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ABSTRACT 

 

 

BENJAMIN ERIK WALKER. Design of fault tolerant control systems.  

(Under the direction of DR. BHARAT JOSHI) 

 

 

 This research designs a Fault Tolerant Control (FTC) approach that compensates 

for both actuator and sensor faults by using multiple observers.  This method is shown to 

work for both linear time-variant and linear time-invariant systems.  This work takes 

advantage of sensor redundancy to compensate for sensor faults.  A method to calculate 

the rank of available sensor redundancy is developed to determine how many 

independent sensors can fail without losing observability.  This rank is the upper bound 

on the number of simultaneous sensor failures that the system can tolerate.  Based on this 

rank, a series of reduced order Kalman observers are created to remove sensors presumed 

faulty from the internal feedback of the estimators.   

 Actuator redundancy is examined as a potential way to compensate for actuator 

faults.  A method to calculate the available actuator redundancy is designed.  This 

redundancy would allow for the correction of partial and full actuator failures, but few 

systems exhibit sufficient actuator redundancy.  Actuator faults are instead tolerated by 

replacing the Kalman estimators with Augmented State Observers (ASO).  The ASO 

adds estimates of the actuator faults as additional states of the system in order to isolate 

and estimate the actuator faults.  Then a supervisor is designed to select the observer that 

correctly identifies the sensor fault set.  From that observer, the supervisor collects state 

estimates and calculates estimates of the sensors and faults.  These estimates are then 

used in feedback with a controller that performs pole placement on the original system.   
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CHAPTER 1: INTRODUCTION 

 

 

1.1: Fault Tolerant Control Theory 

 

 

 The control system design process involves the use of feedback to modify the 

plant response so that the system closely tracks the reference input, minimizes the 

sensitivity of the system response to system parameter variations, and renders system 

response insensitive to any disturbance to the system.  In order to implement feedback, 

the system response is conditioned in the feedback loop and compared with the desired 

signal.  The system response is commonly referred to as output and is measured by 

sensors.  The error signal generated from the comparison of the reference signal and the 

output signal is utilized in some cases as the actuating signal.  However, further design 

process involves adding additional hardware to modify the error signal to generate the 

actuating signal for the actuator.  This additional hardware is commonly called 

compensators or controllers.  The layout of these elements is shown in Figure 1.1.1. 

 

 

 
Figure 1.1.1: Diagram of a system with a controller.  
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 The primary function of a controller is to ensure stability of the closed loop 

system and meet performance needs.  With the increase in the complexity of systems and 

the ever increasing need for more stringent performance requirements, the reliability of 

the actuators and sensors is of utmost importance.  Thus, detecting faults in the sensors 

and actuators is an area of current research interest in the study of control systems. 

 Faults occur in many components of the system.  Some of the common causes of 

faults in a system are plant model errors, sensor noise, and actuator wear.  Some faults 

result in minor errors that are tolerable, but eventually faults will prevent a system from 

performing acceptably or cause it to undergo unstable behavior.  To overcome this 

problem a fault tolerant control (FTC) system is designed. 

 Fault tolerant controllers must be able to handle multiple categories of faults and 

errors.  There are fundamentally two ways to achieve this.  Fault tolerant systems can be 

designed to be robust enough to perform correctly in the presence of faults.  Robustness 

is a measure of a system's ability to meet performance needs in the presence of errors.  

This type of method is known as passive FTC.  Passive FTC requires less information 

about the system and the faults than other methods.  This makes the design process 

easier, but it isn't able to handle strong faults.  The systems designed by this method are 

rarely designed to estimate the faults; being only designed to tolerate them. 

 The simplest passive fault tolerant system is a unity feedback controller.  Unity 

control uses comparative feedback to create a single closed loop.  When the system's 

response fails to meet the desired level, feedback forces it to adjust proportional to the 

difference.  This type of controller is one of the easiest to design.  Unfortunately, it is 

limited in the type of faults it can tolerate and it can't handle faults in the controller. 
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 A more robust method is to design multiple controllers and multiple loops, so that 

if one of the controllers fails, the system can be corrected via the other controllers.  This 

requires the controllers to be built to fail into the open state, rather than an unbounded 

failure.  This type of failure is common in high stress environments. 

 However, smarter systems can detect the presence of a fault, identify it, and 

dynamically compensate for it.  Thus they remove the faulty information.  Fault detection 

and isolation (FDI) based methods are effective at achieving fault tolerance.  These 

methods are known as active fault tolerant systems, as they estimate the fault signals or 

reconfigure themselves to compensate for the faults.  While both active and passive 

methods are able to compensate for faults, active systems are known for performing the 

full trio of fault detection, fault identification, and fault isolation. 

 Active systems usually consist of multiple layers.  One layer handles the normal 

operations of the system.  Additional layers are added to handle fault detection and 

isolation.  Some active methods rely on the fault information being fed into the controller 

which modifies its response accordingly.  Other methods reconstruct fault-free 

information that they pass to the controller instead of the plant's faulty outputs.  Most 

active methods produce fault estimates that are passed to other systems or to the user.  

Having a measure of the faults is useful in many critical systems. 

 For these reasons, a passive FTC is considered quicker and easier to design, but is 

less powerful.  An active FTC is stronger, but is more difficult to design.  Most FDI 

methods rely heavily upon an accurate model of the plant.  Without a complete model of 

the plant, FDI is complicated by the system improperly classifying un-modeled plant 

behavior as faults.  This problem of modeling error can be solved by designing higher 
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order models with greater accuracy.  Model imperfection is inevitable in any real world 

plant.  Inaccuracies in measurements and imperfections in the fabrication process cause 

the actual dynamics to deviate from the model of the plant.  FDI methods must accept 

this potential error and avoid improperly classifying it as a fault.  To avoid this, some FDI 

methods do not directly construct a plant model. 

 FTC is a powerful field of work, bringing increased stability and performance as 

well as robustness and fault identification.  A review of definitions of faults and errors is 

discussed in detail  in section 1.2.  Section 1.3 includes a review of various methods that 

perform FTC and FDI, both actively and passively. 
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1.2: Fault Classification and Modeling 

 

 

 Modern plants are complicated and modeled as high order systems.  Fault tolerant 

controllers are needed to maintain performance and stability in the presence of faults.  To 

assist in this process, plant faults are classified into categories.  Some faults are actual 

errors, while others are considered failures or disturbances.  Each type is described to 

enable correction and tolerance.  However, most methods of FTC are only able to handle 

certain subsets of fault types. 

 A type of fault present in nearly all systems is known as modeling error.  

Modeling error refers to flaws in the design of the model, such as using a linear model to 

estimate a nonlinear plant.  This type of error is regularly caused by using reduced order 

plants to deal with a high order system.  Many systems are too complicated to model both 

efficiently and correctly.  As such, many variables are often omitted to make for a 

simpler model.  The difficulty in compensating for these errors is that the analytical 

model to represent the error is usually of very high order.  This type of error causes a lot 

of difficulty with passive FTC systems.  The errors caused by model estimation lead to 

faults that can adversely affect the stability of the system if left unchecked. 

 An alternative to model error that interferes with the effectiveness of the 

controller is drift error which is internal to the instrumentation.  Drift errors are typically 

caused by the components of a system being subjugated to wear and subsequently not 

performing up to specification.  These errors are often multiplicative in nature, although 

they are usually modeled as additive faults.  The impact of this type of fault can be 

reduced with regular testing and maintenance of the system's equipment.  It is also the 

second easiest type of error to fix with FTC. 
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 There are also faults caused by external sources.  One type of external fault that is 

present in all real world systems is noise.  Noise describes stochastic errors in the system. 

Noise is typically associated with measurements, but every component suffers noise in 

some aspect.  It is a high frequency error and not predictable by analytical representation.  

Modern designs often classify modeling errors as noise to simplify the mathematics [21], 

[38].  While noise is impossible to predict deterministically, its high frequency and low 

power makes it easy to compensate for with FTC methods.   

 Another external source of faults is disturbance.  Disturbance is a low to mid 

frequency signal that is an unexpected input to the system.  Disturbance signals are 

deterministic in nature, so unlike noise they can be modeled.  An example of a 

disturbance for an airplane could be crosswind.  Disturbances are typically an additive 

unknown fault.  Many systems will lump all faults, from disturbances to model errors, 

into some form of unknown fault input.  As systems can be designed to predict these 

faults, they can be designed to estimate and correct for them.  There are a wide variety of 

methods to handle these additive and deterministic disturbances. 

 Most faults are handled as a form of disturbance.  Many controllers are designed 

to predict them and correct for their presence.  There are various kinds of disturbances to 

examine, each with different properties.  For example a locked fault, or full fault, is when 

a component takes on a fixed value instead of its normal dynamics.  A subtype of locked 

fault is when this value is zero, which is known as an open fault.  An open fault occurs 

when portions of the system are no longer connected to each other due to failure.  Full 

faults can be detected and isolated by nearly all fault estimators, given enough time. 
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 Partial faults refer to the class of faults where the original signal has been 

modified by an external signal.  This is often modeled as an additive fault signal.  There 

are some techniques that model partial faults as multiplicative fault signals.  Most 

disturbances, faults, and errors are partial faults.  FDI methods rely on additive properties 

to isolate the fault from the signal.  Once this isolation has been done, the fault and 

corrected signal can be independently passed to other system components. 

 It is difficult to compensate for intermittent faults.  They are deterministically 

defined faults, with a stochastically defined presence.  The fault's presence is not 

guaranteed after its emergence.  This means that fault identification methods must 

converge upon the fault signal quickly.  They also must quickly return to nominal 

behavior when the fault disappears.  If the FDI system is too slow to correct for the 

presence of the fault, it can lead to oscillatory behavior.  FTC methods that focus on 

robustness or speed are needed to handle intermittent faults.  

 Linear faults are straightforward and the effect of the fault is easy to quantify.  

When dealing with nonlinear errors, complications abound.  Nonlinear systems do not 

readily abide by the conveniences of linear time-invariant systems.  Nonlinear coupling 

of the internal states magnifies errors, making the speed of fault detection and isolation 

highly critical.  In addition, most FDI designs are not mathematically complete in the 

presence of nonlinearities [35]. 
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1.3: Fault Tolerant Methods 

 

 

 Fault tolerant control is a broad field that has seen a lot of growth in the past few 

decades.  Multiple techniques are described in literature to achieve performance and 

stability in the presence of faults.  No single technique has been shown to be optimal in 

all cases.  Each one has its own strengths and weaknesses that must be considered.  Some 

require large amounts of information about the plant or potential faults.  Others do not.  

This section will review many of the popular techniques. 

 Nearly any FTC method can handle static faults, if given enough time.  In general, 

FDI's are defined by the speed of their fault detection.  In a system with low noise, Linear 

Matrix Inequality (LMI) based methods can be used to make a very fast fault detector.  

The problem with this method is that the system's quick response leads to improper 

classification of noise as a fault.  Results of LMI based designs should be monitored to 

handle the problem of chatter caused by over-correction.  Chatter is caused when a 

system over corrects for small disturbances from the target, leading to oscillations around 

the target output.  This speed of fault correction is very important to a robust system, 

especially in the presence of intermittent faults.  LMIs are often combined with another 

system to reduce the impact of noise and chatter [36]. 

 Another technique to reduce the difficulty of fault identification and increase the 

speed of an LMI design is to use Linear Fractional Transformation (LFT).  LFT takes the 

plant and controller models and subdivides them to better facilitate system analysis.  

Once the plant has been disassembled by LFT, it is easier to isolate the faulty component.  

Once a fault has been isolated, the system must correct for the effect of the fault.  Based 

on the fault's interaction with the LFT, the controller can be dynamically adjusted.  This 
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method is commonly used in gain scheduling, by taking advantage of the controller's 

dynamic design.  This improves fault isolation and ensures that only necessary portions 

of the system are modified when in the presence of faults [15]. 

 LFTs can also be used to isolate fault dynamics.  When specific faults are known 

to occur in a system, an LFT can be designed to model the fault.  This form of adaptive 

modeling is well suited to sensor drift faults.  Normally, these faults are treated as 

additive errors.  With LFT, they can be estimated independently of the rest of the system.  

This gives a detailed study of how the sensor and actuator faults interact with the stability 

and the performance of a system results.  This study results in a better tuned FDI scheme 

that can take advantage of the knowledge of the system dynamics.  However, the plant's 

model must be accurate in order to perform fault modeling effectively.  Another strength 

of using LFT in this way is that it can be applied to specific kinds of nonlinear errors, by 

taking advantage of a dual layered FDI system [27]. 

 A plant model is not always available.  A simple method to deal with this 

situation is to use input/output (I/O) plant modeling and matching.  First, an I/O based 

model is created by observing the plant while it is operating under normal fault free 

conditions.  Once designed, the I/O generated model is compared to the real world 

responses over time.  Isolation of which actuators or sensors are non-functioning is 

performed by examining the differences in the results.  A strength of this type of FTC is 

that the system can be constructed over an unknown plant.  It is limited in the form of 

faults that it can tolerate and is slower to converge than most FTC systems [4], [22], [23].  

These techniques can be adapted to handle nonlinear systems. 
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 Active Disturbance Plant Control (ADPC) is such a design field.  Instead of 

attempting to fully model a complicated nonlinear time-varying system such as an 

aircraft, the order of the system is used to determine how it will generally respond, and 

everything beyond that is treated as a disturbance.  By designing ADPC to minimize the 

effect of this disturbance in addition to the plant error, productive results are achieved 

with limited knowledge of the plant.  While these designs aren't able to identify faults, 

they are very effective at removing them from the system, by correcting for them without 

needing to identify them.  This is very handy when plants operate in a wide range of 

modes or are so complicated that practical models are filled with errors due to 

simplification [12]. 

 One of the key differences between FTC and FDI is that the later performs fault 

identification.  Isolating faulty behavior from model errors or noise is a difficult 

challenge.  For that reason, many fault tolerant methods treat all forms of error as faulty 

behavior.  These systems do not perform fault identification.  Some of them do not 

perform fault detection.  FTC methods of this nature are designed to be very robust.  

Robustness is a term that describes a system's ability to continue to operate within 

specified parameters in the presence of errors and faults.  A robust controller is one that 

modifies the plant so that it resists disturbances and noise while maintaining stability and 

performance. 

 Work has gone into finding a design method that produces an optimal level of 

robustness.  Determining a measure that optimizes robustness is complicated, but two 

have emerged.  The H2 and H  methods are considered optimal by many designers.  

These two methods are designed to minimize the H2 and H  norms respectively.  The H2 
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norm examines the root-mean-squared result of the impulse response of the system.  

Effectively, H2 seeks to minimize the power response of the system.  By contrast, the H  

norm examines the peak response of the system for all frequencies.  H  optimal control 

seeks to minimize that peak.  These two control problems provide slightly different ways 

to design optimal controllers for a plant.  Controllers designed by these methods are 

known for their robustness and ability to withstand modeling errors, disturbances, and 

faults [6].  Their weakness as an FTC scheme is that they do not detect or identify faults.  

They are designed to keep the plant operating in the presence of any number of errors. 

 As has been shown, some systems are robust enough to not need direct fault 

observation.  The tradeoff is that robustness usually hides faults from the supervisor.  An 

alternative to this problem is fault observing.  In many functionally complete FTC 

systems, a secondary fault observer can be designed.  This is very handy in the case of 

nonlinear systems.  In nonlinear plants, fault correction is often solved by piecewise 

linearization and robust controllers that are adjusted dynamically.  This greatly increases 

modeling errors, especially when the system's operational point is far from the point at 

which it was linearized.  Certain forms of nonlinearity do not respond well to this form of 

linearization, such as hysteresis and saturation.  Fault detection is complicated by 

mathematical artifacts from the linearization process.  Observers that instead return to the 

nonlinear model are very effective at avoiding the complications of linearization.  

Observers can rely on their open-loop definition to relax design conditions, such as the 

Lipschitz condition.  This may increase the observer's complexity, but it produces better 

results on nonlinear plants [14]. 
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 The controllers, observers, and estimators are not immune to the effects of faults.  

Advanced systems must take into account that the control system that is built to correct 

for faults is also vulnerable to them.  One way to compensate for this is by introducing 

redundancy into the controller.  Dual Loop Fault Tolerant Control (DL-FTC) schemes are 

built around the idea of redundancy in the fault detection and correction mechanics.  

Multiple redundant fault detectors watch for errors in the fault compensator.  Supervisor 

systems signal the user when the faults being corrected by the compensator are not 

detected by other subsystems.  The advantage of dual loop systems is that fault detectors 

are regularly cheaper and more robust than fault compensators.  Another advantage is that 

the additional detector layers can be added to any system, without impacting the design 

or operation of the system in normal operations modes [5]. 

 The logical conclusion of DL-FTC is to create independent FTC components to 

monitor each input and/or output.  This makes fault isolation simple.  If a fault is detected 

in a single component, then that is also where the fault is located.  These FDI systems 

require a supervisor subsystem that is capable of reconfiguring the controller based on 

which actuators and sensors are still functioning.  A system like this works best when the 

supervisor is able to disconnect individual faulty systems from the plant's dynamics.  This 

FTC system requires a high degree of component redundancy in both in the sensors and 

actuators [2]. 

 The highest levels of redundancy can be found in Wireless Signal Networks 

(WSN). In a WSN, each individual node makes its own opinion about the local data it 

observes and then transmits to a master node.  This master node aggregates all the data 

and compiles results.  This type of system has an immense level of redundancy which 
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makes many FDI schemes highly effective.  When an individual node is found to 

repeatedly rank poorly on the aggregate data accuracy metrics, the master node can flag 

its information as faulty or even send it a request to perform a self diagnostics and test 

[32]. 

 In many applications, there are multiple versions of very similar plants being 

operated independently of each other.  The cost for an engineer to design a high quality 

FTC system for a single plant often makes it impractical to have them repeat the process 

on a series of similar plants in a factory.  Instead, the engineer produces one full design 

that is applied to all plants with a simple controller appended to each system, such as a 

Proportional-Integral-Differential (PID) controller.  Then the design can be tuned slightly 

based on the specifics of the individual plant.  Work has been done to simplify the PID 

even further; reducing it to a bandwidth based tuning system.  Based on the specifications 

of the similar plants and their needs for noise rejection and command following, a simple 

PID tuning parameter is laid out.  This allows a high quality design to be transferred to 

similar plants.  Modifying an existing similar design rather than creating a new one does 

impact the plant's performance, but it leads to a significant reduction of costs spent on 

design [11]. 

 The design of FTC is tailored to deal with the types of faults that are meant to be 

corrected.  Many FTC methods are designed to isolate and remove faults from the system 

before feedback.  However, in the case of actuator and plant faults, this is often not 

possible.  Internal feedback complicates fault isolation in most plants.  To correct for this, 

adaptive controllers are designed that take additional inputs from the fault identification 

subsystems.  With the location and strength of the faults identified, the controller can 
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more efficiently modify the control vector to compensate for them.  Modifying the 

controller in this way is very effective in dealing with actuator faults [3]. 

 Additionally, changes to the plant's dynamics can be fed to the controller to 

improve its ability to correct failures.   There are various methods to maintain the 

performance of a failing system, once a fault has been detected.  A solid approach is the 

Pseudo Inverse Method (PIM).  In this method, the alterations are fed to a controller 

which is designed to reconstruct the original closed-loop definition of the system.  This is 

not guaranteed to be an unique solution.  Therefore, the PIM's reconstruction table must 

be built beforehand and stored with the adaptive controller.  Unfortunately, an adaptive 

controller built by PIM does not guarantee stability after modification.  A method to 

determine if a Single Input/Single Output (SISO) modification will maintain system 

stability has been found.  However, a Multiple Input/Multiple Output (MIMO) extension 

has not been completed [10]. 

 Tracking changes to the plant's closed loop performance is one way to keep a 

system functioning.  But even with methods like PIM, each error makes further errors 

harder to find.  Once the system's dynamics are changed in a closed loop, errors will 

compound themselves.  The speed of the FDI system becomes vital.  The longer faulty 

data is in the feedback loop, the greater the performance and stability loss.  It is far 

simpler to maintain good FDI in sensors due to the ease of isolating the faulty signals.  In 

presence of a fault, the faulty sensor signal is disconnected from the feedback and 

controller.  This process is difficult in the case of actuator failures.  Actuator failures are 

insulated from observation by the plant, which compounds the difficulty of correction 
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[20].  A quality FDI system coupled with regular maintenance greatly reduces actuator 

and sensor faults. 

 No matter how well they are maintained, as plants operate they change their 

behavior.  Some changes are caused by faults, modeling errors, or nonlinearities.  Sliding 

Mode Observers (SMO) are a way to deal with faults while allowing for changes in the 

plant dynamics.  The advantage of an SMO is that there is no need for a plant model.  

The SMO takes a slice of data from the recent history of the plant's inputs and outputs 

and generates a model based solely on that information.  Unusual data patterns and 

behaviors are classified as faulty and reported as such.  As time advances, the data is 

updated and the dynamic model changes.  The strength of the SMO is also its weakness.  

It does not use any information about the plant other than the recent output.  It can't be 

designed to take advantage of known properties of the plant. 

 Multiple SMO systems can be designed with various tunable parameters by 

incorporating a series of SMOs working in concert.  The system of SMOs can take 

advantage of some knowledge about the plant, by tuning the parameters of each layer 

differently.  For example, the front end observer can be designed to reject the chatter and 

noise problems common to SMOs, while the later systems can be tuned for a higher set of 

accuracy.  This produces better results than a single SMO [19]. 

 SMOs examine a temporal slice of the plant's behavior.  This reduction of state 

space reduces the difficulty of working with nonlinearities.  This property has lead to 

work in the field of Nonlinear Sliding Mode Observers (N-SMO.)  If faults are treated as 

unknown inputs that consist of additive signals, the N-SMO can be designed to separate 

the system data from the faulty signals.  Work in this field has been limited to nonlinear 
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systems that satisfy the Lipshitz condition.  Multiple N-SMOs can be cascaded in series 

to bring about finer tuned information, while at the same time reducing sensitivity to 

chatter [26]. 

 The SMO technique allows nonlinear systems to be estimated with linear 

schemes.  These same properties mean that SMOs are capable of handling slowly time-

varying signals.  This is because of the short term linearization inherent to an SMO.  

Knowing the speed of the changes in the plant and the speed of the faults becomes very 

important when dealing with a time-varying nonlinear signal.  When dealing with a time-

varying system, tuning information needs to be gathered from the plant.  The SMO must 

be designed so that it can tell the difference between natural changes to the properties of 

the plant and faults.  A SMO operating on such a loosely defined system is effective at 

isolating full failures despite nonlinearities and time-varying details.  Intermittent failures 

and slower slew failures are difficult to isolate, instead being misinterpreted as changes to 

the plant dynamics [26]. 

 Due to their focus on short term information, SMOs are vulnerable to noise.  

Alternatively, Kalman filters are designed to optimally tolerate Gaussian noise. Systems 

utilize Kalman techniques to build observers that either isolate faults and report them, or 

bring about sufficient robustness to ensure that they can be ignored.  Many plants are not 

subject to Gaussian noise and do not respond as favorably to Kalman based FTC 

methods.  By using the Probability Distribution Function (PDF) of the output sensors, 

LMI methods can be combined with Kalman techniques.  Once the faults have been 

detected, they can be isolated and the fault-free outputs can be extracted [1]. 
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 Time-varying systems that have periods of minimal change followed by periods 

of high change are not well handled by a Classic Kalman Filter (CKF).  Many FTC 

systems designed with CKFs have to be built so that they consider the broadest changes 

to the plant as non-faulty behavior.  This means that in times of minimal changes, faults 

can be overlooked.  An Adaptive Fading Kalman Filter (AFKF) is created by adding a 

fading parameter to the filter that is changed dynamically.  When the fade time is set 

high, the filter adapts to changes in the system parameters quickly.  As such, large 

changes in the model and output are not classified as faults.  After the system has settled 

into a new operations mode, the fader can be dropped down.  When the fader is low, the 

AFKF system becomes more sensitive to changes and regains precision with respect to 

errors.  An AFKF is effective when a system can undergo large step changes in the 

behavior it exhibits.  An example of such a system is a high performance car, where 

changing gears changes the behavior of the system [25], [33]. 

 An alternative to Kalman filters is Principal Component Analysis (PCA).  PCA 

identifies faults by looking at both the cross correlation between the sensors and the 

autocorrelation within each sensor individually.  When using multiple PCA designs 

simultaneously, Multi-Scale Principal Component Analysis (MSPCA) allows the system 

to both identify noise and faults by examining different scales of PCA at the same time in 

different subsystems.  When a fault is detected within the same threshold as noise, it can 

be rejected as misclassified noise.  This is effective when dealing with noisy systems.  By 

examining the autocorrelation within a sensor, even systems that lack sufficient 

redundancy for other methods can be examined with PCA methods [24], [31]. 
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 Another way to use PCA in fault detection is to focus on the Partial Least Squares 

(PLS) and the Squared Prediction Error (SPE).  The SPE focuses on the residual space 

from the PCA calculations.  A large residual in the SPE suggests that the output is not 

matching the expected results.  This indicates that the component that is being observed 

with PCA is exhibiting faulty behavior.  Part of the difficulty in this method lies in 

coming up with an appropriate threshold of fault detection for the SPE.  If it is too low, it 

will mistake changes in plant behavior as faults.  But it must be sensitive enough to 

identify when a real fault occurs.  One of the advantages of the SPE/PLS numeric is that 

it can give a quantitative value for the reasonableness of a fault.  If the SPE/PLS is near 

unity, the system is unlikely to be experiencing a fault, instead experiencing merely high 

noise.  If the SPE/PLS threshold is significantly greater than one, then it is likely that a 

fault is occurring [7]. 

 Another way to use PCA based techniques is to choose wavelets that isolate the 

fault dynamics.  By choosing a high frequency wavelet filter, the noise of the system can 

be removed.  Then by taking a low frequency wavelet filter, the plant's operations can be 

removed from an observed dynamic.  Applying PCA to the resulting data produces a 

cleaner view for looking at faults.  However, careful design procedure must be observed 

when designing the high and low wavelet filters.  A balance must be struck between 

rejecting false positives and the speed of fault identification [16]. 

 Both SMO and PCA techniques are designed to produce good results with limited 

knowledge of the model of the system or its faults.  In most systems, a reasonable model 

of the plant can be obtained.  Many techniques focus on directly modifying the state-

space equations of the model of the plant.  By knowing the internal dynamics of a plant, 
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it becomes easier to design controllers to correct faults and plant behavior.  Modern 

control design often incorporates a state estimator or state observer to calculate the 

internal states of a plant, when they are not available as outputs.   

 Augmented State Observers (ASO) are a form of dynamic fault estimation that 

builds upon state observers.  Faults are classified as inputs and internal states that are 

unknown, but have a known model.  An ASO increases the size of the state estimator to 

include fault states in the model of the system.  By using plant and fault models, the ASO 

generates the estimated states of the plant and its faults.  The state estimates are sent to 

components such as the controller.  The fault estimates are sent to the operator or a fault 

management system.  The standard model for such research focuses on actuator faults 

and plant faults.  Not much work has been done in the field of ASOs to tolerant faulty 

sensors or controllers.  ASOs work best when models of the possible fault types are 

available [17]. 

 ASO design can be modified to operate when fault models aren't available.  The 

Extended State Observer (ESO) takes the fundamentals of an ASO but reduces all the 

modeling to a single value.  This value determines how sensitive the system is to errors, 

and how quickly it classifies them as faults.  The ESO estimates all the states of the plant 

as per a normal state observer.  Any discrepancy between the estimate and the output is 

classified as an error.  When the aggregate error is over some threshold, it is treated as a 

fault.  ESOs cannot isolate a fault unless the design is limited to only tolerating sensor 

faults.  The advantage of an ESO is that it requires minimal knowledge of how faults will 

appear in the system, but it is limited in its ability to compensate for them.  If the tuning 

parameter is set too high, model errors and noise will be improperly classified as faults 
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and give the ESO a chatter problem.  If the tuning parameter is set too low, the system's 

response to a fault may be too slow to prevent a loss of performance and stability [34]. 

 Another classification of ASO is the Unknown Input Observer (UIO).  UIOs are 

designed around classifying faults as uncontrollable input signals to the plant.  UIO 

designs handle additive faults effectively.  UIOs can both reject noise and detect 

disturbances indicative of faults.  This is due to their high number of tunable parameters.  

These tuning parameters require models of the plant and potential faults.  Like ASOs, 

they output the localized fault signals and the estimates of the plant.  Unfortunately, the 

increased number of tuning parameters makes designing an UIO more difficult [37]. 

 The design of FTCs encompasses a large set of methods to satisfy a fault 

tolerance need.  For better results, fault observation and state observation must be 

performed simultaneously by the same system.  Combining this with the desire for noise 

rejection produces a series of design requirements that are difficult to guarantee in a 

single observer.  Thorough testing of the observer needs to be done before 

implementation to show that the design is able to handle all the performance 

requirements.  H2 and H  performance indexes can be used to introduce additional 

robustness, without sacrificing fault localization [40]. 

 All of these methods are effective in some aspects of FTC.  Modern performance 

needs increase the availability of system and fault models.  With these models, 

computing techniques can be used to examine systems.  Computer power and capability 

has made many FTC designs viable.  When combined with a skilled designer, 

performance needs can be met in the modern age despite the presence of faults, 

disturbances, errors, and noise. 
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 This research uses a series of reduced order observers that take advantage of 

sensor redundancy to remove sensor faults.  The estimators are first designed as Kalman 

estimators to give them resistance to noise.  Each Kalman estimator is designed to 

anticipate a specific set of sensor faults.  A supervisor is designed to select the optimal 

estimator from the multiple ones available.  This supervisor also calculates estimates of 

the sensor faults.  Then the Kalman estimators are upgraded to ASOs.  Changing the 

observers to ASOs adds the ability to estimate and tolerate actuator faults, while retaining 

the Kalman estimator's resistance to noise.  With a few modifications, the controller is 

able to adapt to the changes in the plant dynamics caused by the actuator faults.  One of 

the strengths of this research is that it incorporates multiple FTC design techniques so 

that it can tolerate a number of full and partial sensor faults, in addition to actuator errors 

and noise. 
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1.4: Research Outline 

 

 

 Chapter 2 provides details of this innovative method for using reduced order 

observers to create a fault tolerant system.  Section 2.1 develops the technique to measure 

the available sensor redundancy.  This is achieved by examining how sensor faults can 

damage observability.  The rank of redundancy is proven sufficient such that sensors can 

be reconfigured in the presence of faults.  Section 2.2 goes into the design process of a 

bank of reduced order observers.  Design begins with a full order Kalman observer.  

Once the model and the estimator have been defined, a series of reduced order observers 

are designed.  They are laid out to correspond to sets of sensor failures that are tolerable 

according to the technique developed in section 2.1.  Each observer estimates the outputs 

of the system.  If a model of the sensor faults is available, section 2.3 details how to 

perform fault estimation.  Details for how to handle both additive and multiplicative 

faults are shown.  In section 2.4, the supervisor system is designed.  The supervisor 

determines which of the observers is the most accurate one and which set of sensors are 

currently faulty.  In chapter 2, the fault tolerant system does not use a controller and is 

operating as an observer in the open-loop configuration. 

 In chapter 3, two different techniques to tolerate actuator faults are explored.  

Section 3.1 develops a technique to measure the available actuator redundancy.  This is 

done by examining how actuator faults can impair controllability.  The redundancy can 

be used to determine when system reconfiguration can be used to bypass faulty actuator 

components without losing controllability.  As actuator redundancy is uncommon, an 

alternative method to tolerate actuator faults is explored.  An Augmented State Observer 

(ASO) is used to tolerate actuator faults and adapt the system to tolerate the changes in 
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the plant dynamics.  The ASO technique uses an adaptive controller to modify the 

system's response to the actuator faults.   

 In chapter 4, the reduced order observer design of chapter 2 is extended to tolerate 

actuator and sensor faults.  A controller is added to enable feedback control of the 

system.  The observer is changed to an ASO, and the changes that must be made so that 

the reduced order observers can adapt to actuator faults as well as sensor faults are 

examined in section 4.1.  The supervisor is detailed in section 4.2.  Proofs are included to 

show that fault tolerance is maintained in the presence of simultaneous sensor and 

actuator faults.  The components of the fault tolerant system are assembled as shown in 

Figure 1.4.1.   

 

 

 
Figure 1.4.1: Overview of the system, observers, supervisor, and controller. 

 

 

 

 Chapter 5 examines a third order system that illustrates the application of this 

research with a Kalman estimator as developed in chapter 2.  In this chapter, only sensor 

faults are examined.  The plant used in the example is a turbofan engine.  The operation 
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of the engine and the fault tolerant system are simulated with Matlab.  Section 5.1 

verifies that the turbofan engine exhibits sufficient redundancy for the purposes of this 

work.  The Kalman observers are designed in section 5.2.  The supervisor is determined 

in section 5.3.  Fault estimation is detailed, and the whole system is assembled to view 

the results.   

 In section 6.1, the actuator redundancy of the turbofan engine is calculated.  In 

sections 6.2-6.4, the plant under examination is changed from a turbofan engine to a 

Boeing 747.  In section 6.2, the airplane's dynamics are examined and an adaptive 

controller is designed.  Section 6.3 details the design of all the ASOs from section 4.1 as 

well as the supervisor from section 4.2.  Then various simulations of the fully assembled 

fault tolerant system are reviewed in section 6.4.  Both actuator and sensor faults are 

simulated and explored. 

 Chapter 7 analyzes the results obtained in the previous chapters.  Conclusions 

regarding efficiency, adaptability, and ease of use are listed in section 7.1.  Details 

regarding the strengths and weaknesses of this technique are also included.  Design 

applicability, potential limitations, and short comings of the method are outlined.  

Potential avenues for research in the future involving these methods are explored in 

section 7.2. 

.  
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1.5: Contribution of this Research 

 

 

 The research presented in this dissertation is intended to aid in the design of Fault 

Tolerant Control systems.  This work contributes a method for tolerating sensor failures 

of multiple types.  It focuses on taking advantage of redundancy in the sensor information 

to reconstruct fault-free state and output information and potentially estimate the sensor 

faults themselves.  This research also shows how to apply these novel techniques with an 

Augmented State Observer in order to incorporate fault tolerance for actuator failures. 

 A method to measure available sensor redundancy is shown and proven.  This 

gives designers a new tool in the examination of FTC systems.  This measure can be 

examined for additional details that provide insight into the areas of the plant that are 

more vulnerable to faults.  A technique to measure the available actuator redundancy is 

also shown.  This measure can also provide insight into the vulnerable actuators in a 

system.  This measure's application is limited as actuator redundancy is less common in 

most systems. 

 A system of designing a series of reduced order observers is presented.  This 

system is proven to eliminate specific sets of sensor faults.  The speed and efficiency of 

the fault tolerance of the individual observers is shown.  This system of reduced order 

observers is first derived from a Kalman Estimator, then an Augmented State Observer.  

By incorporating Augmented State Observers, the system can tolerate both actuator and 

sensor faults.  One limitation of these reduced order observers is that large fault sets will 

mandate a large number of observers.  Limited computational power can make real time 

analysis difficult in these types of systems. 
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 Lastly, a supervisor system is designed to determine which sensor faults are 

occurring and which observers are producing the optimal results.  This research shows 

how to calculate sensor faults if their model is available.  All of these components are 

combined to produce a fault tolerant system that is easier to design than similar methods.  

This fault tolerant system is able to quickly and efficiently eliminate sensor and actuator 

faults as well as produce accurate state estimates which can be used in state feedback. 

 



 

 

 

 

 

 

CHAPTER 2: SENSOR FAULT TOLERANCE METHOD 

 

 

2.1: Measuring Sensor Redundancy 

 

 

 The first part of this work elaborates on a method to calculate sensor redundancy.  

This initial step outlines sufficient conditions that determine when a sensor can fail and 

its signal can still be recovered.  In this step, sensor failure is taken to the extreme case of 

a complete loss of information, or a full fault.  These worst case assumptions guarantee 

that the calculations result in a sufficient condition for redundancy.  Observability of the 

system is measured before and after a set of sensors fail.  Systems that maintain 

observability despite the loss of sensor information have sufficient redundancy for the 

implementation of the subsequent steps of the design process.  Additional information 

about the sensors and redundancy is obtained by analyzing the results of this crucial first 

step. 

 This work takes a standard method for calculating observability as discussed in 

[18] and expounds upon it.  The state equations are modified to represent the effects of 

faulty sensors.  The faulty sensors are represented by modifying the corresponding 

elements of the state matrix to zero.  The changes to observability are then computed.  A 

system to test and organize all possible fault sets  is outlined in this dissertation.  Based 

on those results, the measure of available redundancy is defined. 

Case: Time-variant system with a single sensor failure 
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 Assume a linear time-varying system defined as follows. 

 

                            (2.1.1) 

                           (2.1.2) 

 

 This pair of equations represents the plant under normal conditions.  The matrices 

and variables are defined as follows: the state vector is         ,           is the 

control vector, and the output vector is        .  The matrices     ,     ,     , and 

     are known and of dimensions   x  ,   x  ,   x   and   x   respectively.  Time 

indexes    and    represent the initial and final time respectively.  Assume the system is 

observable on             for all          .           and          are   x   

controllability and observability Grammians defined below.           is the state 

transition matrix between times    and   . 

 

                                   
  
  

     (2.1.3) 

                    
               

  
  

     (2.1.4) 

 

 In [18] a proof is presented that shows that the state equations (2.1.1) and (2.1.2) 

are observable for           if and only if          is invertible.  The proof of this will 

not be repeated here. 

 Now that the original plant has been defined, it is modified to represent a failure 

in one of the sensors.  Define       as the      matrix, with the     row set to zero, 

         and redefine part of the state equation as follows. 
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                   (2.1.5) 

 

 This change to the state equations is mathematically equivalent to the     element 

of      no longer being defined by equation (2.1.2).  The plant with the sensor failure is 

defined by (2.1.1) and (2.1.5).  Part of the proof for observability will require the 

definition of an   matrix.  Define the   x   matrix-function   by induction, presuming the 

existence and continuity of the indicated derivatives. 

 

             

                                     

 

 The   matrix has the property that derivatives of the state transition matrix   are 

equivalent to multiplications by  .  This property is defined mathematically below.  For 

all   and   and non-negative   

 

  

   
                                   

 

 An intuitive proof is laid out with induction.  In the     case 
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 And in the inductive case 

 

    

     
                

 

  
              

                    
 

  
               

    

     
                                  Q.E.D. 

 

 The application of this   matrix is straightforward and directly useful.  Suppose   

is a positive integer such that for all          ,       is   times continuously 

differentiable and      is       times continuously differentiable on         for some 

          .  The following test determines if the system is still observable, despite the 

failure of the     component of     . 

 

     

 
 
 
 
      

      
  

 
        

 
 
 
         (2.1.6) 

 

 This is proven by contradiction.  Suppose that             and satisfies (2.1.6).  

Setting up a contradiction, presume that          is not invertible.  As such, there exists 

a nonzero   x 1 vector    that satisfies the following. 
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                             (2.1.7) 

 

 Let    be the nonzero vector                and substitute it into (2.1.7). 

 

                             (2.1.8) 

 

 With (2.1.8) defined, all cases must be shown to converge to zero.  In the case of 

   , choosing      gives us that                    .  In the case of    , 

differentiating (2.1.8) with respect to   gives                         and specifying 

    , gives us that       .  From this we can derive the formula for the general case. 

 

  

   
                                        

 

 All these cases are compiled together for             . 
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 This contradicts the linear independence implied by (2.1.6).  Thus (2.1.6) is a 

sufficient condition for the state equation to be observable on        .  So long as this 

condition is maintained, the system maintains observability despite the loss of the     

sensor.   

Case: Time-invariant system with a single sensor failure 

 Complications due to (2.1.1) and (2.1.2) being time-variant prevent this from 

being a necessary condition.  By reducing the set of state equations to time-invariant 

systems, this can be extended to a necessary and sufficient condition.  In this case, the 

state equations are redefined to the definitions given in (2.1.9) and (2.1.10).  Based on 

that, the   matrix rank test described in (2.1.6) is simplified to (2.1.11). 

 

                      (2.1.9) 

                 (2.1.10) 

     

  

   
 

   
   

         (2.1.11) 

 

 To prove the necessary condition, we presume that the observability Grammian 

         is not invertible.  Therefore, there exists a nonzero   x 1 vector    such that 

  
              .  In the time-invariant case                  . 
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                        (2.1.12) 

 

 The form of (2.1.12) is similar to (2.1.8) and we perform the same differentiations 

as before.  Due to the time-invariant nature, the case structure is simpler this time.  

Equation (2.1.12) is differentiated   times, and at each derivative   is set to    so that it 

cancels out.  This expansion gives the general form    
               .  All of 

those equations are aligned into a column. 

 

 

  

   
 

   
   

          (2.1.13) 

 

 This equation contradicts (2.1.11).  Q.E.D.  This proof is a necessary condition for 

maintaining observability.  The proof for the sufficient condition for the time-variant case 

also applies to the time-invariant case described in (2.1.9) and (2.1.10).  By combining 

these proofs together, the condition becomes a necessary and sufficient requirement for 

maintaining observability in the time-invariant case. 

Case: Rank 1 sensor redundancy 

 These proofs only examine a single test of a system undergoing one sensor fault.  

To be useful, this test must be applied to the entirety of the plant.  As such, a vector is 

constructed with the faulty sensor   as a variable.  Define       as an   x 1 vector. 
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             (2.1.14) 

 

 This vector can be analyzed to gather information regarding how the plant 

responds to sensor failure.  Equation (2.1.14) provides a test that determines if there is 

sufficient redundancy in the sensors of a plant for any single sensor to fail without 

impacting observability.  If the minimum value of (2.1.14) is   for all        , then the 

system is observable in the presence of a single fault, regardless of which sensor is faulty.  

This kind of plant has rank 1 sensor redundancy.  This forms the basis in the design of the 

reduced order observers required in the later steps of this research.  It should be noted 

that if the    vector is being applied to a time-invariant system, this condition is both 

necessary and sufficient. 

 In a time-variant system, if        , removal of the     component of      

may cause a loss of observability.  In a time-invariant system, removal of the     

component will cause a loss of observability.  This is because the test is only proven 

necessary in the time-invariant case.  In general, failing this test means there isn't enough 

redundancy to proceed with this technique.  By examining which sensor failure leads to 

the system failure, additional redundant sensors can be added to the original plant. 

Case: Rank   sensor redundancy 

 Equation (2.1.14) deals with a single sensor fault of undetermined characteristics.  

Modern systems fault tolerance needs often require that they are able to handle multiple 

sensor faults.  From this need, (2.1.14) is extended to handle multiple sensor failures.  A 

series of new definitions need to be laid out to achieve this. 
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 Define    as the set of all sensor elements            .  Define   as an integer 

from     .  This   represents the number of simultaneous sensor faults that are to be 

tested for redundancy.  Define       as the     combination of set   , for       
  

        
 .  

The full set of combinations is defined as 

 

         
 

 
           

 

 Further define        as the      matrix with all columns corresponding to the     

set of sensors defined by       redefined as zero and adjust the state matrix accordingly. 

 

                           (2.1.15) 

                    (2.1.16) 

 

 Again, we will presume an   matrix as follows, subject to the existence and 

continuity of all indicated derivatives.  A complete proof of the definition of this version 

of   is not derived here as the proof is functionally equivalent to the ones derived earlier 

in this section. 
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 The   matrix is redefined for each different       , in the same way as before.  In 

this case, each   corresponds to each set of       for all possible   for a given  .  Define 

       as the   x 1 vector below.   

 

             

 
 
 
 
      

      
  

 
        

 
 
 
 ,     

  

        
     (2.1.17) 

 

 The measure        can be analyzed in the same way as the       vector.  If 

(2.1.17) passes the rank test for all  , the plant is sufficient to have sensor redundancy of 

rank  .  To be more explicit, if the minimum of        is   for all  , the system is 

observable in the presence of up to   sensor faults.  This property does not require any 

knowledge about the nature of the faults.  As before, if (2.1.15) and (2.1.16) define a 

time-invariant system, the test in (2.1.17) becomes both necessary and sufficient. 

 If the minimum of        is not  , there is insufficient redundancy to guarantee 

sensor reconstruction is possible.  In a time-invariant system, sensor reconstruction is not 

possible.  For any        that does not equal  ,       is the set of faults that can cause 

the system to lose observability.  As before, designers can consider adding additional 

sensors to the plant to improve the redundancy.  One option is to reduce the value of   

and recalculate the redundancy for a smaller set of faults.  Another alternative is to design 

a subsystem for those specific fault cases.  Usually this kind of subsystem is built to 

perform a safe shutdown. 

 As has been seen, the preceding work defines a series of vectors and matrices that 

measure sensor redundancy.  By calculating the    or     measures, the level of 
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available redundancy is determined.  Once this has been completed and sufficient 

redundancy confirmed, the design process of this research proceeds to the next step.  The 

next step is to design a bank of reduced order observers that correspond to each possible 

fault set that is tolerable. 
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2.2: Reduced Order Observer Design 

 

 

 The second step in the design process demonstrates the design of a set of 

observers that can reconstruct all possible sensor failures.  This bank of observers 

consists of a single full order observer and a reduced order observer for each tolerable 

fault set.  First, a full order output estimator for the system is constructed.  This estimator 

will be used by the system when the plant is not undergoing faults.  In this chapter, a 

modified Kalman observer is chosen as the full order observer.  This method is applicable 

to other estimation techniques with simple adjustments.  One of the strengths of this 

method is that a model for sensor failure is not needed at this step in the design process. 

 Once the observer design template has been selected, a reduced order observer is 

designed for each set of sensor failures.  For example, in the case where only one sensor 

can fail at a time, each reduced order observer is built to compensate for a single sensor 

fault.  This step creates an observer that estimates the system's sensors without using 

those sensors it presumes are faulty.  This means that each reduced observer performs its 

estimation based only on what it presumes is fault free sensors.  The previous section's 

rank of redundancy guarantees that there is sufficient sensor redundancy in the plant to 

perform this reduction and still reconstruct all the sensors.  This process is repeated for all 

tolerable sets of sensor failures that the system is designed to withstand.  This step is 

outlined in such a way as to speed up the design process.  All of the observers use the 

same basic design structure and mathematics. 

 This method can be applied to both time-invariant and time-variant systems.  It is 

possible that certain classifications of nonlinearities can work with this method, but that 

is beyond the scope of this research.  There are a few requirements that must be met for 
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this step of the design to work.  The plant must be observable.  Additionally, the sensor 

redundancy calculated in section 2.1 must be sufficient to handle the number of 

simultaneous faults that the system is meant to tolerate.  With that level of redundancy, 

any appropriate set of sensor failures will not affect the observability of the reduced order 

observers.  In this section, faults are limited to sensor faults.  Chapter 3 shows how to 

enhance this work in order to tolerate actuator faults.  This method can handle a wide 

range of sensor fault types.  This method can compensate for drift errors, intermittent 

faults, noise, and full failures.  Preliminary work suggests that errors of a nonlinear nature 

are also corrected, but that is not proven in this research. 

 Because this method does not correct for model errors, an accurate model of the 

system must be available.  A model of the sensor failures is not needed in this section, but 

a general model will be needed in section 2.3 if fault estimation is to be done.  Even 

without a fault model, this method requires that it must have the knowledge of the 

maximum simultaneous system faults it must tolerate.  Work shows that so long as this 

maximum is within the sensor redundancy calculated in section 2.1, fault free data can 

always be reconstructed by an appropriate observer. 

 Another strength of this method is that its design is quite simple compared to 

more complicated methods.  Optimizing the design is quick, because there is only one 

tuning matrix that is consistent over all the observers.  Lastly, the exact type of estimator 

being used can vary with design needs.  This gives the designer a great degree of freedom 

in the application of this process, while being extremely effective at isolating sensor 

failures. 
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 To show the validity of this method, a series of proofs is given below.  Assume a 

linear time-variant system as follows defines the plant.  In this plant, faults are presumed 

to be an unknown additive function.   

 

                            (2.2.1) 

                                  (2.2.2) 

 

 Define the variables as follows:           is the state vector, the control vector 

is          ,          is the output vector, and         is the fault vector.  

Time    represents the time index when the fault begins.  Before time   ,       .  After 

time   ,      becomes an unknown, but bounded vector.  The matrices     ,     ,     , 

    , and      are known and have dimensions   x  ,   x  ,   x  ,   x  , and   x   

respectively.  Time indexes    and    represent the initial and final time respectively.  

Assume the system is observable on             for all          .  The      matrix 

represents how the additive faults interact with the various sensors.  If a model is not 

available, the      matrix can be defined as the identity matrix without a loss of 

generality.   

Theorem 2.2.1 

 A reduced order observer can be designed to remove the faulty information from 

a specific sensor, assuming all other sensors are operating without fault and the system 

has rank 1 sensor redundancy. 

Proof 2.2.1 
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 The subscript   will be used to reference the     row in a matrix, or element in a 

vector.  Presume that a fault has occurred in the     sensor,      .  No other faults are 

occurring.  This means that        for all elements other than      .   

 The subscript    will be used to reference a matrix that has the     row removed, or 

a vector that has the     element removed.  Define the reduced order output vector 

       to be the reduced set of      outputs, that does not include the faulty      sensor as 

follows 

 

                                            (2.2.3) 

 

        has no elements on the     row and      is zero in all rows other than the     

row. 

 

                                 (2.2.4) 

 

 The faulty signal has been removed completely from the reduced system.  As the 

rank of redundancy ensures that the system defined by (2.2.1) and (2.2.4) is still 

observable on         , a reduced observer can be designed to estimate      with      .  

From this estimate, the full set of sensor outputs can be estimated. 

 

                             (2.2.5) 
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 The specific estimate of interest is       .  This is a fault free estimate of      , as 

the faulty sensor information was not used in the fault estimate. 

Remark 2.2.1 

 It can be seen that when there is no fault in the     component, (2.2.3) will 

converge to the fault free output estimates in (2.2.5).  This property will hold true for all 

of the reduced order observers.  Therefore, when all reduced order observers report that 

there is no fault, the full order observer produces the most accurate estimates because it 

has all possible fault free information.  It will also converge faster than the other 

observers due to the same property. 

 The next section will use the output estimates produced by the observers and the 

measured outputs from the plant to produce sensor fault estimates.  These fault estimates 

rely on understanding how the faults interact with the system.  If this information is 

unavailable, assumptions about the fault model can be made so that fault estimation is 

possible. 

 



43 

 

2.3: Sensor Fault Estimation 

 

 

 It is imperative that the reduced order observer is designed with sufficient speed 

such that       converges to      faster than the system changes.  When properly 

designed, the fault free        estimate can be used to estimate the fault signal     .  

Equation (2.2.5) is substituted into (2.2.2) and it is assumed that the estimate       

converges to     with sufficient speed. 

 

                    

 

 The     row of this equation is analyzed, as each estimator assumes faults only 

occur on the     row. 

 

                        

                        

         
                      (2.3.1) 

 

 If the inverse of the fault matrix        exists, an estimate of      can be 

calculated based on the error between the sensor estimate and the faulty sensor.  On rows 

other than  ,      and         . 

Remark 2.3.1 

 When a fault occurs, the full order observer can detect by comparison that it is not 

able to track the output of the system.  To identify which component is faulty, each 

reduced order observer is checked by (2.3.1) to see if                is less than some 
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error threshold    which is determined experimentally.  Only the reduced order observer 

that does not include the faulty sensor   will converge to zero error on the non-faulty 

signals.  Once the optimal reduced order observer is selected, its sensor estimates and 

expected faults are used in the fault estimation process. 

Multiplicative Faults 

 Up to now, the model has presumed that the faults are additive in nature.  This is 

not always the way the fault dynamics operate.  While additive models can be used to 

examine slew errors, they are often multiplicative in nature.  This is because many types 

of fatigue can cause a sensor to uniformly degrade in performance.  In that case, a 

multiplicative model of the sensor faults is more useful.  To accommodate this, the state 

space output equation is changed. 

 

                              (2.3.2) 

 

 In this case,      is redefined so that the faults are defined as a diagonal matrix 

consisting of the elements of     .  The fault vector      is 1 for non faulty components 

and a number generally between 0 and 1 for faulty components.  

 

      

     
 
 
 

 
     

 
 

 
 
 
 

 
 
 

     

  

 

 It was assumed that no more than   faults occur.  Or put another way,        

for no more than   elements.  The change to the fault model does not alter the 
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convergence of the reduced order observers, or the number of faults they can tolerate.  So 

the sensor faults can be estimated by comparing the estimation of the system outputs with 

the measured sensor outputs.  Equation (2.2.5) is subtracted from (2.3.2) and it is 

assumed that the estimate       converges to      with sufficient speed. 

 

                                  

                                (2.3.3) 

 

 As both      and   only exist on the diagonal, they can be replaced with a vector 

representing the diagonal, and the multiplication replaced with a dot product.   The vector 

  is a   x 1 vector of appropriate length where all the elements are 1.  The diagonal of 

     is     .  As such, (2.3.3) is further derived as follows. 

 

                                 (2.3.4) 

 

 This series of vectors can be subdivided into   equations, one for each of the   

sensors.  The subscript   represents the     element of a vector, or the     row of  , for 

       . 

 

                                 

            

          
           

       
            

          
             (2.3.5) 
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 The       vector can be calculated as shown in (2.3.5) to produce an estimate of 

    .  This allows the system to estimate multiplicative sensor faults. 
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2.4: Supervisor Decision Process 

 

 

 A series of reduced order observers have been designed so that they remove 

sensor data presumed to be faulty from their outputs.  The observers are not able to 

localize sensor faults by themselves.  A supervisor system is built that selects the reduced 

observer that best estimates the sensor fault set.  Presuming that there are no more than   

sensor faults, there must exist at least one observer that correctly identifies and isolates 

the faulty sensors. 

 Each reduced order observer presumes that a specific set of sensors are faulty and 

the others are fault free.  If one of the sensors that was presumed fault free is not, the 

observer will be unable to compensate for the sensor fault.  This will cause the sensor 

estimates of that observer to deviate from the actual outputs of the plant.  Errors on 

components that were presumed fault free are called unexpected errors.  These 

unexpected errors are used by the supervisor to detect that the observer has not matched 

the sensor fault set and is not an optimal estimate.  The supervisor selects the observer 

that has the lowest unexpected sensor error as the optimal estimator for the sensor data.  

The reduced observers anticipate that specific sensors are faulty and ignore those sensors.  

The optimal supervisor removes the faulty sensor data from its estimates.  Therefore the 

unexpected error is minimal for the optimal observer.  The supervisor propagates the state 

and output estimates produced from that observer's result.  The supervisor then calculates 

sensor failure estimates as was detailed in section 2.3. 

 Assume a linear time-variant system of the form below. 

 

                           (2.4.1) 
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                          (2.4.2) 

 

 Where          is the state vector,          is the control vector,         

is the output vector, and         is the fault signals.  Matrices          , and      are 

known and of dimensions   x  ,   x  , and   x   respectively.  The matrix      has 

dimensions   x  .  With no loss of generality,   is assumed to be equal to   and      is 

assumed to be an identity matrix.  Time indexes    and    represent the initial and final 

time respectively.  The sensor fault signal      is non-zero for no more than   elements 

for any given  .  An upper limit for   is given in section 2.1, for a given      and     .  

Presume that a series of reduced order observers have been designed for the system 

described by (2.4.1) and (2.4.2) by the method detailed in section 2.2.  Each observer has 

been designed to remove one set of up to   output signals from their estimates.  As per 

section 2.2, reduced order observers have been designed for all tolerable fault sets where 

up to   output signals fail.  Within these limits, there is sufficient redundancy for the 

system to maintain observability on all reduced observers.  Based on this, the general 

form of a reduced observer is described below. 

 

                                                       (2.4.3) 

 
     
     

   
    

 
           (2.4.4) 

 

      is the matrix defined in 2.2 that determines the convergence speed of the full 

order observer.  The set   represents the set of sensor signals that the reduced order 

observer presumes are faulty.  The subscript    signifies a matrix or vector that has the 
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rows or elements that correspond to the fault set   set to zero.  Assume that the design of 

the       matrix for the observers is sufficient such that when       , as    , 

             for all tolerable  .  Define       as the measure of observer error. 

 

                        (2.4.5) 

 

 This error is split into two components.  The expected sensor error is called      .  

This corresponds to the elements of      that the reduced order observer ignored.  The 

unexpected sensor error is      , which is the errors in the sensor estimates that were 

presumed fault free by the reduced observer.  The subscript   corresponds to the sensor 

elements that were presumed faulty.  Correspondingly, the subscript    references to 

elements that were presumed fault free by the observer. 

 

 
     
     

     
                

              
     (2.4.6) 

 

 As       contains faulty information from the real sensor outputs, the observer 

that minimizes       is not the one that is fault free.  In the general case, the observer that 

maximizes the expected error is the correct one, presuming all other observers converge 

to the faulty data.  That presumption of convergence cannot be guaranteed for all cases.  

Instead, the supervisor system is designed to choose the observer that has the lowest 

unexpected error      .  The optimal reduced observer will predict the location of the 

sensor error correctly.  As the optimal observer correctly predicts the location of the 

errors, all faulty signals will be in      .  When the supervisor selects the correct 
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observer for fault free sensor estimates, the       errors can be used to calculate the 

sensor fault vector     , as was shown in section 2.3. 

Theorem 2.4.1 

 If and only if a reduced order observer's unexpected error converges to zero at the 

input, that observer reconstructs a fault free estimate of all the outputs.  In other words, 

by choosing the reduced order observer with the lowest      , the supervisor selects the 

reduced order observer that has the best estimates of the fault set and sensor data.  When 

multiple observers have the same near zero       for a given  , the supervisor selects the 

observer with the fewest removed components.  Three cases are shown.   

Proof 2.4.1: Case 1 

 In this case, when          ,      = 0.  Equations (2.4.3) and (2.4.2) are 

combined, assuming that            and      is properly designed so that            

as    . 

 

                                                 

                                                     

                             (2.4.7) 

 
     
     

   
    

 
          (2.4.8) 

 

 Equations (2.4.7) and (2.4.8) have the same form as (2.4.1) and (2.4.2) and the 

error       will be zero for all observers.  Thus all observers produce fault free estimates.  

In this case, the supervisor chooses the full observer because it has the most redundant 
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information.  As           , this is both the sufficient and the necessary case for fault 

free estimation, albeit the trivial case. 

Proof 2.4.1: Case 2 

 In this case, when          ,        for a number of elements equal to  .  As 

  is the maximum possible number of simultaneous faults the system of observers can 

tolerate, there will only be one observer that will collapse down to the equations defined 

by (2.4.7) and (2.4.8).  The following shows that no other observers will converge 

without error, and thus are faulty.  For the initial conditions, assume           . 

 

                                                 

                                                                 

                                              (2.4.9) 

 
     

     
   

    
 

          (2.4.10) 

 

 Equations (2.4.4) and (2.4.10) are substituted into (2.4.5). 

 

                                      (2.4.11) 

 

 Equations (2.4.3) and (2.4.9) are substituted into (2.4.11). 
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 It has been assumed that           , as    . 

 

                                        
  
  

   (2.4.12) 

                                          
  

  

  

                                             
  

  

  

 

 For all observers but one,        , and thus        .  In the reduced observer 

where the    elements set to zero match the   faults located on      ,                  and 

             will become zero and thus       will go to zero.  As       can be directly 

measured and only one observer will converge to zero, the supervisor selects that 

observer's fault free estimates of the outputs and states.  In this case, it is shown to be 

both the necessary and sufficient that only one observer will produce           , thus 

producing fault free estimates. 

Proof 2.4.1: Case 3 
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 In this case, when          ,      is non-zero for a number of elements between 

zero and   noninclusive.  This means that                  and              will be zero for 

more than one set of predicted faults.  This means that multiple observers will have an 

error       of zero.  The proof of convergence is the same as in case 2.  The supervisor 

relies on a priority structure to handle this case.  Specifically, the supervisor selects the 

observer that has the least sensors presumed faulty of the reduced order observers that 

compensate for the sensor faults.  This observer is chosen to maximize robustness by 

using as many of the fault free sensors as possible.  Case 3 uses the same proof as case 2, 

and therefore case 3 is also proven sufficient and necessary for fault free convergence. 

Remark 2.4.1 

 The three cases of Theorem 2.4.1 have been shown sufficient and necessary for 

zero to   sensor failures inclusively, which completes the proof.   Thus, Theorem 2.4.1 is 

sufficient and necessary for fault convergence of the system of observers.  It is worth 

pointing out that so long as the number of sensor faults is no more than the   tolerable 

faults, the magnitude and type of fault does not prevent the FTC method from removing 

the fault, including nonlinear additive faults on linear systems. 

 This chapter has focused on systems only undergoing sensor faults.  Chapter 3 

examines techniques to tolerate systems only undergoing actuator faults.  First a way to 

measure actuator redundancy will be defined.  Then Augmented State Observers will be 

explored. 

 



 

 

 

 

 

 

CHAPTER 3: ACTUATOR FAULT TOLERANCE METHODS 

 

 

3.1: Measuring Actuator Redundancy 

 

 

 Sensor redundancy is commonly available in modern systems.  However, some 

systems exhibit actuator redundancy.  The following method provides the details of how 

to calculate the rank of available actuator redundancy.  This rank measures the number of 

actuators that can fully fail without the system losing controllability. 

 Assume a linear time-varying system defined as follows. 

 

                           (3.1.1) 

                          (3.1.2) 

 

 Where            is the state vector,           is the control vector, and 

         is the output vector.      ,     ,     , and      are known matrices of 

dimensions   x  ,   x  ,   x   and   x   respectively.  Time indexes   and    represent 

the initial and final time respectively.  Assume that the system is controllable on 

            and observable on             for          .           and          are 

  x   Grammian matrices. 

 

                                   
  
  

    (3.1.3) 
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    (3.1.4) 

 

 In [39] a proof is presented that states that the state equation is controllable for 

           if and only if          is invertible, and it is observable for           if and 

only if          is invertible.  The proof of this will not be repeated here. 

 Define       as the      matrix, with the     column set to zero,          and 

redefine the state space equation as follows. 

 

                         

 

 This change to the state equations is mathematically equivalent to the     element 

of      no longer being defined by equation (3.1.1).  This represents a total fault in the 

    element of     .  Define the following   x   matrix  , presuming the existence and 

continuity of the indicated derivatives. 

 

              

                       
               

 

Theorem 3.1.1 

 For all   and   and non-negative  , 
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Proof 3.1.1 

 This proof is shown by induction.  First the      case is shown. 

 

  

   
                            

                         

 

 Then the inductive case is shown. 

 

    

     
                

 

  
              

                          
 

  
        

    

                                     Q.E.D. 

 

Theorem 3.1.2 

 Suppose   is a positive integer such that for all          ,       is   times 

continuously differentiable and      is       times continuously differentiable on 

        for some           .  The following test will determine if the system is still 

controllable, despite the failure of the     component of        

 

                                      (3.1.5) 
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Proof 3.1.2: Case: Time-varying system 

 Suppose that            and satisfies (3.1.5).  Setting up a contradiction, it is 

presumed that          is not invertible.  As such, there exists a nonzero   x 1 vector    

that satisfies the following equation. 

 

    
             

     
               

              

  

  

   

      
              

 
  

  

   

  
                             (3.1.6) 

 

 Let    be the nonzero vector               , and substitute it into (3.1.6). 

 

  
                          .    (3.1.7) 

 

 Choosing     ,   
              

     .  Differentiating (3.1.7) with respect 

to   gives   
                            And again, specifying     , shows that 

  
     .  In the general case this formula derives into the following. 

 

  

   
   

                     
                     

 

 Therefore   
                              . 
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 This contradicts the linear independence implied by (3.1.5).  Q.E.D.  Thus (3.1.5) 

is a sufficient condition for the state equation to be controllable on         given the 

conditions above. 

Proof 3.1.2: Case: Time-invariant system 

 In the case of time-invariant systems, this can be extended to a necessary 

condition as well as a sufficient one.  In the case of a time independent system, the   

matrix rank test described in (3.1.5) is simplified into the following. 

 

                       (3.1.8) 

 

 To prove the necessary condition, we presume that the controllability Grammian 

W is not invertible.  Therefore, there exists a nonzero   x 1 vector    that satisfies the 

following equation. 

 

  
               

  
              

          
  

  

     

  
              

 
  

  

     

  
                             (3.1.9) 

 

 Differentiating (3.1.9)   times, and setting      gives        
         

       .  As such, (3.1.9) derives into the following. 
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 Which proves that (3.1.8) fails, and thus the condition is both necessary and 

sufficient in the time-invariant case. 

Remark 3.1.1 

 Define       as an   x 1 vector. 

 

                                                 (3.1.10) 

 

 This vector can be analyzed for information regarding controllability of the 

system.  If                  for all        , the system is controllable in the 

presence of a single actuator fault, regardless of which actuator is faulty.  The system has 

rank 1 actuator redundancy.  In a time-variant system, if        , a fault in the     

component of      may cause a loss of controllability.  In a time-invariant system, if 

       , a fault in the     component of      will cause a loss of controllability.  This 

is because the    test is necessary and sufficient in the time-invariant case.  

Remark 3.1.2 

 Define    as the set of all control elements            .  Choose r as an integer 

from      , representing the total number of simultaneous faults that can occur.  Define 

      as the     combination of set   , for       
  

        
 .  The full set of combinations 

is defined as 
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 Further define        as the      matrix with all columns in the set    set to zero.  

Presume a   matrix as follows, subject to the existence and continuity of all indicated 

derivatives. 

 

               

                       
                 

 

 Define            as an   x 1 vector. 

 

                                             (3.1.11) 

 

 The measure            can be analyzed in the same way as the       vector.  

Instead of a single fault, the measure determines rank   actuator redundancy.  That is, if 

                      for all  , the system is controllable in the presence of up to 

  actuator faults.  As before, in the time-invariant case, for any              ,       is 

the set of faults that will cause a loss of controllability.   

Remark 3.1.3 

 This section produces a pair of measures that can be examined to determine the 

rank of available actuator redundancy.  These measures are useful and can provide 

designers with information about how the system responds to actuator faults.  
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Unfortunately, most systems do not have sufficient actuator redundancy for any single 

actuator to fail due to the cost of actuator components.  As such, this measure is less 

applicable than the measure for sensor redundancy.  Because of this limitation, the next 

section examines using Augmented State Observers to produce actuator fault tolerance. 
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3.2: Augmented State Observer 

 

 

 This portion of the research designs a full order Augmented State Observer to 

tolerate actuator faults.  The ASO design uses eigen value assignment feedback to control 

the response of the original plant.  This is done by incorporating an adaptive controller 

that uses the state and actuator fault estimates from the observer.  The ASO adds 

additional states to the observer's state space model that correspond to estimates of the 

actuator faults.  These additional states allow the ASO to estimate actuator faults.  The 

controller uses the actuator fault estimates to compensate for the faults through the 

controller.  This technique is shown to be sufficient for time-varying and time-invariant 

systems, presuming additive independent faults on the actuators.  In the next chapter, this 

ASO is incorporated into the fault tolerant method designed in sections 2.1-2.4 so that the 

system can tolerate both sensor and actuator failures. 

 Assume a linear time-variant system as follows. 

 

                                   (3.2.1) 

                           (3.2.2) 

 

 Where           is the state vector,           is the control vector,       

   is the output vector,         is the fault vector for sensors, and         is the 

actuator error vector.  The fault vectors      and      are unknown but bounded vectors.   

The matrices     ,     ,     ,     , and      are known and have dimensions   x  ,   

x  ,   x  ,   x  , and   x   respectively.  Assume the linear system is observable on 

            and that it is controllable on            .  The      matrix represents how 
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the additive faults interact with the various sensors.  Without loss of generality, the      

matrix can be defined as having ones on the main diagonal and zeros everywhere else.  

When    , the      matrix is defined as an identity matrix.  The      matrix 

represents how additive actuator faults interact with the states.  Without loss of 

generality, the      matrix can be defined as having ones on the main diagonal and zeros 

everywhere else.  When    , the      matrix is defined as an identity matrix. 

Augmented State Observer Formulation 

 The design of an Augmented State Observer (ASO) allows the system to adapt to 

actuator faults.  The full order ASO is not designed to tolerate sensor failures.  As such, 

the ASO's estimation assumes that       , for all  .  The state space of the ASO is 

augmented by adding additional states that estimate the actuator faults.  The vectors       

and       are estimates of the states and actuator faults respectively.  The subscript   is 

used to denote a vector or matrix that has been augmented to correspond to these 

additional states. 

 

     
  
  
  

 

 These estimates are used to create an adaptive state feedback controller. 

 

                             (3.2.3) 

 

 The original input to the system is defined as the reference signal     .  The       

term is a gain matrix that performs state feedback for the original system.        is 
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determined by using pole placement in order to improve performance and stability of the 

original system.        is the feedback gain matrix that adapts the controller to the 

presence of actuator faults.   

 Based on the system defined by (3.2.1) and (3.2.2) and the adaptive controller 

from (3.2.3), a state and actuator fault observer is designed as follows.  The time 

references are omitted for legibility. 

 

                     

                                  (3.2.4) 

                   (3.2.5) 

 

 The state estimation equation and actuator fault estimation equations of (3.2.4) 

and (3.2.5) are combined into a single equation that describes the ASO.  The time 

references are omitted for legibility. 

 

   
 

   
 

 
    

   
         

  
 

             
  

  
  

  
 

 
  

         
  

  
  
  
 

 
   

  
 
 
 

 
  

   
  

  
 

 
  

   (3.2.6) 

                             (3.2.7) 

 

 The observer gains that have to be designed are    and         is the observer gain 

matrix for state estimation, while    is the observer gain matrix for actuator fault 

estimation.  The state estimation error is given in (3.2.8).   
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                     (3.2.8) 

 

 Equations (3.2.1), (3.2.2), (3.2.3), and (3.2.6) are combined with the derivative of 

(3.2.8) to find the state space error equation.  The time references are omitted for 

legibility. 

 

                                  

                                                     

                                                

                             

                           

 
   
   

    
        

  
 

           
  

  
  

  
 

 
  

         
  

  
  

  
   

 
 
    (3.2.9) 

 

 In [17] it was shown that if    is chosen properly, there exists a symmetric 

positive definite matrix          that will satisfy (3.2.10) such that     and   

      .   

 

                    
           (3.2.10) 

 

 Equation (3.2.10) ensures that       and       will be bounded independently of 

the initial conditions      or     .  Also, (3.2.10) ensures that the observer's state 

estimation error and actuator fault estimation are both convergent and bounded.  In 
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general, as    ,            and           .  The ASO defined in (3.2.6) will 

converge to a region around the fault free states and the actuator faults when there are no 

sensor faults. 

 The next chapter uses this ASO design that tolerates actuator faults and combines 

it with the reduced order observer design of chapter 2 that tolerates sensor faults.  By 

combining these two methods, both sensor and actuator faults can be tolerated 

simultaneously by the FTC system. 

 



 

 

 

 

 

 

CHAPTER 4: ACTUATOR AND SENSOR FAULT TOLERANCE 

 

 

4.1: Reduced Observer Formulation 

 

 

 In this section, a set of reduced order Augmented State Observers (r-ASO) are 

built in addition to the initial Augmented State Observer (ASO).  The r-ASOs are 

designed to tolerate sensor faults in addition to actuator faults.  As such, the sensor fault 

vector      can be nonzero after time   .  These reduced observers require sensor 

redundancy.  The available redundancy in the system is calculated by the method 

developed in section 2.1.  The rank of sensor redundancy in the plant is defined as  .  The 

total number of r-ASOs that must be designed is found by performing the permutation of 

the   sensors with   or less potentially faulty sensors.  One r-ASO is built for each 

permutation. 

 Each reduced order augmented state observer is designed according to (3.2.6) and 

starts with the same   ,   , and    as was designed for the ASO.  Each reduced order 

observer is designed to remove a specific sensor set from its estimates.  Let   represent 

the set of sensors that a specific r-ASO presumes are faulty.  Each reduced observer 

ignores the       outputs that correspond to the set of   sensors, removing them from the 

observer's estimation feedback process.  Each r-ASO also assumes all other sensors, 

      , are operating without fault.   
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 For each of these r-ASOs, the presumed faulty    sensors are removed from the 

estimation process.  This is done by setting the corresponding   columns of the    matrix 

in (3.2.6) to zero.  This removes the presumed faulty sensor data from the ASO's 

estimation process.  As an r-ASO has been designed for each of the possible fault sets, at 

least one r-ASO will correctly remove the faulty sensor data.   

 The r-ASOs are not able to localize sensor faults by themselves so they require a 

supervisor system similar to the one developed in section 2.4.  Presuming that there are 

no more than   sensor faults, there must exist at least one r-ASO that correctly identifies 

and isolates the faulty sensors.  This means that the convergence determined by (3.2.10) 

is still valid when       .  As such, the r-ASOs produce bounded and convergent 

estimates of the states and actuator faults. 

 Each r-ASO assumes that a specific set of sensors are faulty and assumes that the 

others are fault free.  If an r-ASO does not match the sensor faults correctly, faulty data 

will be used in the observer's feedback.  The r-ASO’s mismatch will initially be detected 

by examining the unexpected sensor error       . 

 

                           (4.1.1) 

 

        is the subset of the outputs that were presumed fault free by a specific r-

ASO.  If this set of outputs is not fault free, the ASO will be operating with faulty sensor 

data.  These unmitigated sensor errors will be propagated to the feedback of the observer.  

The observer will then treat the unmitigated sensor fault as an unknown actuator fault, 

causing errors with its       estimation.  The presence of these two types of errors is used 
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by the supervisor to detect that an observer does not match the sensor fault set and is not 

an optimal estimate.  The supervisor selects the observer that has the lowest unexpected 

error       as the optimal estimator for the sensor faults.  

 

      
      

         
 

     

        
    (4.1.2) 

 

 The norms of the unexpected sensor failures and actuator fault estimates are 

calculated on the set of all of the unexpected errors for all of the observers.  This is done 

to normalize the errors so that they can be compared across multiple observers.  The 

optimal observer will converge to the lowest      , but is not guaranteed to be the lowest 

for any time  .  When the system is operating in the presence of an actuator fault the 

lowest       will not be zero.  Once the supervisor selects the optimal ASO, it propagates 

that observer's state and actuator fault estimates.  The supervisor then calculates sensor 

failure estimates       by comparing the       outputs with the        estimates as was 

shown in section 2.3. 

Theorem 4.1.1 

 Consider a plant defined by (3.2.1) and (3.2.2), with at least rank   sensor 

redundancy.  An augmented state observer is built using the model given in (3.2.6).  The 

set of all tolerable sensor fault sets is found by permuting the   sensors with the   rank of 

redundancy.  One reduced order augmented state observer is built by the model given in 

(3.2.6) for each tolerable sensor fault set.  Each reduced order observer sets the columns 

of    that correspond to their sensor fault set to zero.   
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 A supervisor that chooses the reduced order observer with the lowest       at a 

given   selects the best estimate of the states, outputs, and faults.  As a special case, when 

multiple observers have a similar       at a given  , the supervisor selects the observer 

with the smallest sensor fault set size.  This maximizes the FTC's robustness against 

noise. 

Proof 4.1.1: Case: Sensor faults only 

 This section shows the convergence of at least one r-ASO to zero estimation error 

in the presence of no more than   sensor faults and zero actuator faults.  In this case,      

is nonzero for no more than   elements for any given   and      is zero.  The notation   is 

used to reference a set of no more than   sensor elements.  The subscript   references the 

subset of columns of a matrix or elements of a vector that match the elements in  .  The 

subscript    will be used to reference a matrix that has the   columns set to zero, or a vector 

that has the   elements set to zero.  An r-ASO has been designed for each permutation of 

up to   sensor faults, and each has been designed to remove a specific set of       outputs 

from the estimation process.  Assume that the set   represents the faulty sensors in the 

system.  Faulty outputs are observed on the   sensors,      .  The sensor fault vector      

is zero for all elements other than      .  Therefore, one of the r-ASOs does not use the 

faulty       sensor data in its feedback, and only references       .  For that specific r-

ASO, it follows that equation (3.2.6) is reduced to the form below.  The time indexes are 

omitted for legibility. 

 

   
 

   
    

         

  
   

    

    

       
  
  
   

 
 
    

    

    

      (4.1.3) 
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 The r-ASO's output estimate is determined by (4.1.4). 

 

                   (4.1.4) 

 

 As the order of   is less than or equal to  , the system defined by (4.1.3) and 

(4.1.4) is still observable, as was shown in section 2.1.  Equation (3.2.2) is substituted 

into (4.1.4) and it is assumed that    is properly designed so that as    ,      

       . 

 

                    

 

 The sensor fault vector      is zero for all elements other than the     elements.  

This output estimate is divided into two subsets:         and       . 

 

                     (4.1.5) 

                             (4.1.6) 

 

 Equation (4.1.5) shows that the r-ASO does not introduce new errors into the fault 

free outputs,       .  It can be observed from (4.1.6) that the error of the r-ASO's 

estimation of       is the fault effect,           .  Therefore, the r-ASO's estimate       is 

a fault-free estimate of the outputs when there are no actuator faults. 

 This shows that there is at least one r-ASO that converges to the fault free outputs.  

This is sufficient to guarantee that up to   sensor faults can be compensated for by the 
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FTC system.  Furthermore, as both the estimate of the fault free sensors and the measured 

faulty sensors are available to the supervisor, it is able to calculate an estimate of the fault 

signal      using the method described in section 2.3. 

Proof 4.1.1: Case: Actuator faults in the presence of sensor faults  

 It has been shown that within the bank of r-ASOs, there exists at least one 

observer that removes the effects of      from the feedback.  This means that sensor 

faults have no effect on the state and actuator fault estimates on the optimal r-ASO.  

Therefore, previous proofs of ASO convergence in the presence of actuator faults do not 

need to be modified in the case when there are sensor faults.  The full proof that an ASO 

that satisfies (3.2.10) has bounded and convergent state errors and actuator fault estimates 

when in the presence of actuator faults is found in [17] and not repeated here.  This 

design ensures that the estimate       converges to a region around     . 

Proof 4.1.1: Case: Sensor faults in the presence of actuator faults 

 In the presence of actuator faults,       is no longer guaranteed to converge 

exactly to     .  Instead, the difference is bounded within a region around the 

equilibrium.  This complicates the derivations that produced the fault free output 

estimates from (4.1.5) and (4.1.6).  The error between the states and their estimates is 

     .  The following is derived to calculate the error between the estimate of the outputs 

and the fault free outputs, when both sensor and actuator faults are occurring.  This is 

obtained by first rewriting (3.2.8) into the following.   

 

                 

                     (4.1.7) 
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 Equation (4.1.7) is then substituted into (4.1.4).   

 

                

                       

                           (4.1.8) 

 

 Equation (3.2.2) is modified as follows. 

 

                       

                           (4.1.9) 

 

 Equation (4.1.9) is substituted into (4.1.8). 

 

                                (4.1.10) 

 

 The error between the theoretical fault free output and the estimated output is 

defined as      . 

 

                        (4.1.11) 

 

 Equations (4.1.9) and (4.1.10) are substituted into (4.1.11). 

 



74 

 

                                                

                    (4.1.12) 

 

 Equation (4.1.12) shows the relationship between the state error       and the 

sensor error      .  It has been shown that       is bounded and convergent, so       is 

also bounded and convergent.  The error in (4.1.12) is present on both faulty sensors and 

fault free sensors.  This means that if the state estimate errors do not converge to zero, the 

r-ASO will propagate state estimate errors to the output estimates, causing sensor faults 

to appear on non-faulty sensors.  Because of this, it is important to design the    matrix 

in such a way that the state estimate error converges quickly and to zero.  This will ensure 

that additional sensor errors are not introduced by state estimation errors.  The supervisor 

that selects as to which of the observers produces the optimal estimates is defined in the 

next section. 
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4.2: Supervisor Formulation  

 

 

 A supervisor is designed to select the full or reduced ASO that has the optimal 

estimate of the fault free states.  The supervisor chooses the estimator that has the lowest 

unexpected error,      .  That specific ASO's estimates of the actuator faults, states, and 

sensors are sent to other components of the system and used in feedback.  As all of the 

ASOs are built using the same fundamental    structure in the observer gain matrix, their 

errors will be bounded in a similar region around the fault-free estimates of the system 

states, actuator faults, and sensor faults.  Due to variations in the system specifics caused 

by the variations in the    gain matrix, their rates of convergence may vary.  The r-ASO 

form is repeated from (4.1.3) and (4.1.4) below.  The time indexes of (4.1.3) are omitted 

for legibility. 

 

   
 

   
    

         

  
 

             
  

  
    

    

 
 
    

         
  

  
  
  
 

 
   

  
 
 
 

 
  

   
    

    

 
 
    

    

                

 

 The set of all potential sensor faults is limited to the permutations of up to   

sensor faults on the   total sensors.  This   is no larger than the available redundancy 

measured in section 2.1.  The observer matrix    is designed such that (3.2.10) is valid 

for all variations of      so that as    ,       converges to an area around     , for all r-

ASOs.  The general form of the r-ASO with all of its outputs to the supervisor is given in 

the pair of equations below.  The time indexes are omitted for legibility. 
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                                (4.2.1) 

 
  
  
  
   

  

 
         (4.2.2) 

 

 Equations (4.2.1), (3.2.1), and (3.2.2) are combined into the derivative of (3.2.8), 

assuming           ,          ,   is an   x   identity matrix, and 0 is an   x   null 

matrix.  The time indexes are omitted for legibility. 

 

                                          ) 

                                          (4.2.3) 

 

 The sensor fault vector      is only nonzero for a number of rows less than or 

equal to  .  An r-ASO has been designed for each tolerable permutation of the sensor 

fault set.  As such, there exists at least one r-ASO where      is nonzero on the   rows 

that are set to zero on        , and zero on the other rows.  This means that the sensor 

faults are removed from the system.  On that r-ASO, the error estimate (4.2.3) is further 

derived.  The time indexes are omitted for legibility. 

 

                              

                               (4.2.4) 
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 Equation (3.2.8) describes the error between the states and their estimates and is 

substituted into (4.2.4). 

 

                                              

                                         (4.2.5) 

 

 The form of equation (4.2.5) is the same as (3.2.10) and the same derivations hold 

true.  As such, the error is convergent and bounded.  In ASOs that do not remove the      

component properly, there will be an additional error term added in the coefficient of 

      .  The errors in      are not directly measurable by the supervisor, so the supervisor 

examines the unexpected errors      .  As a properly designed    forces a sufficiently 

fast convergence of       to zero, the observer with the most accurate estimates of the 

system converges to the lowest unexpected error. 

Supervisor Selection Special Case 

 It is possible for the set of active sensor faults to be a subset of multiple tolerable 

sensor fault sets.  This leads to a situation where multiple r-ASOs will converge to the 

same unexpected error.  In the case where multiple r-ASOs converge to the same 

unexpected error, the one with the least sensors presumed faulty is used by the supervisor 

to preserve as many of the original outputs as possible and produce the most robust 

estimates.  In the trivial case where there are no faults, all r-ASOs will converge and the 

full ASO is selected by the supervisor to maximize robustness. 

 



 

 

 

 

 

 

CHAPTER 5: APPLICATION OF SENSOR FAULT TOLERANCE 

 

 

5.1: Sensor Redundancy Calculation 

 

 

 A three input, three output, linear time-invariant model for a turbofan engine is 

provided by in reference [9] and is considered here.  Specifically, the model for the fan 

operating under a Power Code of 30 is given.  The three inputs      correspond to 

actuators controlling the fuel flow rate, the nozzle area, and the bypass duct area.  The 

three outputs      correspond to sensors measuring the fan speed, core engine pressure 

ratio, and the overall engine pressure ratio.  The system follows the state transition 

definition from (5.1.1) and (5.1.2). 

 

                     (5.1.1) 

                         (5.1.2) 
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 The matrix D is a zero matrix of appropriate size.  The method to calculate the 

available sensor redundancy is shown here by example.   

   example 

 The test for sensor redundancy is formulated.  Again, there are three       tests 

to set up.  The first case is      . 

 

        
   

                   
                    

  

              
   

                   
                    

  

              
   

                    
                   

  

                

 

 The second case is      .  
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 The third case is      .  

 

        
        

                   
   

  

              
                   
                   

   
  

              
                      

                      
   

  

                

 

 The complete set of sensors are tested by setting up the    vector to find that it is 

equal to [3,3,3].  This shows that the sensors are arranged in such a way that there is 

some redundancy.  The loss of any single sensor does not prevent the system from being 

observable.  This system has sensor redundancy of rank 1. 

    example 

 By choosing    , the     vector can be calculated for all permutations of two 

sensor failures.  This leads to three cases again.  The total set of    fault permutations is 

found to be                       .  The first case is       . 
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 The second case is       . 

 

             
   

                   
   

  

              
   

                    
   

  

              
   

                      
   

  

                 

 

 The last case is       . 
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 The measure shows that in the situation where any two sensors have failed, the 

resulting system is still observable.  As such, the system has rank 2 sensor redundancy.  

A system like this is highly desirable, with well designed redundancy.  In the next 

section, this redundancy will be used to design a series of reduced order Kalman 

observers. 
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5.2: Layout of Reduced Order Observers 

 

 

 A three input, three output, linear time-invariant model for a turbofan engine is 

provided by [9].  Specifically, the model for the fan operating under a Power Code of 30 

is used.  The three inputs      correspond to actuators controlling the fuel flow rate, the 

nozzle area, and the bypass duct area.  The three outputs      correspond to sensors 

measuring the fan speed, core engine pressure ratio, and the overall engine pressure ratio.  

The state space model is defined by (5.2.1) and (5.2.2). 

 

                     (5.2.1) 

                         (5.2.2) 

   
                   
                   

                     
  

   
                   
                  
        

  

   
        

                   
                    

  

 

 The zero matrix   is of appropriate size and   is an identity matrix of appropriate 

size.  The fault vector      is an unknown signal.  Section 5.1 showed that this system 

has rank 2 redundancy in all three sensors.  In this case, only one sensor is presumed to 

fail at a time.  As such,    . 

 A full order output observer is designed based on (5.2.3) and (5.2.4).  The vectors 

      and       estimate the state and output vectors respectively.  The 3 x 3 matrix   is 



84 

 

chosen to ensure error convergence by pole placement of the estimator.  In this case,    

is designed to be a diagonal matrix with poles that converge over one order of magnitude 

faster than  . 

 

                           (5.2.3) 

                  (5.2.4) 

   
       
           

               
  

 

 The full order observer will converge quickest when there are no faulty sensors, 

providing an accurate estimate of the outputs.  A series of reduced order observers are 

constructed, each presuming one sensor is faulty.  The first of which is detailed here.  By 

(5.2.3) and section 2.2, the first matrix is set up with    . 

 

     
     
         
           

  

 

 The first column is set to zero as the system is designed to ignore the 

measurement from the first sensor.  The second and third reduced observers are built 

similarly, with the second and third columns set to zero respectively.   
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 The same state space observer definitions from (5.2.3) and (5.2.4) are used in all 

three reduced observers and the full observer.  This speeds up the design process and 

ensures that the rates of convergence between all observers are similar.  The fluctuations 

in the rate of convergence between the observers are shown in Table 5.2.1, which lists the 

eigenvalues of each observer and the original system.   

 

 

Table 5.2.1: Eigenvalues of the turbofan engine and its observers 

Observer  Eigenvalues in order from most dominant to least dominant 

Turbofan Engine -0.124 -2.292 -3.226 

Full Observer -18.433±12.208i -32.135 

Reduced Observer 1 -2.595 -18.125±12.344i 

Reduced Observer 2 -10.324 -26.223 -32.779 

Reduced Observer 3 -11.978±18.785i -32.165 

 

 

 

 Each of the three reduced observers estimate the internal states      .  Once the 

      estimates are obtained from the reduced order observer, the       can be calculated 

by (5.2.5), which is the same for all of the observers. 

 

                

       
        

                   
                    

        (5.2.5) 

 



86 

 

 With this, the three reduced order observers and the full order observer are 

designed.  The full order observer is not able to tolerate additive fault signals and will fail 

to converge in the presence of sensor faults, as can be seen in Figure 5.2.1.  Figure 5.2.1 

also shows that the first reduced observer does correctly match the fault free output when 

there is a fault on the first sensor.  However, the Kalman based estimator does give the 

observers some degree of resistance to noise.  The supervisor that selects the optimal 

estimator is detailed in section 5.3. 

 

 

 
Figure 5.2.1: Comparison of the first reduced observer and the full observer when the 

first sensor is faulty. 
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5.3: Design of Supervisor, Fault Estimation, and Assembled System Results 

 

 

 A three input, three output, linear time-invariant model for a turbofan engine is 

provided in reference [9].  Specifically, the model for the fan operating under a Power 

Code of 30 is given.  The three inputs      correspond to actuators controlling the fuel 

flow rate, the nozzle area, and the bypass duct area.  The three outputs      correspond to 

sensors measuring the fan speed, core engine pressure ratio, and the overall engine 

pressure ratio.  The plant is defined by (5.3.1) and (5.3.2) and we use the following 

definitions for the matrices. 

 

                     (5.3.1) 

                         (5.3.2) 

   
                   
                   

                     
  

   
                   
                  
        

  

   
        

                   
                    

  

 

 The zero matrix   is of appropriate size and   is an identity matrix of appropriate 

size.  The fault vector      is varied over the different cases that are examined in this 

section.  The system's sensor redundancy has already been tested in section 5.1 and the 

system is found to have rank 2 redundancy.  In this case, only one sensor is allowed to 

fail at a time, so    .  All of the estimators are designed based on (5.3.3) and (5.3.4).  
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The vectors       and       estimate the state and output vectors respectively.  The 

  matrix has been defined in section 5.2 to ensure error convergence of the full observer.  

The reduced order observer matrices   ,   , and    have already been defined in section 

5.2.  

 

                           (5.3.3) 

                 (5.3.4) 

 

 Each of the reduced order observers has been tuned to tolerate one of the three 

outputs suffering a sensor fault.  The supervisor needs to determine which of the four 

observers is operating optimally.  This is done by examining the minimum of the 

unexpected error vector. 

 

                               (5.3.5) 

 

 In (5.3.5),   represents which observer the unexpected error measurement is 

referencing.  The unexpected error for a specific observer is the sum of the output errors 

on sensors that were presumed fault free, at a specific time  .  As the full order observer 

presumes no faults occur, the set of faulty sensors   is zero, and so         is equal to       

on the full observer.  For numerical convenience, the full order observer is chosen as 

   , and the first reduced order observer corresponding to the fault set where the first 

sensor fails is chosen to be    .  The other reduced order observers are numbered in 

the same way.  For example,            is the second reduced order observer's estimate of 
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the first sensor at time 5.5 seconds.  The observer that has the lowest value of         at 

a given time   is chosen by the supervisor for its       estimates.  The data from that 

estimate is selected to represent the fault tolerant system. 

 Once the optimal observer has been selected, the supervisor can estimate the fault 

vector      by (2.3.1), reprinted here. 

 

         
                 

 

 The   matrix was presumed to be an identity matrix, so its inverse is trivial to 

calculate.  In the real world application of the system, the requirement that only one 

sensor fails at a time needs to be relaxed.  Instead, only one sensor suffers a deterministic 

fault at a time, while all of them can suffer noise.  The presence of noise on components 

that were presumed fault free means that non faulty sensors may still exhibit some minor 

fluctuations around zero.  With these changes, the fault estimate is expanded. 

 

                     (5.3.6) 

 

 Equation (5.3.6) is used by the supervisor to determine the magnitude of sensor 

faults on all sensors, which are provided to the user in addition to the output estimates. 

 Now that the system is fully designed, the components are put together and 

simulated in Matlab.  The following situations show the fault tolerant system's operation 

in various cases. 
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Figure 5.3.1: Sensor estimates vs. measured sensors when no faults are occurring. 

 

 

 

 Figure 5.3.1 shows that this fault tolerant method converges quickly and without 

introducing any new faults, when there are no faults in the system.  There is no delay on 

measurements introduced by this technique.  This means that this FTC method does not 

reduce the effectiveness of the system, when operating in the fault free mode.   

 The system's operation in the presence of a ramp fault on the first sensor is plotted 

in Figure 5.3.2.  This type of fault is used to represent a slew error on the sensor.  The 

first measured sensor diverges and is incorrect after the first fractions of a second.  The 

estimates are able to correctly reconstruct all three outputs despite the failure of one of 

the sensors.  The errors between the estimated outputs and the fault free outputs are 

shown in Figure 5.3.3. 
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Figure 5.3.2: Sensor estimates, measured sensors, and theoretical fault free first sensor. 

The first sensor is suffering a ramp offset error at time zero. 

 

 

 
Figure 5.3.3: Error between FTC system sensor estimates and fault free sensors. 
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 The estimator errors produced by the ramp failure are of the order of     , as can 

be seen in Figure 5.3.3.  Transients cause this minor fluctuation.  Because of this, the 

supervisor's programming must include a threshold level for faults so that it doesn't say 

that a fault is always occurring.  In this example,      was used as the threshold for fault 

detection. 

 The supervisor's         fault detection vector is shown in Figure 5.3.4.  As can 

be seen, the first reduced observer is the only observer expressing an       less than the 

     threshold for fault detection.  Thus the supervisor chooses the first reduced 

observer's estimates as the optimal estimates. 

 

 

 
Figure 5.3.4: Unexpected error of each observer when the first sensor is faulty. 
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 The mathematical proof of this FTC technique requires that faults only occur on   

sensors or less.  This is a reasonable real world expectation with respect to deterministic 

faults, but fails to take into account that noise will often be present in real world 

applications.  Figure 5.3.5 shows the results of this method in the presence of significant 

white Gaussian noise.  The estimator stays correct even in the presence of a high level of 

noise.  This is because the Kalman observers that are used in the fault tolerant system are 

naturally resistant to noise.  This means that the requirements of this system can be 

relaxed to allow noise on all sensors simultaneously. 

 

 

 
Figure 5.3.5: Sensor estimation with white Gaussian noise on all sensors. 
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CHAPTER 6: APPLICATION WITH SENSOR AND ACTUATOR FAULTS 

 

 

6.1: Actuator Redundancy Calculation 

 

 

 An example of the actuator redundancy calculations is provided here.  A three 

input, three output, linear time-invariant model for a turbofan engine is provided by 

Fredrick [9].  Specifically, the model for the fan operating under a Power Code of 30 is 

given.  The three inputs      correspond to actuators controlling the fuel flow rate, the 

nozzle area, and the bypass duct area.  The three outputs      correspond to sensors 

measuring the fan speed, core engine pressure ratio, and the overall engine pressure ratio.  

The state space equations are defined by (6.1.1) and (6.1.2). 

 

                           (6.1.1) 

                          (6.1.2) 

   
                   
                   

                     
  

   
                   
                  
        

  

   
        

                   
                    

  

 

 And   is a zero matrix of appropriate size.   
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   example 

 There are three       values to calculate.  Starting with    , we calculate  . 

 

       
              
             
   

  

          
   

              
             
             

  

          
   

              
             
             

  

                

 

 In the next case,    . 

 

       
              
             
        

  

          
   

              
             
             

  

          
   

              
             
             

  

                

 

 In the third and final case,    . 
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 From this, the    vector is calculated to be [2,3,3].  The measure shows two 

pieces of information.  The system is not guaranteed to controllable in the presence of 

any single actuator fault, as the minimum of    is less than  .  Observation of the vector 

shows that the first control signal       is the critical actuator.  A full failure of the 

actuator controlling the fuel flow rate will lead to a loss of controllability.   

 This means that it is not possible to guarantee reconstruction with this plant, and 

there will not be a way to use reduced order observers to recreate fault free actuator 

behavior.  Most modern systems will fail this test, as few systems have any actuator 

redundancy due to the cost of the components.  This is why this research uses ASOs to 

perform actuator fault tolerance, as is shown in the next section. 
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6.2: Airplane Dynamics and Controller Design 

 

 

 This section goes into an example of designing an Augmented State Observer 

(ASO) for actuator fault tolerance.  In this section the plant is changed from the turbofan 

engine to a Boeing 747 jet transport airplane.  The airplane's model is a fourth order 

linear time-invariant lateral perturbation equation.  This model operates at a horizontal 

flight of 40,000 ft altitude and with a forward speed of 774 ft/s.  The aircraft coordinate 

system is shown in Figure 6.2.1 [8].  This model uses a system of three hydraulic 

actuators on the rudder as the control surfaces for the airplane. 

 

                  
  

 

 

 

 
Figure 6.2.1: Boeing 747 coordinate diagram. 
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 The plant has four internal states: the sideslip angle  , the yaw rate  , the roll rate 

 , and the roll angle  .  They are measured in radians, radians/second, radians/second, 

and radians respectively. 

 

                

 

 The airplane has sensors that measure each state directly to measure the sideslip 

angle, yaw rate, roll rate, and roll angle. 

 

                

 

 This model is taken from [8], [13], and [17] and is defined by equations (6.2.1) 

and (6.2.2) with the following parameters. 
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 The airplane dynamics do not include a model of the actuator or sensor faults, so 

they are assumed to be one on the main diagonal and zero elsewhere.  There are only 

three      fault signals because the actuators do not directly modify the roll angle  .  All 

four sensors can suffer faults so there are four faulty sensor signals     . 

 

   

   
   
 
 

 
 

 
 

  

   

  
  

  
  

  
  

  
  

  

 

 First it needs to be verified that the plant has sufficient sensor redundancy for this 

method.  This is checked with the method outlined in section 2.1.  After checking, it is 

confirmed that the airplane has rank 1 sensor redundancy.  As such, any one sensor can 

fail without the plant losing observability.  This redundancy will not be shown here. 

 The system's base response is measured.  The airplane is underdamped and takes 

around 15 minutes to settle.  This performance is unacceptable.  The FTC system uses a 

state feedback controller                      with negative feedback.  Eigen Value 

Assignment is used to design a    that will modify the plant so that the system dynamics 

are similar to a second order system with a zeta (damping factor) of 0.7 and a new 

settling time of around 13 seconds.   
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 The    term is designed by using eigen value assignment to ensure that the eigen 

values of the adaptive controller are critically damped and converge an order of 

magnitude faster than the plant.  This has an undesired side effect because the norm of 

      is ten.  This means that the actuator fault estimates produced by the observers are 

attenuated by a factor of ten.  This is corrected by the supervisor which uses a post-

amplifier to increase the observer's internal       by a factor of ten to get the actual      .   
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6.3: Design of the Augmented State Observers 

 

 

 The controller that uses state and actuator fault feedback to perform eigen value 

assignment has been designed in section 6.2.  The example continues with the Boeing 

747 airplane.  The airplane's model is a fourth order linear time-invariant lateral 

perturbation equation.  This model operates at a horizontal flight of 40,000 ft altitude and 

with a forward speed of 774 ft/s.  This model of the airplane uses a system of three 

hydraulic actuators on the rudder as the control surfaces for the airplane.  This model is 

obtained from references [8], [13], and [17] and is defined by (6.3.1) and (6.3.2) with the 

following parameters. 
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 The FTC system uses a state feedback controller                      with 

negative feedback.  The state and actuator feedback matrices have been determined in 

section 6.1. 



102 

 

 

    
        
       
      

       
       
       

       
       
      

       
       
      

  

    
                        
                      
                   

  

 

 The eigenvalues of the original plant and the plant with state feedback are in 

Table 6.3.1.  All of the observers are defined by the dynamics outline in equations (4.2.1) 

and (4.2.2), reprinted here as (6.3.3) and (6.3.4).  The    matrix is designed to force the 

ASO to converge faster than the original system, by eigen value assignment.  The eigen 

values are placed at least one order of magnitude to the left of the plant's dominant eigen 

values.  The ASO’s eigenvalues are detailed in Table 6.3.1.  The ASO definitions are 

given below. 
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103 

 

    
 
 
  

        

    
  

  
  

   

 
 
 
 
 
 
 

     
       
      

 
  
 
 

       
      
      
      

 
  
 

      
      
      

 
 
 
  

 
       
       
     

 
 
  

 
 
 
 
 
 

 

 

 

Table 6.3.1: Eigenvalues of the plant and observers 

State Space Model Eigenvalues of Matrix A 

Airplane without feedback -0.0073 -0.0329         i -0.5627  

Airplane with feedback  -0.35  0.274i -5 -5.5  

Full Augmented Observer -4.858 (x3) -22.642 (x3) -27.5  

1st Reduced Observer -4.858 (x2) -5 -22.642 (x2) -27.5 

2nd Reduced Observer -4.858 (x2) -5.469 -22.642 (x2) -27.5 

3rd Reduced Observer -0.731 (x2) -4.858 (x2) -22.642 -27.5 

4th Reduced Observer  -4.858 (x3) -22.642 (x3)   

 

 

 

 The full order ASO design is complete.  Section 6.2 has demonstrated that there is 

at least rank 1 sensor redundancy in this system.  As such, the rank of redundancy   is set 

to 1, allowing no more than one sensor fault at a time.  As one sensor is presumed to fail 

at any time, four reduced order observers are required.  Each reduced order observer is 

designed to presume a specific sensor is faulty.  The r-ASOs use the same matrix 
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definitions as the ASO, with the exception of the    matrix.  In the first r-ASO, the    

matrix is modified to ignore the first sensor       so that it is not used by the r-ASO.  

This is obtained by setting the first column of    to zero. 

 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

       
      
      
      

 
  
 

      
      
      

 
 
 
  

 
       
       
     

 
 
  

 
 
 
 
 
 

 

 

 This process is repeated for the other three r-ASOs.  All of them are built by 

(6.3.3) and have a different column of    set to zero.  The other three    matrices are not 

printed here. 

 As can be seen in Table 6.3.1, there is a side effect of reducing the order of the 

observers.  The reduced order observers are not able to place the eigen values of the 

observers optimally.  On the 1st, 2nd, and 4th r-ASO, the eigenvalues of the observers are 

at least one order of magnitude to the left of the dominant eigenvalues of the airplane 

with feedback and all are overdamped as was intended.  However, the 3rd r-ASO has two 

eigen values at        which are close to the plant's dominant pair of eigen values at 

             .  The 3rd r-ASO’s eigenvalues are to the left of the plant so it will 

converge, but it will not converge quickly enough that the dynamics of the airplane can 

be fully ignored.  This may cause the third r-ASO to experience some undesired transient 

behaviors. 

 The supervisor is designed to measure the unexpected error of each estimator and 

select the ASO that has the lowest      .  From that ASO, the supervisor collects the 



105 

 

estimate of the states      , the outputs      , and the estimate of the actuator errors      .  

The supervisor then calculates an estimate of the sensor errors       by equation (2.3.1).  

The next section will assemble this fault tolerant system and examine how it operates in 

the presence of actuator and sensor faults. 
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6.4: Assembled Augmented State Observer Fault Tolerant System 

 

 

 Sections 6.2 and 6.3 have produced the ASOs and the supervisor for the Boeing 

747 model and can handle both sensor and actuator faults.  The system is assembled and 

simulated in Matlab.  In all the simulations, the airplane is excited by a five second step 

input to observe the model’s response.  The behavior of the airplane without a controller 

is shown in Figure 6.4.1.  The airplane is stable, but it has unsatisfactory performance.  

The settling time is around 2 minutes for the faster states, and around 15 minutes for the 

roll angle   and the yaw rate  .  Figure 6.4.2 shows the improved airplane dynamics with 

the addition of state feedback.  The controller has modified the airplane design so that it 

settles in 15 seconds and overshoot has been reduced to 4.3%. 

 

 

 
Figure 6.4.1: Uncontrolled airplane response to a five second step input. Roll angle is not 

shown due to scale. 
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Figure 6.4.2: Controlled airplane response to a five second step input. 

 

 

 
Figure 6.4.3: Fault tolerant system tracking the airplane outputs when there are no faults 

in the system. 

0 5 10 15 20 25
-5

0

5

10

15

20

25

Time

 

 

Sideslip Angle

Yaw Rate

Roll Rate

Roll Angle

0 5 10 15 20 25
-5

0

5

10

15

20

25

Time

S
e
n
s
o
rs

 

 

Sensor Estimates

Measured Sensors



108 

 

 
Figure 6.4.4: Fault tolerant system tracking the airplane outputs when there are no faults 

in the system.  Plots split to better see each sensor's dynamics. 

 

 

 

 The FTC system is shown to converge to the airplane dynamics in Figure 6.4.3.  

In this plot, there are no faults in the actuators or sensors.  This image is split in Figure 

6.4.4 to better show the tracking of the system to each individual output.  As can be seen, 

the system properly matches the airplane's dynamics without introducing delay or errors. 
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Figure 6.4.5: Fault tolerant system tracking the airplane.  An actuator fault occurs at ten 

seconds. 

 

 

 

 Next, the actuators suffer an offset fault at 10 seconds.  In Figure 6.4.5 it can be 

seen that the system tracks the airplane’s new dynamics.  The speed of convergence 

cannot be easily seen in Figure 6.4.5.  In Figure 6.4.6 an actuator fault occurs after 1 

second and the image is enhanced to better see the rate of convergence of      .  As can 

be seen, the actuator fault estimates settle in around two seconds. 
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Figure 6.4.6: Comparison of the actuator faults and their estimates.  Actuator faults occur 

after one second. 

 

 

 

 The system’s response to sensor failures is tested by setting a fault on the first 

sensor.  The sensor measuring the sideslip angle   suffers an offset error at 3 seconds.  

Figure 6.4.7 looks at the effect of the sensor error on the system’s estimates.  The plot 

shows that the fault tolerant system fully rejects the effects of the faulty sensor. 
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Figure 6.4.7: System’s estimate of the airplane’s sideslip angle.  The first sensor suffers 

an offset fault after three seconds. 

 

 

 

 In Figure 6.4.8, the airplane is subjected to both actuator and sensor faults.  The 

second sensor measures the yaw rate   and suffers an offset error at five seconds.  At the 

same time, the actuator dynamics suffer a fault.  Despite the presence of both sensor and 

actuator faults, the fault tolerant system properly tracks the airplane’s response and 

rejects the faulty sensor data. 
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Figure 6.4.8: Estimation of all four sensors.  An actuator fault occurs at five seconds.  

The second sensor suffers an offset fault at five seconds. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

 

7.1: Conclusions 

 

 

 In this research, a novel method to calculate the level of available sensor 

redundancy that aids in fault tolerant design in an innovative way is defined.  The 

measures    and     provide designers with detailed information regarding the effect of 

faults upon the observability of a plant.  At the broadest view, they can be used to 

determine the rank of sensor redundancy available in a system.  With a focused view, 

critical components can be identified as well as fault sets that result in a loss of 

observability.  The focused view can point out which components of the overall system 

should have additional sensors, to improve redundancy.  This provides designers with 

measures that are useful in the design process of FTC systems that take advantage of 

sensor redundancy.   

 All of this information can also be collected about the actuators by using the 

innovative technique to measure actuator redundancy.  The vectors    and     can be 

examined to understand how actuator failures interact with the plant.  Critical actuators 

can be identified, as well as those actuators that can fail without causing the system to 

lose controllability.  As few systems have sufficient actuator redundancy, thus the study 

helps a designer to add additional redundancy sensors to make it fault tolerant in terms of 

sensor failure. 
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 This research further shows as to how reduced order observers can be used to 

isolate sensor faults.  Faulty signals can be identified and isolated by combining a full 

order observer with a bank of reduced order observers.  This work also shows that these 

observers can remove faults without needing to identify a model of the faulty signal.  

This system of reduced order observers can estimate sensor fault signals if given a model 

of their behavior.  This technique of creating a bank of reduced order observers is shown 

to be applicable in both the linear time-invariant and linear time-variant cases.   

 This research also developed an innovating technique of designing a supervisor 

that selects the best estimate of the fault free outputs from the bank of observers.  This 

completes the design of a fault tolerant control system that is able to compensate for 

sensor faults by using the sensor redundancy that is available in a system.  By starting 

with a measure of the redundancy, an exact count of the number of sensor faults the 

system can tolerate is determinable. 

 This work has developed a unique method  to create a system that can tolerate 

both actuator and sensor failures.  This is achieved by replacing the Kalman observer 

with an Augmented State Observer and incorporating an adaptive controller.  This fault 

tolerant method estimates the states and the actuator faults in such a way that the errors 

are bounded and convergent.  A method to quickly determine controller and observer 

gains is explained to speed up the design process.  The ASO design can be applied to 

both time-variant and time-invariant systems.   

 One weakness of the technique is that multiple observers are used in the 

estimation process which will result in estimation delay.  However, observer gain 

matrices are correlated to each other in order to speed up the design process.  Due to the 
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limitations of hardware space and cost, this method is best implemented with software 

and thus would be classified as a design of an intelligent control system.  Systems that 

have a large set of sensors and can tolerate multiple sensors failing simultaneously will 

lead to significant computational demands which can be difficult to satisfy and could 

result into additional time delays when this system is implemented in real time. 
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7.2: Future Work 

 

 

 This research develops two complete methods in details of applying the reduced 

order observer technique to tolerate sensor and/or actuator faults.  This fault tolerant 

method is adaptable to many different plants undergoing different types of sensor and 

actuator faults.  Future work can extend this technique to work with other types of 

observers.  Unknown Input Observers, Extended Kalman Observers, and Sliding Mode 

Observers can all be incorporated into this technique.  The method can be modified to 

allow for other types of plant component failure, such as model error in the plant itself. 

 This work focused on the area of linear systems.  Research indicates that this 

method can tolerate a linear system suffering nonlinear sensor faults as well, but it has 

not been proven.  Further research could extend the reduced observer technique to 

nonlinear systems.  Future work could also look into ensuring that systems that perform 

real-time piecewise linearization of a nonlinear system maintain stability when used with 

this method.   

 This research found that there were few applications where there would be 

enough actuator redundancy to design reduced order actuator based designs.  However, 

there are systems that do have sufficient actuator redundancy for reconstruction.  Future 

work can examine the idea of building a bank of observers that removes non-functioning 

actuators.  This would be useful in systems where each individual actuator could be taken 

offline independently of the operations of the plant.  This could also be extended to 

partial faults of the actuators, by using the observer to localize the actuator faults and an 

adaptive controller to tolerate the faults. 
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 It would be advantageous to designers to create a system that limits the loss of 

performance caused by reducing the observers and proves that stability cannot be lost.  

This would allow the fault tolerant system to use online observers.  It would also open up 

the possibility for this technique to be coupled with fault tolerant methods that do not 

require a model of the plant. 

 In higher order systems with a large level of redundancy, the number of reduced 

order observers can get too large for a computer to handle in real time.  An idea to 

counteract this is to dynamically change the set of active observers.  The system starts 

with a set of all observers that allow a single fault.  When a fault is detected and isolated, 

the set of active observers is dynamically changed to the set of observers that include the 

isolated fault and presume one more (or one less) can occur.  This way, the identified 

faulty sensors can be used to determine a smaller range of observers that need to be 

computed at a given time.  This would significantly reduce the set of observers that have 

to be calculated, and thus the computational requirements would drop. 
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