Dynamic Valgus Alignment and Functional Strength in Males and Females During Maturation

UNCG Author/Contributor (non-UNCG co-authors, if there are any, appear on document)
Anh Dung Nguyen, PhD (Creator)
Randy J. Schmitz, Associate Professor (Creator)
Sandra J. Shultz, Professor and Chair (Creator)
The University of North Carolina at Greensboro (UNCG )
Web Site: http://library.uncg.edu/

Abstract: Context: Sex differences in dynamic measures have been established in physically mature populations. Gaining information on maturation's effect on dynamic performance measures implicated in injury risk may enable us to better design injury prevention programs. Objective: To examine sex differences in dynamic valgus alignment and triple-hop distance measures across maturational stages in males and females. A secondary purpose was to determine if a field test of strength and power predicts dynamic valgus alignment. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: 157 young athletes (78 females, 79 males) aged 9 to 18 years. Intervention(s): Subjects performed drop-jump landings and single-leg triple-hop tests as part of a broader injury screening. Main Outcome Measure(s): Maturational status was ascertained from self-report questionnaires and grouped according to Tanner stages 1 and 2 (MatGrp1 ), 3 and 4 (MatGrp2), and 5 (MatGrp3). Frontal-plane knee valgus displacement, which served as a measure of dynamic val gus alignment, and single-leg triple-hop distance were assessed. Results: Males demonstrated less dynamic valgus alignment during drop jumps in the latter maturational stages (MatGrp1 = 13.1° ± 8.7°, MatGrp2 = 9.0° ± 6.2", MatGrp3 = 9.2° ± 9.4°), whereas females increased dynamic valgus alignment throughout maturation (MatGrp1 = 11.5° ± 6.9°, MatGrp2 12.8° ± 8.8°, MatGrp3 = 15.5° ± 8.7°). Thus, in the more mature groups, males had less dynamic valgus alignment than females. Both males (MatGrp1 = 393.5 ± 63.7 cm, MatGrp2 = 491.8 ± 95.1 cm, MatGrp3 = 559,3 ± 76.3 cm) and females (MatGrp1 = 360.3 ± 37.1 cm, MatGrp2 = 380.1 ± 44.3 cm, MatGrp3 = 440.0 ± 66.2 cm) increased triple-hop distance, but males increased more, Within each subgroup of MatGrp and sex, triple-hop distance had no predictive ability for dynamic malalignment. Conclusions: When dynamic valgus alignment and strength were assessed, sex and maturational status displayed an interaction. However, functional strength did not predict degree of dynamic valgus alignment.

Additional Information

Journal of Athletic Training. 2009; 44(1):26-32.
Language: English
Date: 2009
triple-hop test, knee valgus, sex differences

Email this document to