q) = supX∈Aρ EQ[−X]. We further have

ρ∗(Q) = sup
X∈Aρ

EQ[−X] ≤ sup
X∈Aρ

(
EQ[−X1{X≤qX(λ)}]− qX(λ)Q(X > qX(λ))

)
.

For each X ∈ Aρ, ρ(Xq) = ρ(X) ≤ 0. Therefore,

sup
X∈Aρ

(
EQ[−X1{X≤qX(λ)}]− qX(λ)Q(X > qX(λ))

)
= sup

Xq∈Aρ
EQ[−Xq] ≤ sup

X∈Aρ
EQ[−X] = ρ∗(Q).

We show the equivalence of statement 2 and statement 5.

“ 2⇒5 ”: Let (Xn) ∈ Lp be a sequence satisfying q+
Xn

(λ) ≤ cλ for some cλ ∈ R

and for all n ∈ N and Xn → X P-a.s. for some X ∈ Lp. The goal is to show that

ρ(X) ≤ lim inf(Xn). Define Yn := Xn1{Xn≤cλ} + cλ1{Xn>cλ} and Y := X1{X≤cλ} +

cλ1{X>cλ}. Then Yn → Y P-a.s. Since ρ is λ-quantile dependent, ρ(Yn) = ρ(Xn) and

ρ(Y ) = ρ(X). Define Zn(ω) := supk≥n Yk(ω) for all ω ∈ Ω, then Zn ↘ lim supYn = Y .

Thus, by statement 3, ρ(Y ) = limn→∞ ρ(Zn). Since Zn(ω) ≥ Yn(ω) for all ω ∈ Ω, the

monotonicity of ρ implies that ρ(Zn) ≤ ρ(Yn). Therefore, ρ(Y ) ≤ lim inf ρ(Yn). By

the λ-quantile dependence of ρ, we obtain ρ(X) ≤ lim inf ρ(Xn).

“ 5⇒2 ”: Suppose ρ has the λ-quantile Fatou property. We first show that ρ is

σ(Lp, Lq)-lower semicontinuous for 1 ≤ p < ∞. This is equivalent to show that the

convex subset C := {ρ ≤ c} ⊂ Lp is weakly closed for any fixed constant c. By

Lemma 2.15 in the Appendix, an analogous result to the Krein-Šmulian Lemma, this

is true if and only if Cr := C ∩ {X ∈ Lp : ‖X‖p ≤ r} is weakly closed for all r > 0.

Since the space (Lp, ‖ · ‖p), 1 ≤ p < ∞, is locally convex, that Cr is weakly closed

is equivalent to that Cr is strongly closed. In the following, we will show that Cr is

strongly closed in Lp with respect to the norm topology. Let (Xn) be a sequence in
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Cr converging to X in Lp-norm. Then there is a subsequence (Xnk) converging to X

P-a.s. If we can show that (q+
Xnk

(λ)) is uniformly bounded above, then statement 4

implies ρ(X) ≤ lim inf ρ(Xnk) ≤ c. Therefore, X ∈ Cr, i.e., Cr is strongly closed.

To complete the proof, it remains to show that (q+
Xnk

(λ)) is uniformly bounded from

above. If this is not true, then for any m ∈ N, there exists a Ym ∈ (Xnk) such that

q+
Ym

(λ) > m. Thus

‖Ym‖pp =

∫
{Ym<q+Ym (λ)}

|Ym|pdP +

∫
{Ym≥q+Ym (λ)}

|Ym|pdP

≥ mpP(Ym ≥ q+
Ym

(λ)) ≥ mp(1− λ)→∞, as m→∞.

This is a contradiction to the fact that Ym ∈ Cr. For the case p = ∞, apply Lemma

2.17 instead of Lemma 2.15, the remaining part of the proof is similar to the case

1 ≤ p <∞. �

Under certain continuity conditions or when the convex risk measure is finitely val-

ued, the supremum in representation (2.14) can be attained, see Biagini and Frettelli

(2009) and Kaina and Rüschendorf (2009). In this case, we can further narrow the

representation set in (2.16) so that the probability measures concentrate on relevant

sets.

Corollary 2.20. Suppose ρ : Lp → R∪{∞}, 1 ≤ p ≤ ∞, satisfies Assumption 2.18.

Let X ∈ Lp such that ρ(X) <∞ and ρ(X) can be represented by

ρ(X) = max
Q∈Q

(EQ[−X]− ρ∗(Q)), (2.18)

where ρ∗ is defined in equation (2.15) and Q ⊂ Qp. Then there is a corresponding

set Qλ,Xp := {Q ∈ Qp : Q(X > qX(λ)) = 0} such that

ρ(X) = max
Q∈Qλ,Xp

⋂
Q

(EQ[−X]− ρ∗(Q)) = max
Q∈Qλ,Xp

⋂
Q

(EQ[−X1{X≤qX(λ)}]− ρ∗(Q)).

(2.19)
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Proof. For each X ∈ Lp, there exists a QX ∈ Q such that

ρ(X) = EQX
[−X]− ρ∗(QX).

Since X
λ
= Xq, by the λ-quantile dependence of ρ,

ρ(Xq) = ρ(X) = EQX
[−X]− ρ∗(QX) ≤ EQX

[−Xq]− ρ∗(QX) ≤ ρ(Xq).

This implies

ρ(Xq) = EQX
[−X]− ρ∗(QX) = EQX

[−Xq]− ρ∗(QX).

Thus, EQX
[(X − qX(λ))1{X>qX(λ)}] = 0, which implies QX(X > qX(λ)) = 0. Since

QX ∈ Qλ,Xp
⋂
Q,

ρ(X) = EQX
[−X]− ρ∗(QX)

≤ max
Q∈Qλ,Xp

⋂
Q

(EQ[−X]− ρ∗(Q))

= max
Q∈Qλ,Xp

⋂
Q

(EQ[−X1{X≤qX(λ)}]− ρ∗(Q)).

On the other hand, Qλ,Xp
⋂
Q ⊂ Q, representation (2.18) implies

ρ(X) ≥ max
Q∈Qλ,Xp

⋂
Q

(EQ[−X]− ρ∗(Q)) = max
Q∈Qλ,Xp

⋂
Q

(EQ[−X1{X≤qX(λ)}]− ρ∗(Q)).

�



CHAPTER 3: λ-QUANTILE LAW INVARIANT CONVEX RISK MEASURE

The Conditional Value-at-Risk CV aRλ for a given significance level λ is a λ-quantile

dependent convex risk measure. In fact, it is λ-quantile law invariant in the sense

that if two financial positions X and Y have the same probability distributions up

to the level λ, then they have the same Conditional Value-at-Risk. In this chapter,

we give the formal definition of the λ-quantile law invariant convex risk measure and

study the robust representation.

3.1 The λ-quantile law invariant convex risk measure

In Chapter 2, we gave two equivalent definitions of that two random variables are

P-a.s. equal up to their λ-quantiles. Definition 2.1 used the set A satisfying conditions

(2.1), while Definition 2.3 depended on the equivalence of the random variables Xqλ

and Yqλ defined by (2.4):

Xqλ := X1{X≤qλ} + qλ1{X>qλ},

Yqλ := Y 1{Y≤qλ} + qλ1{Y >qλ}.

In this section, we define that two random variables have the same probability law up

to their λ-quantiles using the similar approach as in Definition 2.3, and then define

the λ-quantile law invariant convex risk measure.

Definition 3.1. (two random variables have the same law up to λ-quantile) Fix

λ ∈ (0, 1). Let X, Y be two random variables on the probability space (Ω,F ,P). If for

some qλ ∈ R such that qλ is a λ-quantile of both X and Y , and the random variables

Xqλ and Yqλ have the same probability distributions, then we say that X and Y have

the same law up to their λ-quantiles. We denote it as X
λ∼ Y .

The following lemma shows that the λ-quantile P-a.s. equality of two random
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variables implies that these random variables have the same probability distributions

up to their λ-quantile. In Case I of Example 3.5 we will show the reverse implication

does not hold.

Lemma 3.2. Let X, Y be two random variables on the probability space (Ω,F ,P).

Then

X
λ
= Y P− a.s. ⇒ X

λ∼ Y. (3.1)

Proof. Suppose X
λ
= Y P-a.s. Let qX(λ) and qY (λ) be λ-quantiles of X and Y

respectively such that a set A satisfying (2.1) exists. By Lemma 2.5, there exists

some number qλ such that A can be chosen as {X < qλ} = {Y < qλ} ⊂ A a.e. and

P(A) ≥ λ. To prove X
λ∼ Y , it is sufficient to show that Xqλ and Yqλ have the same

probability distribution. We have

Xqλ = X1{X<qλ} + qλ1A\{X<qλ} + qλ1Ω\A

= Y 1{Y <qλ} + qλ1A\{Y <qλ} + qλ1{Ω\A}

= Yqλ P− a.s.

Thus, X
λ∼ Y . �

A convex risk measure is λ-quantile law invariant, if its value is only relevant to

the tail distribution of the random variables up to a fixed level λ. In other words, if

two random variables have the same probability distribution up to their λ-quantiles,

then they must have the same value of the convex risk measure.

Definition 3.3. (λ-quantile law invariant convex risk measure) Fix λ ∈ (0, 1). A

convex measure of risk ρ : Lp → R ∪ {∞} is λ-quantile law invariant if for any

X, Y ∈ Lp,

X
λ∼ Y implies ρ(X) = ρ(Y ).

Namely, the value of the risk measure ρ depends on the distribution of the random

variables only up to a given significance level λ.
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Remark 3.4. Under Definition 3.1 or alternatively, using Example 2.9 and Lemma

3.2, we have X
λ∼ Xq. Thus, if a convex measure of risk ρ is λ-quantile law invariant,

then ρ(X) = ρ(Xq).

Definition 3.1 incorporates the flexibility of the choice of the quantiles for the two

random variables X and Y . We illustrate this concept in a simple quadnomial tree.

Example 3.5. Let λ ∈ (0, 1) be fixed. Suppose the probability space is Ω = {ω1, ω2, ω3, ω4}

and the probability measure P is defined by P(ω1) = λ − ε, P(ω2) = ε, P(ω3) = ε,

and P(ω4) = 1− λ− ε, for some small ε > 0.

Case I: Suppose

X(ω1) = −1, X(ω2) = 0, X(ω3) = 1, X(ω4) = 2,

Y (ω1) = −1, Y (ω2) = 1, Y (ω3) = 0, Y (ω4) = 3.

Then random variables X and Y have the same probability distribution up to

their λ-quantiles, but they are not λ-quantile P-a.s. equal. Note that q−X(λ) =

q−Y (λ) = 0 and q+
X(λ) = q+

Y (λ) = 1. We have infinitely many choices for qX(λ)

and qY (λ):

1. qX(λ) = qY (λ) = q−X(λ) = q−Y (λ),

2. qX(λ) = qY (λ) = q+
X(λ) = q+

Y (λ),

3. q−X(λ) < qX(λ) = qY (λ) < q+
X(λ),

under which X
λ∼ Y .

Case II: Suppose

X(ω1) = −1, X(ω2) = 0, X(ω3) = 1, X(ω4) = 2,

Y (ω1) = −1, Y (ω2) = 2, Y (ω3) = 0, Y (ω4) = 3.

Then the random variables X and Y still have the same probability distribution

up to their λ-quantiles. Note that q−X(λ) = q−Y (λ) = 0 and q+
X(λ) = 1 < q+

Y (λ) =
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2. We now have the following choices for qX(λ) and qY (λ):

1. qX(λ) = qY (λ) = q−X(λ) = q−Y (λ),

2. q−X(λ) < qX(λ) = qY (λ) < q+
X(λ).

Case III: Suppose

X(ω1) = −1, X(ω2) = −1, X(ω3) = −1, X(ω4) = 2,

Y (ω1) = −1, Y (ω2) = −1, Y (ω3) = 1, Y (ω4) = 3.

The random variables X and Y still have the same probability distribution up

to their λ-quantiles. Note that we have q−X(λ) = q+
X(λ) = −1 and q−Y (λ) = −1 <

q+
Y (λ) = 1. We now have the only choice qX(λ) = qY (λ) = q−X(λ) = q−Y (λ).

3.2 The robust representation of the λ-quantile law invariant convex risk measure

In this section and the rest of the dissertation, X ∼ Y denotes that X and Y have

the same probability distribution.

The robust representation of the λ-quantile law invariant convex risk measure is

given by Theorem 3.9. As a preparation of the proof, we will need the following

Lemma 3.6, Lemma 3.7, and Lemma 3.8.

Lemma 3.6. Let X be a random variable with a continuous cumulative distribution

function FX and quantile function qX . Define U := FX(X). Then U is uniformly

distributed on (0, 1), and X = qX(U) P-almost surely.

Lemma 3.6 is quoted from Lemma A.21 of Föllmer and Schied (2004), where a

proof of the lemma is provided.

The next lemma and its proof can be found in Lemma A.24 of Föllmer and Schied

(2004). This Lemma provides a version of the “Hardy-Littlewood inequalities”. The

original version of the Hardy-Littlewood inequalities can be found in Hardy, Little-

wood, and Pólya (1952).
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Lemma 3.7. Let X and Y be two random variables on (Ω,F ,P) with quantile func-

tions qX and qY . Then∫ 1

0

qX(1− s)qY (s)ds ≤ E[XY ] ≤
∫ 1

0

qX(s)qY (s)ds, (3.2)

provided that all integrals are well defined. If X = f(Y ) and the lower (upper) bound

is finite, then the lower (upper) bound is attained if and only if f can be chosen as a

decreasing (increasing) function.

The following lemma generalizes Lemma 4.55 of Föllmer and Schied (2004) from

L∞ space to Lp space.

Lemma 3.8. Suppose the probability space (Ω,F ,P) is atomless. For random vari-

ables X ∈ Lp and Y ∈ Lq, where p, q ∈ [1,∞] satisfying 1
p

+ 1
q

= 1,

sup
X̃∼X

E[X̃Y ] =

∫ 1

0

qX(t)qY (t)dt.

Proof. The idea of the proof is very similar to that of Lemma 4.55 of Föllmer and

Schied (2004). First, the Hardy-Littlewood inequalities (3.2) ensures that

E[X̃Y ] ≤
∫ 1

0

qX̃(t)qY (t)dt =

∫ 1

0

qX(t)qY (t)dt, for all X̃ ∼ X.

Thus, supX̃∼X E[X̃Y ] ≤
∫ 1

0
qX(t)qY (t)dt.

In general, to show supX̃∼X E[X̃Y ] ≥
∫ 1

0
qX(t)qY (t)dt, we first assume Y has con-

tinuous distribution. Define U := FY (Y ), where FY (·) is the cumulative distribu-

tion function of random variable Y , then by Lemma 3.6, Y = qY (U) P-a.s. Define

X̃ := qX(U), then X̃ ∼ X. Therefore, for such defined X̃,

E[X̃Y ] = E[qX(U)qY (U)] =

∫ 1

0

qX(t)qY (t)dt.

So indeed we find some X̃ that has the same law as X and attains
∫ 1

0
qX(t)qY (t)dt.

In the case that Y does not have continuous probability distribution, we define for
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n ≥ 1 that

Yn := Y +
1

n
Z1{Y≥qY (a)} −

1

n
Z1{Y <qY (a)},

where Z ∈ Lq is a nonnegative random variable having continuous probability distri-

bution (such Z exists due to the atomlessness of the probability space), and the real

number a ∈ [0, 1] is chosen such that qX(t) ≤ 0 for all t < a and qX(t) ≥ 0 for t > a.

Then Yn has continuous probability distribution. For the quantile function qYn(t), we

have qYn(t) ≤ qY (t), for t < a, and qYn(t) ≥ qY (t), for t > a. We have∫ 1

0

qX(t)qYn(t)dt =

∫ a

0

qX(t)qYn(t)dt+

∫ 1

a

qX(t)qYn(t)dt

≥
∫ a

0

qX(t)qY (t)dt+

∫ 1

a

qX(t)qY (t)dt

=

∫ 1

0

qX(t)qY (t)dt.

Thus, by applying the Lemma for a continuously distributed random variable,∫ 1

0

qX(t)qY (t)dt ≤
∫ 1

0

qX(t)dtqYn(t)dt = sup
X̃∼X

E[X̃Yn].

If we can show that supX̃∼X E[XYn] → supX̃∼X E[XY ] as n→∞, then we can

conclude
∫ 1

0
qX(t)qY (t)dt ≤ supX̃∼X E[X̃Y ] and finish the proof. For any ε > 0, there

exist X̃ε ∼ X such that E[X̃εYn] ≥ supX̃∼X E[X̃Yn]− ε. Then for arbitrary ε,

sup
X̃∼X

E[X̃Yn]− sup
X̃∼X

E[X̃Y ] ≤ E[X̃εYn] + ε− E[X̃εY ]

= E[X̃ε(Yn − Y )] + ε

≤ ‖X̃ε‖p ‖Yn − Y ‖q + ε

= ‖X̃ε‖p ‖
1

n
Z1{Y≥qX(a)} −

1

n
Z1{Y <qX(a)}‖q + ε

≤ 2

n
‖X̃ε‖p ‖Z‖q + ε→ ε, as n→∞.

Thus, we obtain lim supn→∞ supX̃∼X E[X̃Yn] ≤ supX̃∼X E[X̃Y ]. Similar argument

leads to the opposite inequality lim infn→∞ supX̃∼X E[X̃Yn] ≥ supX̃∼X E[X̃Y ], hence,

the equality holds. �
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We state a representation of a λ-quantile law invariant convex risk measure in the

following theorem. It is a λ-quantile version of Theorem 1.15 for the law invariant

convex risk measure.

Theorem 3.9. Suppose the probability space (Ω,F ,P) is atomless. Let ρ : Lp →

R ∪ {∞} be a proper convex measure of risk (i.e., satisfy Assumption 2.18) that is

λ-quantile law invariant. ρ has the λ-quantile Fatou property if and only if ρ has the

following representation:

ρ(X) = sup
Q∈Qp

(∫ λ

0

qX(t)q−ϕ(t)dt+ qX(λ)

∫ 1

λ

q−ϕ(t)dt− ρ∗(Q)

)
, (3.3)

where ϕ := dQ
dP

for Q ∈ Qp, and ρ∗(Q) depends on Q only through its Radom-Nikodým

derivative ϕ:

ρ∗(Q) = sup
X∈Lp

(∫ λ

0

qX(t)q−ϕ(t)dt+ qX(λ)

∫ 1

λ

q−ϕ(t)dt− ρ(X)

)
(3.4)

Proof. First, we show equation (3.4). For X ∈ Lp, Xq
λ∼ X, which implies

ρ(Xq) = ρ(X).

Together with the fact that X ≥ Xq, we have the following:

ρ∗(Q) = sup
X∈Lp

(EQ[−X]− ρ(X))

≤ sup
X∈Lp

(EQ[−Xq]− ρ(X))

= sup
Xq∈Lp

(EQ[−Xq]− ρ(Xq))

≤ sup
X∈Lp

(EQ[−X]− ρ(X))

= ρ∗(Q)

Thus, all inequalities are equalities and ρ∗(Q) = supX∈Lp(EQ[−Xq] − ρ(Xq)). By
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Theorem 2.19 and Lemma 3.8, we further have

ρ∗(Q) = sup
X∈Lp

(EQ[−Xq]− ρ(Xq))

= sup
X∈Lp

( sup
X̃∼Xq

(EQ[−X̃]− ρ(X̃)))

= sup
X∈Lp

( sup
X̃∼Xq

EQ[−X̃]− ρ(X))

= sup
X∈Lp

(∫ 1

0

qXq(t)q−ϕ(t)dt− ρ(X)

)
= sup

X∈Lp

(∫ λ

0

qX(t)q−ϕ(t)dt+ qX(λ)

∫ 1

λ

q−ϕ(t)dt− ρ(X)

)
.

The last equality is true, since qXq(t) = qX(t) for 0 < t ≤ λ and qXq(t) = qX(λ) for

λ < t < 1.

To show (3.3), we note that due to (3.4), ρ∗(Q̃) = ρ∗(Q) if ϕQ̃ ∼ ϕQ, where

ϕQ̃ := dQ̃
dP

and ϕQ := dQ
dP

. Again, by Theorem 2.19 and Lemma 3.8,

ρ(X) = ρ(Xq) = sup
Q∈Qp

(EQ[−Xq]− ρ∗(Q))

= sup
Q∈Qp

( sup
ϕQ̃∼ϕQ

(E[Xq(−ϕQ̃)]− ρ∗(Q̃)))

= sup
Q∈Qp

( sup
ϕQ̃∼ϕQ

E[Xq(−ϕQ̃)]− ρ∗(Q))

= sup
Q∈Qp

(∫ λ

0

qX(t)q−ϕQ
(t)dt+ qX(λ)

∫ 1

λ

q−ϕQ
(t)dt− ρ∗(Q)

)
.

Hence, if we denote ϕQ by ϕ for simplicity, then

ρ(X) = sup
Q∈Qp

(∫ λ

0

qX(t)q−ϕ(t)dt+ qX(λ)

∫ 1

λ

q−ϕ(t)dt− ρ∗(Q)

)
.

�

Remark 3.10. In the special case when p = ∞, Jouini, Schachermayer and Touzi

(2006) has shown that Fatou property is automatically satisfied, thus representation

(2.14) is guaranteed without any additional continuity condition. Consequently, rep-

resentation (3.3) will follow. For 1 ≤ p <∞, Kaina and Rüschendorf (2009) showed
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that ρ possesses the Fatou property if ρ is a finite convex risk measure.

A λ-quantile law invariant convex risk measure is also law invariant. Föllmer and

Schied (2004) gave a representation of the law invariant convex risk measure

ρ(X) = sup
Q∈Q1

(∫ 1

0

qX(t)q−ϕ(t)dt− ρ∗(Q)

)
, for X ∈ L∞,

with

ρ∗(Q) = sup
X∈L∞

(∫ 1

0

qX(t)q−ϕ(t)dt− ρ(X)

)
.

Due to Lemma 3.8, this representation can be extended to all X in the space Lp. The

following lemma summarizes this result.

Lemma 3.11. Let ρ : Lp → R ∪ {∞} be a proper convex measure of risk that is law

invariant. Suppose ρ has the representation (1.11), i.e.,

ρ(X) = sup
Q∈Qp

(EQ[−X]− ρ∗(Q)),

then we have

ρ(X) = sup
Q∈Qp

(∫ 1

0

qX(t)q−ϕ(t)dt− ρ∗(Q)

)
, for X ∈ Lp, (3.5)

where

ρ∗(Q) = sup
X∈Lp

(∫ 1

0

qX(t)q−ϕQ
(t)dt− ρ(X)

)
. (3.6)

Proof. The proof of the lemma is very similar to the proof of Theorem 4.54 of

Föllmer and Schied (2004), where instead of Lemma 4.55 of Föllmer and Schied

(2004), we need to use Lemma 3.8. For completeness, we sketch the proof here. Let

ϕQ denote the Radon-Nikodým derivative dQ
dP

. For any Q ∈ Qp, by Lemma 3.8 we

have

ρ∗(Q) = sup
X∈Lp

(EQ[−X]− ρ(X))

= sup
X∈Lp

(
sup
X̃∼X

(E[−X̃ϕQ]− ρ(X̃))

)
= sup

X∈Lp

(∫ 1

0

qX(t)q−ϕQ
(t)dt− ρ(X)

)
.
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If we use Q ∼ Q̃ to denote that the Radon-Nikodým derivatives dQ
dP

and dQ̃
dP

have the

same probability law, then we have

ρ(X) = sup
Q∈Qp

(EQ[−X]− ρ∗(Q))

= sup
Q∈Qp

(
sup
Q̃∼Q

(EQ̃[−X]− ρ∗(Q̃))

)

= sup
Q∈Qp

(∫ 1

0

qX(t)q−ϕQ
(t)dt− ρ∗(Q))

)
.

The last equality is due to Lemma 3.8 and the fact that ρ∗(Q) depends on Q only

through the probability distribution of its Radon-Nikodým derivative. Using −ϕ to

substitute −ϕQ, we obtain the results stated in the lemma. �

The following proposition is the λ-quantile law invariant version of Corollary 2.20.

Corollary 3.12. Suppose the probability space (Ω,F ,P) is atomless. Let ρ : Lp →

R∪{∞} be a λ-quantile law invariant convex risk measure. Suppose for some X ∈ Lp,

ρ(X) <∞ and it has the representation of

ρ(X) = max
Q∈Q

(∫ 1

0

qX(t)q−ϕ(t)dt− ρ∗(Q)

)
,

where Q ⊂ Qp and ϕ := dQ
dP

. Define

λ+ := inf{s > λ : qX(s) > qX(λ)}.

Then there exists a set

Qλ+,Xp :=

{
Q ∈ Qp :

∫ 1

λ+
q−ϕ(t)dt = 0

}
such that

ρ(X) = max
Q∈Qλ

+,X
p ∩Q

(∫ λ+

0

qX(t)q−ϕ(t)dt− ρ∗(Q)

)
.

Proof. For X ∈ Lp, let QX ∈ Q be a probability measure on (Ω,F) such that
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ρ(X) =
∫ 1

0
qX(t)q−ϕX (t)dt− ρ∗(QX), where ϕX := dQX

dP
. Then

ρ(X) =

∫ λ

0

qX(t)q−ϕX (t)dt+

∫ 1

λ

qX(t)q−ϕX (t)dt− ρ∗(QX)

≤
∫ λ

0

qX(t)q−ϕX (t)dt+ qX(λ)

∫ 1

λ

q−ϕX (t)dt− ρ∗(QX)

≤ sup
Q∈Qp

(∫ λ

0

qX(t)q−ϕ(t)dt+ qX(λ)

∫ 1

λ

q−ϕ(t)dt− ρ∗(Q)

)
= ρ(Xq),

where Xq = X1{X≤qX(λ)} + qX(λ)1{X>qX(λ)}. Note that the first inequality is due to

the negativity of q−ϕX (t), and the last equality is due to the representation (3.5) of

ρ(Xq). Further, since Xq
λ∼ X, it is true that ρ(X) = ρ(Xq). Therefore, all the

inequalities are equalities, and we have∫ 1

λ

qX(t)q−ϕX (t)dt = qX(λ)

∫ 1

λ

q−ϕX (t)dt.

Thus, for any s > λ such that such that qX(s) > qX(λ), we have∫ 1

s

q−ϕX (t)dt = 0. (3.7)

If we define

λ+ := inf{ s > λ : qX(s) > qX(λ)},

then λ+ ∈ [λ, 1]. By Dominated Convergence Theorem and (3.7), we have∫ 1

λ+
q−ϕX (t)dt = lim

s↘λ+

∫ 1

s

q−ϕX (t)dt = 0.

�



CHAPTER 4: ROBUST REPRESENTATION OF λ-QUANTILE DEPENDENT
WEIGHTED VALUE-AT-RISK ρµ,λ

In this chapter, we study the λ-quantile dependent Weighted Value-at-Risk ρµ,λ

defined on the space Lp, 1 ≤ p ≤ ∞. Throughout this chapter, the probability space

(Ω,F ,P) is assumed to be atomless.

4.1 The definition of the λ-quantile dependent Weighted Value-at-Risk ρµ,λ

Recall that the Weighted Value-at-Risk is defined as ρµ(X) :=
∫

[0,1]
CV aRγ(X)µ(dγ)

with µ a probability measure on [0, 1]. If µ is a probability measure on [0, λ] for some

fixed λ ∈ (0, 1], then the value of ρµ depends on the random variables only through

their left tails. Formally, we have the following definition:

Definition 4.1. (the λ-quantile dependent WVaR) The λ-quantile dependent Weighted

Value-at-Risk is a mapping ρµ,λ : Lp → R ∪ {∞}, 1 ≤ p ≤ ∞, defined as

ρµ,λ(X) =

∫
[0,λ]

CV aRγ(X)µ(dγ), (4.1)

where λ ∈ (0, 1] is fixed, µ is a probability measure on [0, λ] satisfying µ({0}) = 0,

and CV aRγ(X) = − 1
γ

∫ γ
0
q+
X(t)dt is the Conditional Value-at-Risk at level γ.

Note that ρµ,λ is a coherent measure of risk. Applying the Fubini’s theorem, we

easily obtain an equivalent form of ρµ,λ:

ρµ,λ(X) = −
∫ λ

0

qX(t)φ(t)dt, (4.2)

where

φ(t) =

∫
(t,λ]

1

s
µ(ds), for t ∈ (0, λ]. (4.3)

Hence, the measure of risk ρµ,λ is λ-quantile law invariant.
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Remark 4.2.

• Take λ as 1 and µ as a probability measure on [0, 1], then (4.1) defines the

Weighted Value-at-Risk ρµ =
∫

[0,1]
CV aRγ(X)µ(dγ). For a given λ ∈ (0, 1), the

Weighted Value-at-Risk ρµ is λ-quantile dependent if and only if µ([0, λ]) = 1.

• Acerbi (2002) defined the Spectral Measure of Risk Mφ̃(X) = −
∫ 1

0
qX(t)φ̃(t)dt,

where φ̃(t) :=
∫ 1

t
µ(dγ) and µ is some measure on [0, 1] (not necessarily a prob-

ability measure). He showed that Mφ̃ is a coherent measure of risk, if φ̃ satisfies

the admissibility conditions: φ̃ is positive, decreasing and ‖φ̃‖ =
∫ 1

0
|φ̃(p)|dp = 1.

Acerbi interpreted the function φ̃ as the “risk spectrum”. For given λ ∈ (0, 1),

take φ̃(t) = 1
λ
1{0≤t≤λ}, then CV aRλ(X) = Mφ̃(X). In this case, the function

φ̃(t) is the density of a uniform distribution on [0, λ], φ̃ assigns equal weights to

every possible outcome under the threshold λ, so CV aR represents the average

of λ100% worst losses of a financial position.

• The λ-quantile dependent coherent risk measure ρµ,λ defined by either (4.1) or

(4.2) can be interpreted in a similar way. In (4.2), the function φ(t) assigns

weights to the Value-at-Risk −qX(t) for 0 ≤ t ≤ λ, a reason associated to the

name of ρµ,λ: the λ-quantile dependent Weighted Value-at-Risk. In Subsection

4.3.2, we will see a new example when the probability measure µ in (4.1) is

uniformly distributed on [0, λ]. ρµ,λ averages the Conditional Value-at-Risk with

equal weights up to the level λ and the “risk spectrum” in (4.2) turns out to be

a natural logarithmic function.

4.2 The relationship between the λ-quantile uniform preference and the core of
λ-quantile dependent concave distortion

In this section, we extend the definitions of the uniform preference and the core of
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a concave distortion to the λ-quantile case. We confirm the relationship between the

two discovered by Carlier and Dana (2003) holds in the λ-quantile case. This prepares

for the robust representation of the λ-quantile dependent Weighted Value-at-Risk ρµ,λ

in the next section.

4.2.1 λ-quantile uniform preference of two probability distribution measures

In this subsection, µ denotes a probability distribution measure on (Ω1,F1) and ν

denotes a probability distribution measure on (Ω2,F2). We first define the “λ-quantile

uniform preference” of two probability distribution measures. Recall that a quantile

function of distribution measure ν is denoted by qν(·) and satisfies

ν((−∞, qν(t)]) ≥ t and ν((−∞, qν(t))) ≤ t. (4.4)

Similarly, qµ(·) is a quantile function of distribution measure µ. We do not restrict

the definition to be on the upper quantile function.

We define

M :=

{
µ probability measure on R:

∫ qµ(λ)

−∞
xµ(dx) > −∞

}
.

Note that∫ qµ(λ)

−∞
xµ(dx) > −∞⇔ Eµ[X1{X≤qX(λ)}] > −∞⇔

∫ λ

0

qµ(s)ds > −∞.

Since every concave function u is dominated by an affine function, for every µ ∈ M,∫
udµ ∈ [−∞,∞).

Definition 4.3. (λ-quantile uniform preference) Fix λ ∈ (0, 1). Let µ, ν be in M.

The probability distribution measure µ is λ-quantile uniformly preferred over ν, de-

noted by µ <
uni(λ)

ν, if

∫ t

0

qµ(s)ds ≥
∫ t

0

qν(s)ds, for all 0 < t ≤ λ.

Remark 4.4. For two random variables X and Y defined on two probability spaces
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(Ω1,F1,P1) and (Ω2,F2,P2), we can similarly define the λ-quantile uniform prefer-

ence of the random variables X and Y in the sense of the λ-quantile uniform prefer-

ence of their respective probability distribution measures νX and νY :

X <
uni(λ)

Y ⇔ νX <
uni(λ)

νY

⇔
∫ t

0

qνX (s)ds ≥
∫ t

0

qνY (s)ds, for all 0 < t ≤ λ.

The uniform preference of two probability distribution measures (Definition 1.19)

is also known as the second order stochastic dominance. Definition 4.3 can be viewed

as the λ-quantile dependent version of the second order stochastic dominance. The

following theorem gives the equivalent conditions of the λ-quantile uniform preference

of two probability distribution measures µ and ν.

Let us recall that a utility function u : R → R is a strictly concave, strictly

increasing and continuous function. We define a ν-λ-quantile utility function uν,λ :

R→ R as

uν,λ(x) = u(x)1{x≤qν(λ)} + u(qν(λ))1{x>qν(λ)}, (4.5)

with u a real-valued utility function on R.

Theorem 4.5.

a. µ <
uni(λ)

ν if and only if for all decreasing functions h : (0, λ] → R+, the following

is true: ∫ λ

0

h(t)qµ(t)dt ≥
∫ λ

0

h(t)qν(t)dt,

where qµ and qν are quantile functions of µ and ν.

b. The following equivalent conditions implies µ <
uni(λ)

ν:

1. For all ν-λ-quantile utility function uν,λ : R→ R, the following is true:∫
R
uν,λ(x)µ(dx) ≥

∫
R
uν,λ(x)ν(dx).
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2. For all increasing, concave and continuous functions f on R such that

f(x) = f(qν(λ)) for all x ≥ qν(λ),∫
R
f(x)µ(dx) ≥

∫
R
f(x)ν(dx).

3. ∫
R
(c− x)+µ(dx) ≤

∫
R
(c− x)+ν(dx), for all c ≤ qν(λ).

4. Let Fµ and Fν denote the distribution functions of µ and ν, then∫ c

−∞
Fµ(x)dx ≤

∫ c

−∞
Fν(x)dx, for all c ≤ qν(λ).

c. µ <
uni(λ)

ν implies the following equivalent conditions:

1. For all µ-λ-quantile utility function uµ,λ : R→ R, the following is true:∫
R
uµ,λ(x)µ(dx) ≥

∫
R
uµ,λ(x)ν(dx).

2. For all increasing, concave and continuous functions f on R such that

f(x) = f(qµ(λ)) for all x ≥ qµ(λ),∫
R
f(x)µ(dx) ≥

∫
R
f(x)ν(dx).

3. ∫
R
(c− x)+µ(dx) ≤

∫
R
(c− x)+ν(dx), for all c ≤ qµ(λ).

4. Let Fµ and Fν denote the distribution functions of µ and ν, then∫ c

−∞
Fµ(x)dx ≤

∫ c

−∞
Fν(x)dx, for all c ≤ qµ(λ).

Proof.

“a”: Take h = 1(0,t), 0 < t ≤ λ, then the “if” part is obviously true. For the

proof of the “only if” part, since h is decreasing, without loss of generality, we may

assume that h is left-continuous. Then a Radon measure η on [0, λ] can be defined
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by h(t)− h(λ) = η([t, λ]). By Fubini’s theorem,∫ λ

0

h(t)qµ(t)dt =

∫ λ

0

h(λ)qµ(t)dt+

∫ λ

0

∫
[t,λ]

η(ds)qµ(t)dt

=

∫ λ

0

h(λ)qµ(t)dt+

∫
[0,λ]

∫ s

0

qµ(t)dt η(ds)

≥
∫ λ

0

h(λ)qν(t)dt+

∫
[0,λ]

∫ s

0

qν(t)dt η(ds)

=

∫ λ

0

h(t)qν(t)dt.

“b”: “1⇔2”: That the statement 2 implies the statement 1 is obvious. To show

“1⇒2”, let u0 be a utility function such that
∫
R u0dµ and

∫
R u0dν are finite. Define

u(x) := u0(x)1{x≤qν(λ)}+u0(qν(λ))1{x>qν(λ)}. Then u is a ν-λ-quantile utility function.

For α ∈ (0, 1) define

uα(x) = αf(x) + (1− α)u(x),

where f is an increasing concave and continuous function with f(x) = f(qν(λ)) for

x ≥ qν(λ). Then, we have

uα(x) =


αf(x) + (1− α)u0(x) for x ≤ qν(λ),

uα(qν(λ)) for x > qν(λ).

For x ≤ qν(λ), uα(x) is strictly increase, strictly concave and continuous. Thus, uα is

a ν-λ-quantile utility function. Statement 1 implies∫
R
uα(x)µ(dx) ≥

∫
R
uα(x)ν(dx).

Substituting uα into this inequality and letting α goes to 1, yields∫
R
f(x)µ(dx) = lim

α→1

∫
R
uα(x)µ(dx) ≥ lim

α→1

∫
R
uα(x)ν(dx) =

∫
R
f(x)ν(dx).

“2⇔3”: Since the function −(c−x)+ satisfies the conditions in statement 2, statement

2 implies statement 3. To show “3⇒2”, let f be an increasing concave and continuous

function on R satisfying f(x) = f(qν(λ)) for all x ≥ qν(λ). Define h(x) := −(f(x)−
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f(qν(λ))), x ∈ R, then h is decreasing, convex and continuous s.t. h(x) = 0 for

x ≥ qν(λ). Take h′(x) = h′(x+), then h′ is increasing and right-continous. For any

real number a and b with a < b, define the Radon measure γ((a, b]) = h′(b) − h′(a).

Then

h(x) = h(b)−
∫ b

x

h′(u)du

= h(b)−
∫ b

x

h′(b)du+

∫ b

x

(h′(b)− h′(u))du

= h(b)−
∫ b

x

h′(b)du+

∫ b

x

∫
(u,b]

γ(dz)du

= h(b)− h′(b)(b− x) +

∫
(−∞,b]

(z − x)+γ(dz), x < b.

For b < qν(λ) and b→ qν(λ), due to the assumption and the definition of h,∫
(−∞,b]

h(x)µ(dx)

= h(b)µ((−∞, b])− h′(b)
∫
R
(b− x)+µ(dx) +

∫
(−∞,b]

∫
R
(z − x)+µ(dx)γ(dz)

→ h(qν(λ))µ((−∞, qν(λ)])− h′(qν(λ))

∫
R
(qν(λ)− x)+µ(dx)

+

∫
(−∞,qν(λ))

∫
R
(z − x)+µ(dx)γ(dz)

≤ h(qν(λ))ν((−∞, qν(λ)])− h′(qν(λ))

∫
R
(qν(λ)− x)+ν(dx)

+

∫
(−∞,qν(λ))

∫
R
(z − x)+ν(dx)γ(dz)

=

∫
(−∞,qν(λ))

h(x)ν(dx)

=

∫
R
h(x)ν(dx).

Note that h(qν(λ))µ((−∞, qν(λ)]) = h(qν(λ))ν((−∞, qν(λ)]) = 0 and the last equality

is valid due to h(x) = 0 for all x ≥ qν(λ). Since the inequality is true for all b < qν(λ),

it is true in limit, and we have∫
(−∞,qν(λ))

h(x)µ(dx) =

∫
R
h(x)µ(dx) ≤

∫
R
h(x)ν(dx).
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Substituting h(x) = −(f(x)− f(qν(λ))) into the inequality yields∫
R
f(x)µ(dx) ≥

∫
R
f(x)ν(dx).

“3⇔4”: From the Fubini’s theorem, for all c ∈ (−∞, qν(λ)], we have∫ c

−∞
Fµ(z)dz =

∫ c

−∞

∫
(−∞,z]

µ(dx)dz

=

∫ c

−∞

∫ c

x

dzµ(dx)

=

∫
(−∞,c]

(c− x)µ(dx)

=

∫
R
(c− x)+µ(dx),

Similarly,
∫ c
−∞ Fν(z)dz =

∫
R(c − x)+ν(dx), for all c ∈ (−∞, qν(λ)]. This proves the

equivalence.

“4⇒a”: This is based on the duality relationship between the integral of the cumu-

lative distribution function and the integral of the quantile function. First, recall

Lemma A.22 from Föllmer and Schied (2004): For a random variable X with distri-

bution function FX and quantile function qX such that E[|X|] <∞,

sup
c∈R

(
ct−

∫ c

−∞
FX(x)dx

)
=

∫ t

0

qX(s)ds, for t ∈ [0, 1]. (4.6)

Moreover, the supremum is attained by c = qX(t). If∫ c

−∞
Fµ(x)dx ≤

∫ c

−∞
Fν(x)dx, ∀c ∈ (−∞, qν(λ)],

then for each fixed number t we have

ct−
∫ c

−∞
Fµ(x)dx ≥ ct−

∫ c

−∞
Fν(x)dx,

and thus,

sup
c∈(−∞,qν(λ)]

(
ct−

∫ c

−∞
Fµ(x)dx

)
≥ sup

c∈(−∞,qν(λ)]

(
ct−

∫ c

−∞
Fν(x)dx

)
.
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If qµ(λ) ≤ qν(λ), then by (4.6), for all t ∈ [0, λ],∫ t

0

qµ(s)ds = sup
c∈(−∞,qµ(λ)]

(
ct−

∫ c

−∞
Fµ(x)dx

)
= sup

c∈(−∞,qν(λ)]

(
ct−

∫ c

−∞
Fµ(x)dx

)
≥ sup

c∈(−∞,qν(λ)]

(
ct−

∫ c

−∞
Fν(x)dx

)
=

∫ t

0

qν(s)ds.

Therefore,
∫ t

0
qµ(s)ds ≥

∫ t
0
qν(s)ds for all t ∈ [0, λ].

If qµ(λ) > qν(λ), then the same conclusion can be obtained since∫ t

0

qµ(s)ds = sup
c∈(−∞,qµ(λ)]

(
ct−

∫ c

−∞
Fµ(x)dx

)
≥ sup

c∈(−∞,qν(λ)]

(
ct−

∫ c

−∞
Fµ(x)dx

)
≥ sup

c∈(−∞,qν(λ)]

(
ct−

∫ c

−∞
Fν(x)dx

)
=

∫ t

0

qν(s)ds.

“c”: The equivalence “1 ⇔ 2 ⇔ 3 ⇔ 4” can be proved similarly as in b. To show

“a⇒4”, let us recall Theorem 1.8: Let f be a proper convex function on a locally

convex space E. If f is lower semicontinuous with respect to the weak topology

σ(E,E ′), then f = f ∗∗, where f ∗ denotes the Fenchel-Legendre transform of f .

The function ψ(c) :=
∫ c
−∞ FX(x)dx is obviously lower semicontinuous on R. From

the Lemma A.22 of Föllmer and Schied (2004) and Theorem 1.8,∫ c

−∞
FX(x)dx = ψ∗∗(c) = sup

t∈[0,1]

(
ct−

∫ t

0

qX(s)ds

)
, for all c ∈ R

and the supremum is obtained when t is chosen such that c = qX(t). Thus, if∫ t
0
qµ(s)ds ≥

∫ t
0
qν(s)ds for all 0 < t ≤ λ, then the following is true for fixed value c:

sup
t∈[0,λ]

(
ct−

∫ t

0

qµ(s)ds

)
≤ sup

t∈[0,λ]

(
ct−

∫ t

0

qν(s)ds

)
.
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For all c ∈ (−∞, qµ(λ) ∧ qν(λ)],∫ c

−∞
Fµ(x)dx = sup

t∈[0,λ]

(
ct−

∫ t

0

qµ(s)ds

)
,∫ c

−∞
Fν(x)dx = sup

t∈[0,λ]

(
ct−

∫ t

0

qν(s)ds

)
,

and we conclude∫ c

−∞
Fµ(x)dx ≤

∫ c

−∞
Fν(x)dx, ∀c ∈ (−∞, qµ(λ) ∧ qν(λ)].

If qµ(λ) ≥ qν(λ), then for all c ∈ (qν(λ), qµ(λ)],∫ c

−∞
Fµ(x)dx = sup

t∈[0,λ]

(
ct−

∫ t

0

qµ(s)ds

)
,∫ c

−∞
Fν(x)dx ≥ sup

t∈[0,λ]

(
ct−

∫ t

0

qν(s)ds

)
,

and the result follows. �

4.2.2 Core of a λ-quantile dependent concave distortion

In this subsection, we define the core of a λ-quantile dependent concave distortion

and study its relation to the λ-quantile uniform preference.

Definition 4.6. (λ-quantile dependent concave distortion and its core) Let λ ∈ (0, 1)

be fixed and (Ω,F ,P) be an atomless probability space. Ψ : [0, 1] → [0, 1] is called

a concave distortion function if it is increasing, concave, and it satisfies Ψ(0) = 0,

Ψ(x) = 1 for all x ∈ [λ, 1]. In this case we call Ψ ◦ P : F → [0, 1] a λ-quantile

dependent concave distortion of the probability measure P. The core of the λ-quantile

dependent concave distortion Ψ ◦P is naturally defined as:

core(Ψ ◦P) = {Q finitely additive on (Ω,F) : Q(A) ≤ Ψ(P(A)), ∀A ∈ F}. (4.7)

According to Schmeidler (1972), the elements of core(Ψ ◦ P) are probability mea-
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sures that are absolutely continuous to P. Therefore,

core(Ψ ◦P)

= {Q probability measure on (Ω,F) : Q� P, Q(A) ≤ Ψ(P(A)), ∀A ∈ F}.
(4.8)

The elements Q in core(Ψ ◦ P) can be identified by the Radon-Nikodým derivatives

h := dQ
dP

. We do not distinguish the notations Q ∈ core(Ψ ◦P) and h ∈ core(Ψ ◦P).

For a λ-quantile dependent concave distortion function Ψ, we denote φ(t) := Ψ′(t+)

as its right-hand derivative. Then φ(t) is positive and monotone decreasing on [0, λ]

and φ(t) = 0, ∀t ∈ [λ, 1]. Consequently, −φ can be viewed as the upper quantile

function of some probability distribution function ν−φ such that

q+
ν−φ

(t) = −φ(t), ∀t ∈ [0, 1]. (4.9)

The next theorem describes the relation of core(Ψ ◦P) and the λ-quantile uniform

preference. It is the λ-quantile version of Theorem 1 in Carlier and Dana (2003).

Theorem 4.7. Suppose Ψ ◦ P is a λ-quantile dependent concave distortion of the

probability measure P on (Ω,F). Let h : Ω → R+ be a probability density function,

ν−h be its probability distribution function, and q−h := qν−h be a quantile function.

Let −φ(t) be defined as (4.11). Then the following statements are equivalent.

1. h ∈ core(Ψ ◦P).

2. For all x ∈ (0, λ],

−
∫ x

0

q−h(t)dt ≤ Ψ(x) = −
∫ x

0

−φ(t)dt.

3. ν−h <
uni(λ)

ν−φ.

4. −q−h ∈ core(Ψ ◦ L), where L indicates the Lebesgue measure on [0, 1].

Proof. The equivalence between 2 and 3 is obvious due to equation (4.11) and

Definition 4.3. We first show the equivalence between 1 and 2. Recall from (4.8) that
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h denotes the Radon-Nikodým derivative dQ
dP

for some Q ∈ core(Ψ ◦P).

“1⇒2 ”: Suppose h ∈ core(Ψ ◦ P). From the two equivalent forms of Conditional

Value-at-Risk by Acerbi and Tasche (2002):

CV aRλ(X) = −1

λ

∫ λ

0

qX(t)dt = −1

λ
E[X1{X<qX(λ)}]− qX(λ)λ−P (X<qX(λ))

λ
,

we know that,

−
∫ x

0

q−h(t)dt = xCV aRx(−h)

= −EP[−h1{−h<q−h(x)}]− q−h(x)(x−P(−h < q−h(x)))

= EP[h1{−h<q−h(x)}]− q−h(x)(x−P(−h < q−h(x))).

Since the probability space is assumed to be atomless, we may find a set B ⊂ {−h =

q−h(x)} so that P({−h < q−h(x)} ∪B) = x. Then for x ∈ (0, λ],

−
∫ x

0

q−h(t)dt = EP

[
dQ

dP
1{−h<q−h(x)}

]
− q−h(x)P(B)

= EQ[1{−h<q−h(x)}]− EP[−h1B]

= Q({−h < q−h(x)} ∪B)

≤ Ψ(P({−h < q−h(x)} ∪B))

= Ψ(x).

“2⇒1 ”: Let Q be a probability measure on (Ω,F) such that Q � P and h := dQ
dP

.

For any A ∈ F such that P(A) ≤ λ, q1A(t) = 0 for 0 ≤ t < 1−P(A) and qIA(t) = 1

for 1−P(A) ≤ t ≤ 1. Due to the Hardy-Littlewood inequalities (3.2), we have

Q(A) =

∫
1AdQ =

∫
1AhdP ≤

∫ 1

0

q1A(t)qh(t)dt =

∫ 1

1−P(A)

qh(t)dt.

For the quantile function qh(t), it is true that −q+
h (t) = q−−h(1 − t), for t ∈ (0, 1).

Therefore, if −
∫ x

0
q−h(t)dt ≤ Ψ(x) = −

∫ x
0
−φ(t)dt, then∫ 1

1−P(A)

qh(t)dt = −
∫ 1

1−P(A)

q−h(1−t)dt = −
∫ P(A)

0

q−h(t)dt ≤
∫ P(A)

0

φ(t)dt = Ψ(P(A)).



61

When P(A) ≥ λ, Ψ(P(A)) = 1 ≥ Q(A). Thus Q ∈ core(Ψ ◦ P), or equivalently,

h ∈ core(Ψ ◦P).

As a next step, we show the equivalence of 2 and 4.

“4⇒2 ”: Let B[0, 1] be the Borel σ-algebra on [0, 1] and L be the Lebesgue measure

on ([0, 1],B[0, 1]). Then

core(Ψ ◦ L) :=

{Q probability measure on ([0, 1],B[0, 1]) : Q� L, Q(A) ≤ Ψ(L(A)), ∀A ∈ B[0, 1]} .

Suppose Q ∈ core(Ψ ◦ L) such that dQ = −q−hdL. For x ∈ (0, λ],∫ x

0

−q−h(t)dt =

∫
[0,x]

dQ

dL
dL = Q([0, x]) ≤ Ψ(L[0, x]) = Ψ(x).

“2⇒4 ”: Suppose Q is a probability measure such that dQ = −q−hdL and for all

x ∈ (0, λ] it holds that −
∫ x

0
q−h(t)dt ≤ Ψ(x). For any A ∈ B[0, 1],

Q(A) =

∫
1AdQ = −

∫
1Aq−hdL

≤ −
∫ 1

0

q1A(t)qq−h(1− t)dt = −
∫ 1

1−L(A)

qq−h(1− t)dt,

due to the Hardy-Littlewood inequalities (3.2). It is not hard to use the definition

of quantiles (1.3) to show that for any random variable X, qqX (t) = qX(t) Lebesgue-

almost surely, ∀t ∈ [0, 1]. Thus

Q(A) = −
∫ 1

1−L(A)

qq−h(1− t)dt

= −
∫ 1

1−L(A)

q−h(1− t)dt

= −
∫ L(A)

0

q−h(t)dt

≤ Ψ(L(A)).

We conclude that Q ∈ core(Ψ ◦ L), i.e., −q−h ∈ core(Ψ ◦ L). �
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4.3 The robust representation of ρµ,λ

Recall the setup in section 4.1, the probability space (Ω,F ,P) is assumed to be

atomless, λ ∈ (0, 1) is fixed, and the probability measure µ on [0, λ] satisfies µ({0}) =

0. The λ-quantile dependent Weighted Value-at-Risk is

ρµ,λ(X) =

∫
[0,λ]

CV aRγ(X)µ(dγ) = −
∫ λ

0

qX(t)φ(t)dt,

with

φ(t) =

∫
(t,λ]

1

s
µ(ds), t ∈ (0, λ]. (4.10)

The function φ(t) is positive and monotone decreasing on (0, λ] with φ(λ) = 0. Con-

sequently, −φ can be viewed as the upper quantile function of some probability dis-

tribution function ν−φ such that

q+
ν−φ

(t) = −φ(t), ∀t ∈ (0, λ]. (4.11)

Thus, another equivalent form of ρµ,λ is obtained since q+
ν−φ

(t) = qν−φ(t) Lebesgue-a.e.:

ρµ,λ(X) =

∫ λ

0

qX(t)qν−φ(t)dt. (4.12)

In this section, we give the robust representation of ρµ,λ via two representation sets.

The first one is the set of all probability distribution measures that are λ-quantile

uniformly preferred over ν−φ, and the second one is given by the core of λ-quantile

concave distortion Ψ ◦P defined by (4.7). Finally, we show that these two represen-

tation sets coincide.

4.3.1 The robust representation of ρµ,λ via the λ-quantile uniform preference

Let R− := (−∞, 0] and B(R−) := B(−∞, 0] be the Borel σ-algebra on (−∞, 0].

We define

Φ := {ν probability distribution measure on (R−,B(R−)) : ν <
uni(λ)

ν−φ}.
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Lemma 4.8. For X ∈ Lp, 1 ≤ p ≤ ∞, it is true that

ρµ,λ(X) = max
ν∈Φ

{∫ λ

0

qX(t)qν(t)dt+ q+
X(λ)

∫ 1

λ

qν(t)dt

}
. (4.13)

Proof. Let ν be in Φ. Define CX := q+
X(λ). So CX − qX(t) ≥ 0 is decreasing on

(0, λ]. By Theorem 4.5,∫ λ

0

(CX − qX(t))qν(t)dt ≥
∫ λ

0

(CX − qX(t))qν−φ(t)dt. (4.14)

Since µ([0, λ]) = 1, we have
∫ λ

0
qν−φ(t)dt = −1. Therefore, (4.14) becomes

CX

∫ λ

0

qν(t)dt−
∫ λ

0

qX(t)qν(t)dt ≥ −CX −
∫ λ

0

qX(t)qν−φ(t)dt = −CX − ρµ,λ(X).

And

ρµ,λ(X) ≥
∫ λ

0

qX(t)qν(t)dt− CX − CX
∫ λ

0

qν(t)dt

=

∫ λ

0

qX(t)qν(t)dt+ CX

(
−1−

∫ λ

0

qν(t)dt

)
=

∫ λ

0

qX(t)qν(t)dt+ q+
X(λ)

∫ 1

λ

qν(t)dt.

Since it is obvious that ν−φ ∈ Φ, by (4.12), we obtain (4.13). �

Let Qµ be the set of all probability measures such that the probability distribution

measure ν−ϕ of the negative value of the Radon-Nikodým derivative ϕ := dQ
dP

is in Φ,

i.e.,

Qµ :=

{
Q probability measure on (Ω,F) : Q� P, ϕ :=

dQ

dP
, and ν−ϕ ∈ Φ

}
.

The following Theorem gives the robust representation of ρµ,λ, which is the λ-quantile

variation of Corollary 4.74 in Föllmer and Schied (2004) based on uniform preference

instead of concave distortion.

Theorem 4.9. For all X ∈ Lp, 1 ≤ p ≤ ∞, it is true that

ρµ,λ(X) = sup
Q∈Qµ

EQ[−X]. (4.15)
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If ρµ,λ(X) < ∞, then the supremum can be attained by choosing QX such that its

Radon-Nikodým derivative dQX

dP
= f(X) with f a decreasing function, f(x) = 0 for

FX(x) > λ, and

f(x) =


φ(FX(x)), if x is a continuous point of FX and FX(x) ≤ λ,∫ FX (x)

FX (x−)
φ(t)dt

FX(x)−FX(x−)
, if x is a discontinuous point of FX and FX(x) ≤ λ.

(4.16)

The set Qµ is the maximum set of probability measures that represents ρµ,λ in the

sense that for all Q ∈ Qµ, ρ∗(Q) defined in Theorem 2.19 is equal to 0, and for all

Q� P such that Q /∈ Qµ, ρ∗(Q) =∞.

Proof. We show the theorem in four steps.

Step 1: We show that ρµ,λ(X) ≥ supQ∈Qµ EQ[−X]. For Q ∈ Qµ, let ϕ := dQ
dP

and

q−ϕ be a quantile function. By Lemma 4.8 and the Hardy-Littlewood inequality (3.2),

ρµ,λ(X) ≥
∫ λ

0

qX(t)q−ϕ(t)dt+ q+
X(λ)

∫ 1

λ

q−ϕ(t)dt

≥
∫ λ

0

qX(t)q−ϕ(t)dt+

∫ 1

λ

qX(t)q−ϕ(t)dt

=

∫ 1

0

qX(t)q−ϕ(t)dt

≥ E[−Xϕ]

= EQ[−X].

Thus,

ρµ,λ(X) ≥ sup
Q∈Qµ

EQ[−X], ∀X ∈ Lp. (4.17)

Step 2: We show f defined by (4.16) is a probability density function and QX with

density (4.16) is in the set Qµ. Let U be a uniformly distributed random variable

on [0, 1]. Obviously, f ≥ 0. To show E[f(X)] = 1, we first use the definition of the

conditional expectation to check

f(qX(U)) = E[φ(U)|qX(U)].
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First, f(qX(U)) is obviously σ(qX(U))-measurable, and E[|f(qX(u))|] = E[|f(X)|] =

1 < ∞, since X and qX(U) have the same distribution. We check that the partial

averaging property is satisfied. Let A ∈ σ(qX(U)), A = Ac ∪ Ad, where

Ac := {ω ∈ Ω : qX(U(ω)) is a continuous point of FX and FX(qX(U(ω))) ≤ λ},

and

Ad := {ω ∈ Ω : qX(U(ω)) is a discrete point of FX and FX(qX(U(ω))) ≤ λ}

= ∪i{ω : qX(U(ω)) = xi}.

Denote Adi := {ω : qX(U(ω)) = xi}, then P(Adi) = FX(xi)− FX(xi−), and∫
Adi

f(qX(U))dP =

∫
Adi

1

FX(xi)− FX(xi−)

∫ FX(xi)

FX(xi−)

φ(t)dtdP

= P(Adi)
1

FX(xi)− FX(xi−)

∫ FX(xi)

FX(xi−)

φ(t)dt

=

∫ FX(xi)

FX(xi−)

φ(t)dt

=

∫
Adi

φ(U)dP.

Therefore, ∫
A

f(qX(U))dP =

∫
Ac

f(qX(U))dP +

∫
Ad

f(qX(U))dP

=

∫
Ac

φ(FX(qX(U)))dP +
∑
i

∫
Adi

f(qX(U))dP

=

∫
Ac

φ(U)dP +
∑
i

∫
Adi

φ(U)dP

=

∫
A

φ(U)dP.

Hence, we obtain f(qX(U)) = E[φ(U)|qX(U)]. By properties of conditional expecta-

tion,

E[f(X)] = E[f(qX(U))] = E[E[φ(U)|qX(U)]] = E[φ] = 1.

Note that the last equality is valid due to the definition of φ. So the function f
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defined by (4.16) is a probability density function.

To show −dQX

dP
is uniformly preferred over −φ, we use statement 1, part b of Theorem

4.5. Let uλ be a ν−φ-λ-quantile utility function, then uλ is concave. By applying the

Jensen’s Inequality, we yield

E
[
uλ

(
−dQX

dP

)]
= E[uλ(−f(X))] = E[uλ(−f(qX(U)))] = E[uλ(E[−φ|qX(U)])]

≥ E[E[uλ(−φ)|qX(U)]] = E[uλ(−φ)].

Step 3: Show that ρµ,λ(X) = maxQ∈Qµ EQ[−X]. The proof of the Hardy-Littlewood

inequality (Theorem A.24 of Föllmer and Schied (2004)) provides an optimal QX

which has the probability density function f(X) given by (4.16) such that

ρµ,λ(X) =

∫ λ

0

qX(t)qµ−φ(t)dt = EQX
[−X].

Together with Step 1 and Step 2, we obtain ρµ,λ(X) = maxQ∈Qµ EQ[−X].

Step 4: Show thatQµ is the maximal set that represents ρµ,λ. We denote the maximal

set by Qmax. In Step 1 and Step 2, we have shown that ρµ,λ(X) = maxQ∈Qµ EQ[−X],

which means Qµ ⊂ Qmax. Note that ρµ,λ is a λ-quantile law invariant risk measure,

therefore, by Theorem 2.19 and Theorem 3.3, we obtain two forms of ρ∗µ,λ(Q) for all

Q ∈ Qp (where ϕ = dQ
dP

):

ρ∗µ,λ(Q) = sup
X∈Lp

(EQ[−X]− ρµ,λ(X))

= sup
X∈Lp

(∫ λ

0

qX(t)q−ϕ(t)dt+ q+
X(λ)

∫ 1

λ

q−ϕ(t)dt− ρµ,λ(X)

)
.

Consider a Q̃ such that Q̃ � P but ν−ϕ̃ is not λ-quantile preferred over ν−φ, where

ϕ̃ = dQ̃
dP

. Therefore, by Theorem 4.5, there is a r ∈ (0, λ) such that∫ r

0

qν−ϕ̃(t)dt <

∫ r

0

qν−φ(t)dt.

We show that for some X ∈ Lp, ρ∗µ,λ(Q̃) = ∞. Let X ∈ Lp be a random variable
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such that P(X = −N) = r and P(X = 0) = 1− r. Then∫ λ

0

qX(t)q−ϕ̃(t)dt+ q+
X(λ)

∫ 1

λ

q−φ(t)dt− ρµ,λ(X)

=

∫ r

0

(−N)q−ϕ̃(t)dt−
∫ r

0

(−N)qν−φ(t)dt

= N

(∫ r

0

qν−φ(t)dt−
∫ r

0

q−ϕ̃(t)dt

)
→∞, as N →∞.

Hence, ρ∗µ,λ(Q̃) =∞. �

4.3.2 The robust representation of ρµ,λ via the core of the λ-quantile concave
distortion

For X ∈ L∞(Ω,F ,P), Kusuoka (2001) showed that any Weighted Value-at-Risk

ρµ can be written as a Choquet integral. Applying the result to our case of λ-quantile

dependent Weighted Value-at-Risk ρµ,λ, we have

ρµ,λ(X) =


∫ qX(λ)

0
(Ψ(P(X < x))− 1)dx+

∫ 0

−∞Ψ(P(X < x))dx, if qX(λ) > 0,∫ qX(λ)

−∞ Ψ(P(X < x))dx, if qX(λ) ≤ 0.

(4.18)

where the function Ψ : [0, 1]→ [0, 1] is defined as

Ψ(x) =

∫ x

0

φ(t)dt, (4.19)

with φ given by (4.10). Obviously, Ψ is increasing and concave with right-hand side

derivative Ψ′(t+) = φ(t) such that Ψ(0) = 0, Ψ(x) = 1 for x ∈ [λ, 1].

The Choquet integral (4.18) is well defined when X is P-almost surely bounded.

Otherwise, we extend the Choquet integral to be ∞ when the integral on the right

hand side of (4.18) is infinite. Under this definition, we show that equation (4.18) can

be extended to all random variables that are in the space Lp(Ω,F ,P) with 1 ≤ p ≤ ∞.

Lemma 4.10. Suppose 1 ≤ p ≤ ∞ and λ ∈ (0, 1) is fixed. Let ρµ,λ : Lp → R∪{∞} be

a λ-quantile dependent Weighted Value-at-Risk defined by (4.1). Then for all X ∈ Lp,
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the extended Choquet integral (4.18) holds true.

Proof. For X ∈ Lp, recall Xq is defined as Xq := X1{X<qX(λ)}+qX(λ)1{X≥qX(λ)}. Let

Xq,n := Xq ∨−n for some natural number n. When n is sufficiently large, Xq,n ∈ L∞.

Thus, by Theorem 23 of Kusuoka (2001) or Theroem 4.64 of Föllmer and Schied

(2004),

ρµ,λ(−Xq,n) =

∫ 0

−∞
(Ψ(P(Xq,n > x))− 1)dx+

∫ ∞
0

Ψ(P(Xq,n > x))dx =

∫
Ω

Xq,nd(Ψ ◦P)

(4.20)

Substituting −Xq,n by Xq,n, yield

ρµ,λ(Xq,n) =

∫
Ω

−Xq,nd(Ψ ◦P)

=


∫ qX(λ)

0
(Ψ(P(X < x))− 1)dx+

∫ 0

−n Ψ(P(X < x))dx, if qX(λ) > 0,∫ qX(λ)

−n Ψ(P(X < x))dx, if qX(λ) ≤ 0.

Since ρµ,λ is continuous from above, which implies ρµ,λ(Xq,n)↗ ρµ,λ(Xq), equivalently,

ρµ,λ(Xq) = lim
n→∞

∫
Ω

−Xq,nd(Ψ ◦P),

=


∫ qX(λ)

0
(Ψ(P(X < x))− 1)dx+

∫ 0

−∞Ψ(P(X < x))dx, if qX(λ) > 0,∫ qX(λ)

−∞ Ψ(P(X < x))dx, if qX(λ) ≤ 0.

Note that it is possible for the limit to be ∞. Since ρµ,λ(X) = ρµ,λ(Xq), we obtain

equation (4.18). �

By Definition 4.6, the composite function Ψ◦P appeared in (4.18) is the λ-quantile

dependent concave distortion of the probability measure P. Observe that it is a

normalized monotone set function on F which is a submodular satisfying the following

definition (Denneberg (1994)):

Definition 4.11. (submodular) A set function µ : F → [0,∞] is a submodular if for

any A,B ∈ F such that A∪B, A∩B ∈ F implies µ(A∪B)+µ(A∩B) ≤ µ(A)+µ(B).
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The composite function Ψ ◦P satisfies the following:

Ψ(P(∅)) = 0, Ψ(P(Ω)) = 1,

Ψ(P(A)) ≤ Ψ(P(B)), for any A,B ∈ F such that A ⊂ B,

Ψ(P(A ∪B)) + Ψ(P(A ∩B)) ≤ Ψ(P(A)) + Ψ(P(B)), for all A,B ∈ F .

For the representation of equation (4.18), let us recall Proposition 10.3 of Denneberg

(1994).

Proposition 4.12. Let µ be a monotone set function on an algebra A, where A is a

subset of the family of subsets of Ω and define

core(µ) := {ν : ν additive on A, ν(Ω) = µ(Ω), ν(A) ≤ µ(A), ∀A ∈ A}.

µ is submodular if and only if core(µ) 6= ∅ and for all X such that X is A-measurable

and
∫
|X|dµ <∞, ∫

Xdµ = sup
ν∈core(µ)

∫
Xdν.

Under this condition µ is the upper envelop of core(µ), i.e., µ = supν∈core(µ) ν.

Rewrite equation (4.18) as

ρµ,λ(X) = −
∫
Xd(Ψ ◦P),

and recall from (4.8)

core(Ψ◦P) = {Q probability measure on (Ω,F) : Q� P, Q(A) ≤ Ψ(P(A)), ∀A ∈ F}.

We also recall Proposition 5.2(iii) and Proposition 9.3 of Denneberg (1994):

Proposition 4.13. Let X : Ω → R be an upper S-measurable function and µ, ν

monotone set functions on S ⊂ 2Ω. If µ(Ω) = ν(Ω) or X ≥ 0, then µ ≤ ν implies∫
Xdµ ≤

∫
Xdν.

Proposition 4.14. Let 2Ω be the collection of all subsets of Ω and µ be a monotone
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set function on 2Ω. If µ is submodular, then∫
|X|dµ <∞⇔

∫
Xdµ <∞ and

∫
−Xdµ <∞.

Apply Proposition 4.12 and Proposition 4.14, and note that P ∈ core(Ψ ◦ P), we

have the following representation for the λ-quantile dependent Weighted Value-at-

Risk:

Theorem 4.15. For all X ∈ Lp(Ω,F ,P), 1 ≤ p ≤ ∞, it is true that

ρµ,λ(X) = sup
Q∈core(Ψ◦P)

∫
Ω

−XdQ = sup
Q∈core(Ψ◦P)

EQ[−X]. (4.21)

The supremum can be attained if ρµ,λ(X) <∞.

Proof. From Proposition 4.13, we have

ρµ,λ(X) ≥ sup
Q∈core(Ψ◦P)

EQ[−X], for X ∈ Lp.

For the reverse inequality, we first assume ρµ,λ(X) =
∫
−Xd(Ψ ◦ P) < ∞. If X is

bounded above, then
∫
Xd(Ψ ◦P) = ρµ,λ(−X) <∞. Then, Proposition 4.14 implies∫

|X|d(Ψ◦P) <∞. Since (Ψ◦P) is submodular, there exists some QX ∈ core(Ψ◦P)

such that ρµ,λ(X) = EQX
[−X]. Thus, ρµ,λ(X) = maxQ∈core(Ψ◦P) EQ[−X].

If X is not bounded above, we can find some natural number n such that

Xn := X ∧ n and q+
Xn

(λ) = q+
X(λ). (4.22)

Then {X > q+
X(λ)} = {Xn > q+

Xn
(λ)}. In addition, by the definition of λ-quantile

dependence (Definition 2.2), ρ(Xn) = ρ(X). Since Xn is bounded above, there is

some Qn ∈ core(Ψ ◦ P) such that ρµ,λ(Xn) = EQn [−Xn]. The proof of Lemma 2.9

shows that Qn(Xn > q+
Xn

(λ)) = 0. Due to the equality of the sets {X > q+
X(λ)} and

{Xn > q+
Xn

(λ)}, Qn(X > q+
X(λ)) = 0. Therefore,

ρµ,λ(X) = ρµ,λ(Xn) = EQn [−Xn] = EQn [−X].
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Thus, we obtain ρµ,λ(X) = maxQ∈core(Ψ◦P) EQ[−X].

Now, assume ρµ,λ(X) = ∞. We need to show supQ∈core(Ψ◦P) EQ[−X] = ∞. We can

assume without loss of generality that X is bounded above. (If not, use Xn as (4.22)

and Lemma 2.20). Define

Xm := X ∨ (−m).

Then Xm ↘ X. Since ρµ,λ is continuous from above, ρµ,λ(Xm)↗ ρµ,λ(X) =∞. For

sufficiently large m, Xm is bounded, which implies
∫
|Xm|d(Ψ ◦ P) < ∞. Applying

Proposition 4.12, there exists a Qm ∈ core(Ψ ◦P) such that

ρµ,λ(Xm) = EQm [−Xm] ≤ EQm [−X]→∞, as n→∞.

This shows that

sup
Q∈core(Ψ◦P)

EQ[−X] =∞.

�

Theorem 4.7 implies that the two approaches in representing ρµ,λ by Theorem 4.9

and Theorem 4.15 are equivalent, and the representation sets Qµ and core(Ψ ◦ P)

coincide.

4.4 Two examples

In this section, we discuss two examples of the λ-quantile dependent Weighted

Value-at-Risk. The Conditional Value-at-Risk is a well known convex risk measure,

we give its robust representation using the approach we derived in subsection 4.3.2

and check that the representation set coincides with the classic one. The uniform λ-

quantile dependent Weighted Value-at-Risk is a new convex risk measure, for which

the robust representation will be given using the approach discussed in subsection

4.3.2.
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4.4.1 The Conditional Value-at-Risk

Let λ ∈ (0, 1) be fixed. Take µ({λ}) = 1. Then

ρµ,λ(X) = CV aRλ(X) = −1

λ

∫ λ

0

qX(t)dt.

Its robust representation is well known (see Föllmer and Schied (2004) for the L∞

case, Kaina and Rüschendorf (2009) for the L1 case, and Cherny (2006) for the L0

case) as CV aRλ(X) = supQ∈Qλ EQ[−X], where the maximal representation set Qλ

is given by

Qλ :=

{
Q probability measure on (Ω,F) : Q� P,

dQ

dP
≤ 1

λ
P− a.s.

}
.

On the other hand, we can calculate from (4.10), (4.11) and (4.19) the functions

φ(t) =
1

λ
1[0,λ), Ψ(t) =

t

λ
1[0,λ) + 1(λ,1],

ν−φ({− 1
λ
}) = λ, ν−φ({0}) = 1− λ.

Theorem 4.9 and Theorem 4.15 provides alternative representations

CV aRλ(X) = max
Q∈Qµ

EQ[−X] = max
Q∈core(Ψ◦P)

EQ[−X],

where the representations sets

Qµ =

{
Q probability measure on (Ω,F) : Q� P, ν− dQ

dP
<

uni(λ)
ν−φ

}
and

core(Ψ ◦P) = {Q probability measure on (Ω,F) : Q� P,Q(A) ≤ Ψ(P(A)),∀A ∈ F}

are coincide by Theorem 4.7. In the CVaR case, it is also straight-forward to check

that for all A ∈ F ,

ν− dQ
dP

<
uni(λ)

ν−φ ⇔
dQ

dP
≤ 1

λ
P− a.s. ⇔ Q(A) ≤ P(A)

λ
∧ 1 ⇔ Q(A) ≤ Ψ(P(A)).
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Therefore, the representation theorems derived in Section 4 match the classical result

in the CVaR case as sets Qλ = Qµ = core(Ψ ◦P).

4.4.2 The uniform λ-quantile dependent Weighted Value-at-Risk

In the remark before Section 4.1, we mentioned a particular choice of probability

measure µ with uniform distribution on [0, λ], i.e., µ(ds) = 1
λ
ds, ∀s ∈ [0, λ]. Then

ρµ,λ(X) = 1
λ

∫
[0,λ]

CV aRγ(X)dγ is the average of CV aR over the interval [0, λ]. The

function φ, ν−φ and Ψ can be calculated from (4.10), (4.11) and (4.19) as

φ(t) =
1

λ
(lnλ− ln t)1[0,λ), Ψ(t) =

t

λ
(lnλ+ 1− ln t) ∧ 1,

ν−φ(dt) = λeλt+lnλ, ∀t ∈ [−∞, 0), ν−φ({0}) = 1− λ.

Consequently the robust representations

CV aRλ(X) = max
Q∈Qµ

EQ[−X] = max
Q∈core(Ψ◦P)

EQ[−X],

are characterized by sets

Qµ =

{
Q probability measure on (Ω,F) : Q� P, ν− dQ

dP
<

uni(λ)
ν−φ

}
,

and

core(Ψ◦P) = {Q probability measure on (Ω,F) : Q� P, Q(A) ≤ Ψ(P(A)), ∀A ∈ F} .
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