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ABSTRACT OF THESIS

ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

Elliptic curve cryptography has been a remarkable development in the
history of cryptography thanks to the properties provided by the implemen-
tation of elliptic curve cryptography. Elliptic curve cryptography has proven
to be adaptable given its broad presence across various electronics of differing
sizes and capabilities. Elliptic curve cryptography is known for utilizing the
discrete logarithm problem, modern algebra, and elliptic curves that have
encouraged continued research into elliptic curve cryptography in its advan-
tages and restrictions. The current comprehension of elliptic curves as well
as continuing advancements and employments of elliptic curve cryptography
have yielded the elliptic curve digital signature algorithm (ECDSA) which
has become an alternative to the primary Digital Signature Algorithm. The
ECDSA provides advantages of elliptic curve cryptography to the function
of the digital signature algorithm to authenticate and protect transmissions
between involved parties. Such can be explored in the securing of bitcoin
related transactions where the completely electronic, decentralized currency
would face a multitude of cyber threats and require safeguards to remain

trustworthy.
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1 Introduction

Cryptography is the study of methods of protecting information as said in-
formation crosses public channels. In public key cryptography the original
message will start out as plaintext, then proceed to undergo an algorithm
that converts the plaintext to a ciphertext, the ciphertext itself is to be made
unreadable or difficult to read across the public channel. The ciphertext is
to be decoded by the receiver to be reverted back to the plaintext. Keys are
used to ensure that between the receiver and the sender, that the receiver
is able to revert the ciphertext to plaintext through the cryptographic algo-
rithm used to produce the ciphertext as well as the provided key. For public
key cryptography, every person involved possesses their own personal public
and private keys. The public key is the key that a person will share with
others for enabling the encrypting of messages being received by said person.
The private is used by said person to revert encryption on the transmitted

ciphertext and reveal the plaintext.

2 Related Literature

There exists a plethora of current literature regarding ECDSA and its related
topics. This is due to the widespread implementation of ECDSA as well as
the general tenability of ECDSA and elliptic curve cryptography.

Wang, Yu, Zhang, Piao, and Liu embarked on the research endeavor

that produced “ECDSA weak randomness” in Bitcoin to apply scienctific



insight to a concern with bitcoin’s application of ECDSA [14]. As of the
composition of this article, the arbitrary value foible was still present and
potentially exploitable [14]. This foible exposed the values that composed
private keys leaving the undesirable exposure for bitcoin transactions and
management [14]. With governments now authorizing bitcoin to be a viable
form of currency, this foible in bitcoin ECDSA has posed another considera-
tion for bitcoin usage [14]. This foible is not confined merely to ECDSA, as
similar phenomenon have been identified to endanger digital signature algo-
rithm and ECDSA’s RSA equivalent [14]. A notable mention of exploitation
is the usage of spam transaction attacks and data that may suggest such
exploits were more prevalent than initially assumed [14].

The foible with the arbitrary values can emerge in two scenarios which
propose different scales of threat as well as magnitudes of exposure [14]. One
scenario is that the arbitrary value of one exchange is equivalent to that of
a previous exchange although the public keys for the exchanges in question
are relatively unique [14]. Within this scenario, it is observed participants
of the exchanges could successfully attempt to deduce the other participants
withheld private keys, endangering the viability of their bitcoin financials
[14]. The second scenario is formed once there are at least a pair of exchanges
that sustain equivalent public keys which would imply that the same private
key is sustained as well allowing for determining the private key for said set
of exchanges [14]. The initial preventative measure applied was RFC 6979,

yet the weak randomness foible stands to persist to the present for ECDSA



[14].

“Securing Bitcoin wallets via a new DSA/ECDSA threshold signature
scheme” is a research article Noting the prevalence of criminal activities that
revolve around illegal procurement of bitcoin from individuals and entities
that legally acquired bitcoin [15]. The research also provides suggested coun-
termeasures to reduce the criminal procurement of bitcoin at various scales
which will be beneficial to the larger bitcoin economy [15]. The reasoning for
why these criminal procurements of bitcoin are such an issue has been con-
densed three principles embedded in the system that allows bitcoin to exist
as established by the authors [15]. The devised countermeasure is a threshold
wallet that applies a the feature of two-factor authentication to attempt to
reduce the likelihood of criminal procurement of bitcoin wallets or bitcoin
themselves [15]. The threshold wallet, by the experiments conducted, does
not severely hinder the bitcoin exchange system which is contributing sug-
gestions to integrate threshold wallets into at least a portion of the bitcoin
cyberinfrastructure [15].

Tessler and Byrnes’ exploration delves into the ramifications of bitcoin
being used in conjunction with quantum computing assets as well as quan-
tum computing assets being applied in an offensive against bitcoin [16]. The
general overview of emerging quantum computing assets is that there will be
minimized effects, until there quantum computing assets will be scaled up-
wards to enable significant feats to be accomplished [16]. Bitcoin mining by

their estimates will be relatively unchanged since SHA-256 has no satisfac-



tory means of being reverse engineered to obtain the value of the argument
submitted to SHA-256 [16]. The main method for mining with quantum
computing assets for the bitcoin cyberinfrastructure is through employing
the quantum computing algorithm known as Grover search [16]. As the cur-
rent computing assets stand, contemporary computing assets when tuned
for mining bitcoin are still displayed to be more effective than the quantum
computing assets that were available at the time of this research from Tessler
and Byrnes [16]. In terms of cryptographic defense, foibles are noted towards
Shor’s algorithm when referencing elliptic curve cryptography alone [16]. For
bitcoin’s cyberinfrastructure, various mechanisms are employed that act as
encumbrances to deter or reduce any offensive possibilities that were sug-
gested at the writing of this article in the context of bitcoin’s tenability [16].
This is compounded with the time-dependent viability of an offensive within
bitcoin mechanisms [16]. Not to mention, the cryptocurrency culture has
already begun preparations for possible quantum computing offensives [16].
There is an examination done on the opportunities that could be revealed if a
cryptocurrency is devised that is primarily reliant and tuned for satisfactory
quantum computing assets at a later date [16].

Johnson, Menezes, and Vanstone are responsible for the in-depth research
article entitled “The Elliptic Curve Digital Signature Algorithm (ECDSA)”
which was published under Certicom [13]. It is apparent that the research of
Johnson, Menezes, and Vanstone is to both go over the breadth of the subject

of ECDSA, while providing the notes and precautions for the best practices



[13]. One such practice includes a set of options to employ for acquiring
viable elliptic curves for a stellar foundation for the remainder of ECDSA ar-
chitecture to rest upon [13]. Another practice that is given no small amount
of focus is the ensuring that participants involved in any ECDSA exchanges
have undertaken the diligent task to ensure all participants involved are prop-
erly following acceptable archetypes [13]. A notable gem is the outline of DSA
architectures for better comprehension of the mathematical phenomenon that
grant higher tenability at relatively enormous scaling [13]. The trio of mathe-
matical conundrums for DSA architectures are noted to include elliptic curve,
discrete logarithm, as well as integer factorization [13].

An extensive amount of concentration is allocated to delineating the but-
tressing concepts and mathematical fields for the continuation of the core
focus of ECDSA [13]. One more mention for elliptic curves within this re-
search article is the inclusion of Hasse’s Inequality to obtain an interval in
which the quantity of elements of the elliptic curve can be determined [13].
In discussing fields, the research article spends ample time introducing the
symbolism involved in effectively converting the fields to viable and practi-
cal software machinations [13]. The symbolic options available are in turn
emphasized to allow for further comprehension of the overall development of
the viable software equivalent from the ECDSA theory being explained [13].
Where appropriate, there are samples provided for enhancing comprehension
which at times includes demonstrations [13]. When addressing the possible

foibles of components of ECDSA, Johnson, Menezes, and Vanstone provide



a thorough list of possibilities that may be available as potential exploits
to contemplate [13]. These exploits include, but are not limited to, usage
of programming algorithmic techniques, the employment of stellar hardware
configurations, attempts to tackle the SHA-1 or its equivalent RIPEMD-160,
or exploitations in a diverse assortment of other components essential to the
operation of ECDSA [13].

Malvik and Witzoee wrote “Elliptic Curve Digital Signature Algorithm
and its Applications in Bitcoin”, providing a general summation of ECDSA
in its most rudimentary points before going into bitcoin [17]. Notably, the
designated elliptic curve being employed with the bitcoin cyberinfrastruc-
ture is mentioned to be Secp256k1, categorized to be a Koblitz elliptic curve
[17]. Two additional statements are made in regard to this particular elliptic
curve [17]. The first is that at the time of the writing of Malvik and Wit-
zoee’s endeavor, the Secp256k1 elliptic curve has minimal exploits [17]. That
statement is made in conjunction with another statement that Secp256kl
was not endorsed to be a stellar option by NIST for a sustainable ECDSA
architecture [17]. The efficiency of any ECDSA architecture rests on the re-
strictions that revolve around the measure of celerity that the elliptic curve
operations may be carried out [17]. The factors that contribute to this are
best summarized as the definition of the elliptic curve in turn provides a set
of factors that can streamline or lengthen the time expense for elliptic curve
operations [17].

A means to raise efficacy in relation to this bottleneck is the employment



of an endomorphism to get a more effective equivalent for the Secp256k1 el-
liptic curve, without having to abandon the original Secp256k1 elliptic curve
[17]. In the case of Secp256kl, the endomorphism identified by Malvik and
Witzoee is the Frobenius map [17]. The Frobenius map accelerates the el-
liptic curve operations to be over 33% quicker than the standard operations
lacking the employment of endomorphisms [17]. Malvik and Witzoee endorse
the efficacy of the Koblitz category of elliptic curves thanks to the boost in
acceleration for operations thanks to the employment of endomorphisms [17].
The Koblitz elliptic curve category have been deemed adequate to be sug-
gested for usage by administrative bodies [17]. Further endorsement for the
Koblitz elliptic curve category comes from the Koblitz elliptic curve category
being found within the NIST Digital Signature Standard for reference in fed-
eral implementations of digital signature architectures [17]. Koblitz elliptic
curves are given higher endorsement as the means to build an instance of a
Koblitz elliptic curve has eased anxiety from the potentiality that the seed
determined for elliptic curve development can lead to inherent foibles in other
elliptic curve categories [17].

Ziegeldorf, Matzutt, Henze, Grossmann, and Wehrle sought to reconfirm
cryptocurrencies as an instrument that promotes protection of the finain-
cial data of users in “Secure and anonymous decentralized Bitcoin mixing”
[18]. Some of the article is spent refreshing on the topics of blockchain, cryp-
tocurrencies, and interrelated subjects that would assist in comprehending

the research article [18]. To prevent users from being simply identified by



existing foibles in the structure of the blockchain on which cryptocurrencies
have a stable foundation, the authors present the software CoinParty as a
suitable remedy [18]. CoinParty within this article is a revamped iteration
of a previous iteration that is also mentioned for a baseline contrast for the
progression of the CoinParty iteration of focus in this research article [18].
Restoring confidence in cryptocurrency has become more critical since Bit-
coin alone became valued at over four billion USD within the year of 2015
[18]. The extent of the potential exploits can be stretched to the obtainment
of TP addresses of the participants of the cryptocurrency infrastructure [18].

CoinParty stands as a mixing service that jumbles up a collection of
cryptocurrency transfers similar to other cryptocurrency mixer software, yet
aims to preserve the concealment of the participants included in said transfers
while maintaining a credible system within the cryptocurrency domain [18].
The six principles providing a collection of metrics to evaluate CoinParty
are designated to be “Applicability and Usability, “Scalability”, “Deniabil-
ity”, “Correctness”, “Cost-efficiency”, and “Anonymity” [18]. The previously
stated principles are used to justify why other mixing software fall short of
what can be attained by CoinParty or that the suggested mixing prototype
did not progress to an implementation stage [18]. CoinParty is structured
to have a threshold mechanism embedded within to better manage the po-
tentialiality of a large quantity of participants that desire to exploit the
blockchain or launch an offensive against the blockchain [18]. The ECDSA

architecture in turn is integrated with the threshold mechanism as well [18].



Significant time is allocated to present a definitive contrast between Coin-
Party with any other potential alternatives [18]. Ziegeldorf, Matzutt, Henze,
Grossmann, and Wehrle affirm CoinParty is a hybridized product in reference
to the amalgamated and unamalgamated mixing software where CoinParty’s
appeal is extracted from both design constructs [18]. Another affirmation
and clarification that is made is CoinParty’s harmonious nature when inte-
grated with the available cryptocurrency options that have Bitcoin’s ECDSA
architecture embedded within the cryptocurrency’s cyberinfrastructure [18].

Extance’s work, “The future of cryptocurrencies: Bitcoin and beyond”,
displays the general timeline of cryptocurrency advancement with a fixation
on Bitcoin [19]. There are points made concerning the potential assimilation
of cryptocurrencies into the collection of assets and instruments of stand-
ing financial constructs [19]. One such financial construct being JP Morgan
Chase, which already had a verified curiosity in the potential integration
of Bitcoin cyberinfrastructure [19]. Bitcoin has specifically acquired a tar-
nished reputation from being utilized for or being associated with crimes or
illegal ventures [19]. Furthermore, cryptocurrency remains a novel financial
instrument as well as electronic-based advancement that makes the potential
legislation that could concentrate on cryptocurrencies a discussion starting
matter [19]. Extance takes time to also detail briefly some controversial
matters that cryptocurrencies have brought about since popularization has
skyrocketed [19].

The circumvention of tinier scale cryptocurrencies have demonstrated



that essentially all cryptocurrencies, unless countermeasures are embedded
to mitigate such, possess a foible where the faction possessing over one-half
of the cryptocurrency mining assets will be able to actively ignore the mech-
anisms meant to reduce unfair or criminal actions within the cryptocurrency
cyberinfrastructure [19]. These instances are designated to be “51% attacks”,
and are dreaded in particular for anyone involved in cryptocurrencies [19].
Countermeasures to these offensive exploits have already been materialised
at differing phases of progression [19]. Another controversial matter is the
energy expense incurred to mine cryptocurrency, which has endorsed the
production of cryptocurrency that acts to buttress something of long-term
value such as genetic research to make cryptocurrency more than merely an
economic instrument [19].

Sarath, Jinwala, and Patel’s research endeavor provides a notable attempt
to look into the ECDSA architecture to examine the idiosyncracies that have
emerged from the differing permutations that have been tuned from the rudi-
mentary ECDSA architecture [20]. Since the year 2000, ECDSA has been
deemed to meet the criterion to be approved by ISO, NIST, IEEE as well as
ANSI [20]. Two points of interest are made immediately, the first of which
is the intricity of the abstraction of the ECDSA architecture [20]. Second
is the ECDSA maintains a hurdle in practice for gaining a tenable elliptic
curve at initiation of the ECDSA’s construction [20]. The essential compo-
nents of ECDSA architecture are given condensed sections in conjunction

with a proof for validation before the permutations of ECDSA architectures
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are examined [20].

The first permutation that is investigated is noted to sustain the private
key for some fixed interval [20]. Due to the sustainment of the private key
for a fixed interval, exploits on recurrence of the private key have led to the
first permutation having a severe foible [20]. The first permutation is stated
to be more appropriate for usage on less capable electronics [20]. The second
permutation was identified to be best suited in the instance that the partici-
pants attempting to authenticate an endorsement lack computational assets
that would be required for other permutations from modifications of the au-
thentication sequence [20]. The second permutation and first permutation
are concluded to share the same foible [20]. The third permutation augments
tenability of the ECDSA architecture by a duo of concealed variables that
eliminate the potential acquiring the private key by exploiting the recurrence
of said duo of concealed variables [20]. The third permutation is noted to
exceed the the safeguards offered by the rudimentary ECDSA architecture
20].

The Elliptic Curve German Digital Signature Algorithm (ECDGSA) is
the fourth permutation to be investigated which, similar to the third per-
mutation, is tenable when the concealed variable(s) is/are recurrent [20]. In
line with the first permutation, ECGDSA will sustain a private key for a
fixed interval [20]. The ECDGSA is evaluated to be more efficient than the
deployment of rudimentary ECDSA architecture in overall expense [20]. The

fifth permutation is spread across two subsections as there is the source form
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of the fifth permutation of ECDSA, then an altered state is delineated after
adding more safeguards to compensate for existing foibles within the the fifth
permutation [20]. Two more permutations attempting to tackle specific sce-
narios or mandates are also delineated, followed by table for viewing all the
permutations within the article [20]. The final notes of the article pinpoint
the suggested scenarios for employing the permutations from the authors’
judgements [20].

Satoshi Nakomoto is the name or alias of the individual or collective that
have earned recognition for their brainchild of Bitcoin, and the rudimentary
architecture that buttresses cryptocurrency today [4]. Development of Bit-
coin was spurred forward as a countermeasure to the foible of validation and
safeguarding of the exchange of currency within the structure of the internet
[4]. Nakomoto states that a pivotal contribution to the safeguards of the
cryptocurrency cyberinfrastructure is that there is predominance of honor-
able participants active to dishonorable active participants [4]. The concept
of the cryptocurrency “coin” is implemented in the form of a conglomera-
tion of the endorsements of the relevant participants, effectively providing a
means by which to validate the “coin[’s|” passage [4]. To reduce the probabil-
ity of a coin being subject to unauthorized replication for invalid exchanges,
the cryptocurrency system participants are notified of exchanges then the
exchanges are ensured to be authentic by participants within the confines of
the cryptocurrency system [4].

By inserting chronological markers within the conglomeration of hashed

12



data that composes the cryptocurrency coin, an authentic detailing of when
exchanges were initiated is retained [4]. The means of doing so is accom-
plished by Nakamoto in the adaptation of a preceding “proof-of-work” mecha-
nism [4]. Said mechanism was devised in reference to Adam Back’s Hashcash
[4]. The proof-of-work mechanism can then be seen to make the trial of cir-
cumventing the existing ledger for manipulation toilsome [4]. The trial itself
would engage methods that require an exponential time complexity to even
hope to carry out with contemporary computing assets, which becomes more
daunting with the ledger expanding from further exchanges [4]. As an added
countermeasure, the novel additions to the ledger can have their expense re-
quirements heightened in response to the participants of the cryptocurrency
infrastructure utilizing refined or numerous computing assets [4]. Proof-of-
work will manage the progression of the ledger with simple conditions to
determine how existing disputes within the blockchain will be resolved [4].
Redundancies have been embedded to enable the blockchain to continue func-
tioning even with potential delays or disputes arising throughout [4].
Another mechanism for preventing offenses against the Bitcoin infrastruc-
ture is that the infrastructure itself advocates for honorable participation over
any other possible involvement [4]. To better illustrate such advocation, the
similarities of attempting to manipulate the Bitcoin blockchain are provided
in reference to the Gambler’s Ruin conundrum as an example is displayed
[4]. Concerns for the management of storage assets are allayed in a detailed,

brief elaboration on the means employed to minimize the strain on storage
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devices [4]. Nakamoto has also considered the diversity that is inherent in
the exchanges that will take place with Bitcoin as Bitcoin advances [4]. In re-
gard to safeguarding personal data from being accessible through the ledger,
Nakamoto has given consideration to this in stating constructs that filter
data as well as possible foibles that could be revealed [4].

“Secure Implementation of ECDSA Signatures in Bitcoin” is an article
delineating the ECDSA, its rudimentary concepts, Bitcoin, and the integra-
tion of ECDSA within Bitcoin from DI WANG [23]. ECDSA architecture
has the secp256kl elliptic curve embedded in the cyberinfrastructure, yet
the suggestion from NIST has been the secp256rl elliptic curve in contrast
[23]. Three critical components of the Bitcoin infrastructure is the SHA256,
RIPEMD160 and Merkle trees [23]. SHA256 is known to be a hash function.
Merkle trees are a data structure that can be observed to buttress authenti-
cation systems by storing hashes [23]. Merkle trees diminish the expenditures
that are incurred from disputes originating from alterations of the continuing
Merkle tree [23].

P. Kocher is presented an offense for the expanse of cryptography through
the concentration on the hardware infrastructure versus solely the software
infrastructure [23]. This category of offense is titled the side channel of-
fense [23]. The crutch of a successful side channel offense is that there is
data concerning the efficacy or the other hardware properties are analyzed,
removing the necessity of aiming directly for reverting encryption methods

safeguarding plaintext [23]. For example, the interval that is expended for
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computations could be repurposed to assist with the obtainment of the pri-
vate key [23]. Another example is using a sustained intake of the energy
expenditure for supplemental data that can be employed in parallel to other
hacking methods to boost an existing offensive to undermine cryptographic
constructs [23]. Energy expenditure has been definitively noted to produce
unintentional insight as to the characteristic values that are embedded in
the executed encryption architecture [23]. Another means of initiating a side
channel offense is to purposely generate disruptions to divulge the critical val-
ues of the cryptographic architecture thanks to the data that will be attained
[23]. There are safeguards that can be employed to restrict the probability
of success of side channel offenses, yet there should be an acknowledgement
that such will dampen the efficacy of the cryptographic construct at play
23].

Over the multiple explorations that have been conducted for elliptic curve
and Bitcoin, there has been a wealth of knowledge extracted from such ex-
plorations. Some of the explorations for ECDSA and its integration into
Bitcoin have yielded the option to embed other cryptographic constructs
to retain the safeguards in Bitcoin or eliminate foibles that ECDSA could
produce [23]. One option is to embed a Lamport endorsements mechanism
in lieu of the contemporary ECDSA mechanism [23]. The employment of
Lamport endorsements can be traced to V. Buterlin in the early 2010s [23].
The second option that has been devised, while being deemed of the same

likeness of Lamport endorsements, of another classification of endorsements
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[23]. The classification the second option fits into has been determined to be
Guy Fawkes [23]. The machinations that led to the second option was traced
to A. Miller and J. Binneau, devised inside the same decade as Lamport
endorsements option of Buterlin [23]. WANG notes that these two options
demonstrate that ECDSA is not the sole means of cryptocurrency continuing

to possess sustainable endorsement mechanisms [23].

2.1 Groups

Let G be a non-empty set with the binary operation %, the following condi-
tions must hold for G to be considered to be a group:

1: * is associative meaning that for a,b,c € G (axb) xc = a * (b * ¢),
Ya,b,c € G.

2: There exists an identity element e such that for a,e € G, axe = exa =
a,Va,e € G.

Yxa =e,Va,a te €

3: For each element a € G, Ja~! such that axa™! = a~
G. a7 ! is called the inverse of a.

A group is called abelian or commutative if for a,b € G, a*xb = bxa,Va,b €
G. A cyclic group G is a group that can be generated by a single element a,
so that every element in G has the form a”™ for n € Z.

The order of an element a of a group is the smallest positive integer n
such that a" = e, where e denotes the identity element of the group. The

order of the group G is denoted by |G| is the number of elements in G. If the

order of GG is prime, then G is a cyclic group.
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2.2 Cryptocurrency

Cryptocurrency is a form of electronic currency that was originally struc-
tured to be decentralized so that individual people rather than consolidated
financial institutions could maintain the funds traded amongst each other.
Cryptocurrencies are dependent on ledgers distributed amongst all partici-
pating members of the cryptocurrency exchange to conduct, verify, and val-
idate transactions that occur amongst the members of the cryptocurrency
exchange. The rudimentary infrastructure for cryptocurrency is open source
meaning that anyone could potentially develop their own cryptocurrency af-
ter proper setup of said infrastructure.

One thing to keep in mind with cryptocurrency is that cryptocurrency
does not have a tangible equivalent, cryptocurrency is existent only in the
digital domain which simplifies exchanges with cryptocurrency [1]. Despite
said constraint, cryptocurrency has been pursued for a variety of motiva-
tions including as a financial option in attempt to profit if or when the cryp-
tocurrency prospers in the markets [1]. Being decentralized, cryptocurrency
lacks the guarantees and safeguards that are associated with conventional
currencies [1]. Cryptocurrencies are known to be volatile in nature further
complicating the processes of becoming involved in cryptocurrency trading
[1].

Cryptocurrency activity is meant to be anonymous but is not by any
means the method to completely remove people from being connected to

exchanges [1].
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2.2.1 Blockchain

Blockchain is a term that is attributed to a tool to be applied ubiquitously to
any and all issues or complications within the domains dealing with currency
as well as domains concerning technological implementations [2]. The deno-
tation of blockchain concerns cyberinfrastructure consisting of “peer-to-peer
networking, consensus mechanisms, and ... hash-linked data structures” [2].
Each computer or node is going to be transmitting to participating nodes
of the same network infrastructure instead of a single node or collection of
nodes manipulating transmissions amongst all the nodes as the main author-
ity [2], sustaining no node(s) as possible foibles due to exerting authority
over nodes. There are also programs that allow the involved nodes to remain
consistent in the contents of the existing ledgers and ensure the participat-
ing nodes can validate the exchanges occurring and would have occurred [2].
This sustains the consistency across all of the involved nodes by a defined set
of conditions to prevent inconsistencies [2]. The amendable and appendable

13

ledger is “will make alterations evident,” if from an unauthorized party yet
it is up to the individuals or parties with authority in the blockchain network
to rectify such [2].

Blockchain can be used for various forms of electronic information [2]. For the
consensus, there are are a trio of attributes that are examined to characterize
the blockchain infrastructure that has been established [2]. These three at-

tributes concern where the protections are concentrated for the blockchain,

if the electronic information in question is accessible to everyone, and the
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exclusivity involved in accessing the blockchain [2].

2.2.2 Bitcoin

Bitcoin viewed as the first and possibly the most renown cryptocurrency that
exists in the world today. Bitcoin is the brainchild of an individual or group
referred to as Satoshi Nakamoto, and the original bitcoin blockchain detailed
in the their white paper Bitcoin: A Peer-to-Peer FElectronic Cash System
[3]. Bitcoin was devised for providing a means to electronically transfer
currency amongst two entities without the necessity of a additional entity
being incorporated at any step of the transferal [4]. In place of the third
entity being the authority of the credibility of the transfer, a ledger of a
blockchain would serve to take into account all the transmissions of currency
amongst the community of the blockchain [4]. New devices can become part
of the blockchain or separate from said blockchain, with the freshest ledger
being the referenced for any neophyte or readmitted devices [4].

The drive to conceive the blockchain infrastructure is derived from the
observation of monetary entities being intensely incorporated into the elec-
tronic transmission [4]. This depth of involvement by monetary entities goes
all the way to settling the conflicts that can generated as a consequence
of the potential disagreements amongst those involved in the transmission
[4]. Since the monetary entities have tacked on supplemental tolls on top
of the value of currency that will be transmitted, electronic transmissions

become more expensive and there can be limited reliability in regard to the
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two groups or individuals that are directly included in the transmission [4].
It should also be mentioned that there is no certainty or absolute assurance
of the credibility or safeguarding of each and every transmission being made
[4]. Cryptocurrency, as proposed by Nakamoto, was to eliminate the depen-
dency on an unnecessary third entity so that two individuals or groups could
commit to the transmission of currency with the assurance being placed on
a logical security model in a blockchain [4].

Through the implementation of electronic endorsement, the cryptocur-
rency is established as a construct formed from continuing endorsements of
the individuals or groups participating in a series of engagements in trans-
mitting currency [4]. Hashing methods as well as public key cryptography
are essential for this proposed cryptocurrency construct [4]. The amendable
ledger that is ubiquitous amongst active participants of the blockchain is
essential to maintaining the credibility of all present and previous transmis-
sions of currency [4]. Attempting to alter the ledger will readily increment
expense and toil that will be necessitated to overwrite the existing credibility
of the ledger as transmissions in the blockchain persist [4]. The blockchain
is fault tolerant and resistant to incorrrect computations occurring within a
minority of the participants [4].

The blockchain is devised in such a way that the motivation is to main-
tain the credibility of the blockchain rather than overwrite the credibility of
the ledger [4]. The cryptocurrency can have established parameters that can

constrain the parameters maintaining the cryptocurrency such as the quan-
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tity of units that are permitted within the blockchain [4, 23]. This resolves
severe controversies of inflation that can occur in contemporary currency
[23]. Individuals or groups can have a layer of safeguard for their identities
as the ledger does not directly implicate whom was participating the trans-
mission of currency, and the public and private keys are freshly made for
each transmission [4].

The mining mechanism expending an estimated % of an hour within the
Bitcoin cyberinfrastructure is critical to the dual set of aims to be accom-
plished for the sustainability of Bitcoin [23]. The mining will grant consistent
opportunity for authentic exchanges to be confirmed within the infrastruc-
ture [23]. The other aim that is fulfilled is that spawning of supplemental
coins within the Bitcoin infrastructure [23].

A possible controversy with Bitcoin commerce is centered on the ex-
changes that take place as Bitcoin is adapted. An offensive that may be
setup within Bitcoin to bypass the safeguards for removing unauthentic ex-
changes by predominance of confirmation of the Bitcoin participants [23].
This is due to the foible existing in the embedded scripting languages that
exist within the Bitcoin cyberinfrastructure that provide opportunity to tam-
per with endorsements [23]. This offense has been titled the “Transaction
malleability” [23].

While Bitcoin is the premiere cryptocurrency, there have been a large quan-
tity of similar initiatives generated all of which are traceable to Satoshi

Nakamoto’s machination. Cryptocurrencies have been observed, investi-
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gated, studied, and created to such an extent that there exist platforms
that allow new enthusiasts to construct their own cryptocurrency with ease.
Cryptocurrencies have even been launched by corporations or in response to

icons or elements of popular culture.

2.3 Cryptography

Since the early emergence of human civilization information has proven to
be invaluable in the correct context to interested groups or individuals. For
those who are the intentional sender and receiver of said information, the
information should be transmitted without error. For anyone external to
such a transmission, it is critical the information is safeguarded. To this end,
cryptography was born and has since been advanced through the ages as
resources and concepts developed in the advancement of human civilization.
Cryptography at its basics involve a sender, a receiver, the plaintext, the
ciphertext, encryption, and decryption. The plaintext is the authentic mes-
sage to be transmitted from sender to receiver before undergoing encryption.
Encryption is a process by which information in the plaintext is morphed into
ciphertext. The encryption is done through the use of a repeatable process,
or algorithm, that will in turn allow for decryption of the ciphertext after
said ciphertext is transmitted to the receiver. Decryption is the process of
taking the ciphertext and revert it back to the plaintext. While cryptography
is aimed to safeguard the information, there are times when said information

is coveted by unintended persons or groups. That in turn spurs said persons
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or groups to attempt to gain the plaintext even if that requires decrypting
the ciphertext.

Cryptographic algortithms are designed to convert plaintext to ciphertext
by a defined set of rules. In its simplest terms, the sender will encrypt the
message then the receiver will decrypt said message operating in context of
the same cryptographic algorithm. Over the advance of history, there has
been a number of cryptographic algorithms that have been devised within the
growing field of cryptography. Said cryptographic algorithms are identified

in two distinct families: asymmetric and symmetric.

2.3.1 Symmetric Cryptography

Symmetric cryptography is constructed in such a way that there is a singular
key that can be utilized for encryption of the plaintext and decryption of the
ciphertext. An example would be the Caesar cipher, where the key is the is
the quantity of characters shifted to yield the ciphertext. To decrypt the Cae-
sar cipher with the key, you would merely shift in the opposite direction by
the same number of characters. Since there is one key involved that serves for
both encryption and decryption purposes, the apparent foible of symmetric
cryptography is that the key must be guarded otherwise anyone with access
to the key can decrypt the ciphertext. There is also the consideration of
devising a method to transmit the key between the receiver and sender with-
out any unintended entities acquiring access to the key. The involvement

of a sole key for the encryption and decryption actions lead to symmetric

23



cryptographic algortihms being valued less than asymmetric cryptography
for safeguarding the plaintext contents to be transmitted [5].
Examples of symmetric cryptogrphic algorithms are the hill cipher, play-

fair cipher.

2.3.2 Asymmetric Cryptography

Asymmetric cryptography implements a dual collection of keys to provide
a means of encryption and decryption without the vulnerabilities exhibited
by symmetric cryptography. One key is denoted to be the public key and is
distributed by the user amongst the network of participants that encrypted
transmissions will take place. Any messages to be sent to the user will be
encrypted by other participants by the user’s public key. The public key acts
to enable encryption, but the user and every other participant will possess a
private key. The private key is related to the public key in that any informa-
tion encrypted with that specific public key can be decrypted by the private
key that was created with that public key. The private key is safeguarded by
each individual owner to so that only the person the private key belongs to
may be able to successfully decrypt ciphertext to plaintext from the usage of
the associated public key. Aymmetric cryptographic algorithms are the pre-
ferred option when attempting to guard plaintext details through encryption
from unauthorized persons or entities that would exploit the plaintext [5].

Examples of asymmetric cryptographic algorithms are RSA and elliptic curve

cryptography.
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2.3.3 Why Cryptography Continues to Develop

Cryptography is a field that does not cease in its growth due to the constant
struggle between interests to safeguard information and interests to exploit
said information. Those working in cryptography to guard plaintext must
consistently dedicate their work to devising fresh methods or upgrading pre-
ceding methods in hopes of outpacing the opposition that seeks to obtain
the plaintext by undoing the encryption that yields the ciphertext [5]. To
make the internet a viable means of transmitting details from one point to
another with confidence, the progress of cryptography must strive ahead to
to provide adequate defensive methods to safeguard plaintext as transmitted

ciphertext [5].

2.4 Digital Signature Algorithm
2.4.1 Hash

Before addressing the digital signature algorithm, the concept of hashing
must be addressed. A hash is an output of a predetermined magnitude that
is produced from a hashing function [5]. The idea of hashing in cryptography
is that the hash will be used as both an identifier and tool for verification
for transmitted details or as a means for ensuring passphrases are tenable

within a database [5].
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2.4.2 Digital Signature

The digital signature is was designed as a tool for ensuring validity in the
context of technology and data, being held as an equal to the physical sig-
nature a person may bestow [6]. Digital signatures should remain functional
both after communications are completed and beyond the context of time
of said communications as long as the content involved can be fetched [6],

further emphasizing the equivalence to a physical signature.

2.4.3 Digital Signature Algorithm (DSA)

DSA is composed of a pair of functions at the most rudimentary concept
in which one function confirms the genuineness of the digital signature that
is the product of the partner function [6]. Where asymmetric cryptography
becomes involved is in regard to said pair of functions applying the public
key for confirming the genuineness of the digital signature, while the private
key is crucial to producing the digital signature within the implementation
[6]. The plaintext is morphed to into the output of a hashing function that is
delivered to the person wanting to confirm the digital signature in conjunction
with delivery of the plaintext and digital signature in question [6].

Before attempting to use the digital signature algorithm, proper context
for the implementation of the digital signature algorithm is established by de-
termining the factors that will be crucial to the creation of the dual set of keys
[6]. This is critical in the implementation of both the digital signature algo-

rithm, and the later discussed elliptic curve digital signature algorithm, since
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without this cohesive context amongst all participants there will be inconsis-
tencies reflected in the factors governing each participants’ implementation
of the digital signature algorithm [6]. Following such, dual keys are created
amongst the participants followed by confirmation of the exclusive possession
of the dual collection of keys amongst said participants [6]. Any plaintext
to be delivered to any other participant will have its hash output produced
for later confirmation that the plaintext’s contents was preserved through-
out the time period the communication took place [6]. Additional methods
may be used to further manage communications over the long term, such as
the creation of an arbitrary value to identify specific instances of plaintext
[6]. Once the preparations for the implementation of the digital signature
algorithm are satisfied, a digital signature may be produced then reviewed to
examine if there were miscalculations when producing said digital signature

algorithm or for other purposes related to the confirmation of genuineness

[6].

2.4.4 Factors Necessary for the Digital Signature Algorithm

Five key components are identified as being unavoidable for the implementa-
tion of the digital signature algorithm [6]. Said components are the function
utilized for hashing, the dual set of keys, the value to be given to each instance
of a communication that remains confidential, the factors that establish the
context of the digital signature algorithm, as well as the plaintext to be sub-

jected to the digital signature algorithm [6]. The private key will be denoted
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as a, the public key is to be denoted as b, and the non-clonable arbitrary
value to be given to each instance of a communication denoted as ¢ [6].

A non-composite value denoted as r shall be acquired in which the number
of bits composing r are denoted by S [6]. The limitations of r are established
as 2971 < 7 < 29 [6]. Then t will denote a non-composite factor of r in
which H is the quantity of bits that compose ¢ [6]. The limitations of ¢ are
established as 2771 < ¢ < 27 [6]. Taking the finite field or group where the
designated operation is multiplication with order r, f is the element that is
also a generator of a finite subfield or subgroup possessing order of ¢ within
said finite field or group [6]. The limitations of f are described as 1 < f <r
[6]. The limitation of the private key in respect to the previously detailed
parts of the digital signature algorithm implementation is that 0 < a <t as
well as the lifespan of a being constrained to however long digital signatures
are being produced [6]. The public key can be delineated as b = f* mod
r and has a lifespan of how ever long the digital signatures of the private
key will be confirmed [6]. The non-clonable value that is associated with
each instance of communication has the limitation of being 0 < ¢ < t [6].
The value ¢ will have a multiplicative inverse ¢~! under mod t that will also

contribute to producing digital signatures [6].

2.4.5 Using the Digital Signature Algorithm

To start, obtain the smaller of the two values of H and the quantity of

bits that compose the product attained from usage of the hashing function
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denoted as hashbitquantity as the value, denoted as (), will be critical later
[6]. The components of the digital signature compose a tuple (i, j), in which
i is attained by the method of i = (f° mod r) mod t [6]. j is obtained by two
methods, the first is acquiring v by extracting the quantity of bits ) from
the left hand side of the hash produced from the communication contents
and the hash function [6]. j is then acquired by j = (¢~ (u + ai)) mod t [6].
Before communication contents are transferred to the receiver a confirmation
is made of 7,5 # 0, so that in the case such occurs a fresh c¢ is attained to
restart digital signature production [6].

Digital signatures can be confirmed through a related process dependent
on parameters that are transferred over by the sender [6]. The receiver will
be transferred duplicates of (7,7), b to be denoted as (i',7'), b’ from the
participant who created the digital signature, which is possible when the
receiver is operating within the same context of factors as the sender of the
digital signature so progress may move forward [6]. To initiate, 0 < ', j" <t
will be proven to be fact, and if neither ¢, j violate such, the procedure may
continue to advance [6].

A series of new values will be required to continue [6]. Let g = (j')~! mod
t, k denotes smaller of the values of the H and hashbitquantity retrieved from
employing hashing [6]. Let m; = gk mod t while my = (i’ X g) mod t [6],
then n = ((g"™ x b™2) mod r) mod t [6]. The inverse of 5 will be acquired
succeeded by ensuring that k is in the form of numeric value of the group

Z [6]. Confirmation of the digital signature concludes if the n = ¢’, where
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any other possibility is subject to being dismissed to optionally reattempt

communication [6].

2.5 Elliptic Curves

Elliptic curves are mathematical constructs that can be delineated by what
is referred to as the Weierstrass equation. The general Weierstrass equation
is known to be condensable through the usage of set factors from the core
structure of £ : y? + a1xy + azy = x® + a2 + ayx + ag [7]. To attain
the condensed version, we initiate the system of steps with completing the

square solely on the left side of equation: (y+ %%+ %) = 2%+ (ag + afj):ﬁ +

alx

a,x + (% + ag). Such is followed by allowing y; = y + %

+ %, allowing
A=as+ %, setting B = a4, and establishing C' = % + ag. Such will allow
for the reconstruction of (y+ %%+ %) = 2°+ (ax + aé)ﬁ +agr+ (2—5 +ag) to
the version structured as yi = 2°+Ax*+Bx+C. Establishing v = x,—% will
allow for yet another alteration to the structure of the Weierstrass equation
to yield: 47 = (21— )3+ A(z1 — )2+ B(z1 — 2) + C = 2} — 274 +
:1:1%2 — %3 + Ax? — 222 — 2:1:1%2 + %33351 — B? + C so that we may press
forward. The proceeding step is employing simplification to gain: y? =
2 — 014 4 Bay — BA+C = 23 +11(B—4) +(—B4 4+ C) from the previous
version. We then examine that by setting ¢ = B — %2 aswellasd = —B ? +C
we can get the condensed mathematical structure of y? = 23 + cxy + d from

the general Weierstrass equation E : 4% + a2y + azy = 2 + asx? + asx + ag.
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2.5.1 Elliptic Curves Constructed on the Group of Real Numbers

Elliptic curves can be formed on various groups, allowing different set of
factors that will govern the structure of said elliptic curves. On R, the elliptic
curve is observed to be formed by an assortment of coordinates that visually
demonstrate its characteristics. Elliptic curves in the context of R reveals the
two divisions that exist for elliptic curves within the condensed structure of
y = x® 4+ cx +d. The attribute on which the divisions are founded is whether

the elliptic curve possesses a singularity or not. The singularity is understood

a4

75 as well

to be a‘ coordinate that is a component of the elliptic curve where
as % are both reckoned as 0, meaning the elliptic curve in question will be
singular [8]. Otherwise, said elliptic curve is has displayed a non-singular
nature [8]. It is known that the singularity is tied to the phenomenon of
isomorphism that makes the singular elliptic curve a foible, not safeguard,
in the context of cryptography [8]. When the equation of 4c® + 27d* = 0
is examined to be fact, the elliptic curve in question is determined to be

singular [9]. When the equation of 4¢ 4 27d? # 0 is examined to be fact, the

elliptic curve in question is determined to be non-singular [9].

2.5.2 Examples of Singular as well as Non-Singular Elliptic Curves

on R

Below will be examples of singular and non-singular elliptic curves over R.

First are the non-singular elliptic curves:
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Figure 1: A non-singular elliptic curve modeled by y? = 22 + 8z + 21, —10 <
2 <10, =10 < y < 10

Figure 2: A non-singular elliptic curve modeled by y? = 23 — 13z + 45,

~10< 2 <10, =10 < y < 10

Next are examples of singular elliptic curves:
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Figure 3: A singular elliptic curve modeled by y* = 2% —2z + /32, —10 <

<10, -10 <y <10
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Figure 4: A singular elliptic curve modeled by y? = 2® — /£322 4+ 7, —10 <

<10, —10<y < 10

These figures were constructed through the usage of the software MATH-
EMATICA.
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2.5.3 Set Up for Operations on an Elliptic Curve

Elliptic curve operations possess an identity that is designated to be the
coordinate at infinity, co, and is essential to the employment of elliptic curve
operations. The inverse of a coordinate on R is considered to be a reflection
while taking into account the horizontal axis of the coordinate plane. For
example, say that there is a coordinate B that can be denoted as B = (xp,yp)
would possess an non-negative counterpart —B denoted as —B = (zp, —yp)
when the elliptic curve in question constrained in the group of real numbers
[9]. Whenever the scenario of B + —B arises, oo is the predictably yielded

as a consequence [9].

2.5.4 Operations of an Elliptic Curve

When dealing with elliptic curve operations, there are a trio of scenarios
that are formed based on the inputs for the operations. Said elliptic curve
operations can be done strictly on the coordinate plane if the elliptic curve
lies on R, otherwise the elliptic curve operations depend on specific formulas
in the context of the group to calculate.

The first scenario is when a coordinate A is doubled or A + A. When
this happens, on the coordinate plane a contiguous linear connection will be
formed in the context of R [8]. The output, coordinate C, is the mirror in
reference to the horizontal axis of wherever said line makes contact with a
novel coordinate,—C', that is a portion of the elliptic curve in question [§].

There are two sub-cases that will exist here. For when the y-value of the
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coordinate A is equivalent to 0, —C will be co. For when the y-value of
the coordinate A is not equivalent to 0, C' will be the consequence of the
transformation of —C' [8]. The algebraic assets to attain —C' are the rise
over run of the contiguous line for the coordinate A or m = (3(23:(‘%—5(:)7 ro =
m? —2(z4), and y_c = —ya + m(zs — x¢), then attain C' from —C [8].

The second scenario is when A + —A occurs [8]. Thanks to the properties
of the group and the respective addition operation, oo will always be yielded
8].

The third scenario is when there are two novel coordinates A and B being
utilized and B # —A. To acquire —C' by geometric applications a linear
connection is formed for A and B [8]. Upon extending this connection, the
next instance the connection encounters the elliptic curve will be denoted
as the coordinate —C' [8]. A reflection with respect to the horizontal axis
would be sufficient to yield the coordinate C' from the attained coordinate
—C' [8]. Another situation can emerge when either the coordinates A or B
are indeed the tangent coordinate of the elliptic curve in consideration of the

linear connection made. Then, the tangent coordinate is also defined to be

—C. Mirror —C' to yield C. In the application of algebra, first m, the rise

over run of the contiguous linear connection, is established as m = %,
followed by ¢ = m?—wz4—zp as well as y_c = —ya+m (x4 —xp) to acquire

the coordinate —C' to obtain coordinate C' [8].
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2.5.5 Examples of Elliptic Curve Operations Over R as the Field

or Group

The first example will make use of the non-singular elliptic curve E: y? =

2% 4 82 + 21 and the coordinates A = (1,v/30), B = (6,/285).

Example 1. Initiate by obtaining m = % ~ 2.281.

Succeeded by the obtainment of the z-value of coordinate —C': x_o = 2.281% —
1—-6=~-1.797.

Concluded by the obtainment of the y-value of coordinate —C': y_c = /30 +
2.281(1 — 6) ~ -5.928.

Now coordinate C' can be observed to be (—1.797, —5.928).

The second example will make use of the non-singular elliptic curve E: 32

= 2% — 132 4 45 and the coordinate A = (3,+/33) will be doubled.

Example 2. Initiate by acquiring m = (35?3?’231)3) ~ 1.219.

Then acquire the z-value of coordinate —C', x_c = 1.219* — 2(3) = -4.51/4.
To acquire the y-value of coordinate of —C, y_c = —v/33+ 1.219(3 + 4.514)
= 3.415.

To finish, coordinate C' can be determined to be (—4.514,3.415).

2.5.6 Elliptic Curves in the Context of Finite Fields Z*

When elliptic curve operations are implemented over Z rather than R, similar
algebra may be used with some adaptation reliant on the finite field or group.

Non-composite values that exceed the value of 3 will be denoted as p, so that
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the elliptic curve operations can be in the context of Z, [9]. The modification
of the condensed Weierstrass mathematical structure y? = 23 + cx + d that
is necessary for implementation within the context of the of the finite field of
Z, are y* = 2+ cx +d mod p in combination with the necessity of 4¢® + 27d?
% 0 mod p for non-singular elliptic curves [9]. The consideration must also
be made that both ¢ and d € Z, [9]. The element oo is retained from R to
Zy [9]. The coordinates that are elements of the set are defined as (x,y) in
which the values of x and y are € Z, [9].

Dealing with elliptic curves in the context of finite fields alters the nature
of the elliptic curve slightly. Such may best be seen in examples of visualizing
the coordinates of the elliptic curve over finite field Z,.

The first example for an elliptic curve over Z, is y* = 2* + 4 + 6 mod
23 (we can verify that 4(4)3 4+ 27(6)% mod 23 is 9). Here we can see that set
of coordinates satisfying y* = 2® — 4x + 6 over Zy3 are: (0, 11), (0, 120, (5,
6), (5, 17), (6, 4), (6, 19), (7, 3), (7, 20), (9, 9), (9, 14), (11, 1), (11, 22), (13,
1), (13, 22), (14, 0), (16, 70), (16, 16), (19, 8), (19, 15), (20, 6), (20, 17), (21,
6), (21, 17), (22, 1), (22, 22), co. The order of this group is 30.

20+

Figure 5: The elements of the elliptic curve y? = 2® + 4x + 6 over Zos
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The second example for an elliptic curve over Z, is y* = % + 92 4+ 4 mod
17 (we can verify that 4(9)% + 27(4)% mod 17 is 16). It can be observed that
the set of coordinates satisfying y* = x® + 9z + 4 over Z7 are: (0, 2), (0, 15),
(2, 8), (2,9), (4, 6), (4, 11), (5, 2), (5, 15), (6, 6), (6, 11), (7, 6), (7, 11), (9,
7), (9, 10), (12, 2), (12, 15), (14, 1), (14, 16), co. The order of the group is
19.

Figure 6: The elements of the elliptic curve y? = 2® + 9z + 4 over Z;;

The third example for an elliptic curve over Z, is y* = 2* + 22z + 56 mod
101 (we can verify that 4(22)3 4+ 27(56)% mod 101 is 4). It can be observed
that the set of coordinates satisfying y? = 23 + 22z + 56 over Ziq; are: (0,
37), (0, 64), (1, 33), (1, 68), (4, 39), (4, 62), (6, 0), (8, 21), (8, 80), (10, 8),
(10, 93), (11, 35), (11, 66), (13, 32), (13, 6), (14, 49), (14, 52), (15, 23), (15,
78), (18, 27), (18, 74), (22, 49), (22, 52), (25, 24), (25, 77), (26, 23), (26, 78),
(28, 0), (32, 20), (32, 81), (33, 37), (33, 64), (37, 35), (37, 66), (39, 21), (39,
80), (41, 47), (41, 54), (42, 5), (42, 96), (46, 38), (46, 63), (51, 2), (51, 99),
(52, 2), (52, 99), (53, 35), (53, 66), (54, 21), (54, 80), (55, 48), (55, 53), (58,
10), (58, 91), (59, 17), (59, 84), (60, 23), (60, 78), (63, 10), (63, 91), (65, 49),
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(65, 52), (66, 12), (66, 89), (67, 0), (68, 37), (68, 64), (70, 40), (70, 61), (71,
26), (71, 75), (72, 28), (72, 73), (74, 22), (74, 79), (75, 47), (75, 54), (81, 10),
(81, 91), (84, 18), (84, 83), (85, 31), (85, 70), (86, 47), (86, 54), (89, 36), (89,
65), (94, 8), (94, 93), (96, 15), (96, 86), (97, 45), (97, 56), (98, 8), (98, 93),
(99, 2), (99, 99), (100, 29), (100, 72), co. The order of this group is 100.
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Figure 7: The elements of the elliptic curve y? = a® + 222 + 56 over Zo;

These figures were constructed through the usage of the software MATH-

EMATICA.

2.5.7 Elliptic Curve Operations Over Z,

Going over some of the general rules that carry over from R counterparts we
understand that coordinate A will consistently be the result of A 4+ oo and
o+ A, Aey?=1*+cx+dmodp 9]

The first scenario that will be reexamined in the context of Z,, is the addition
of novel coordinates of the elliptic curve. Given coordinates A, B € y? =
23 + cx + d mod p, defining the coordinates A = (z4,y4) and B = (z,yn)

with solution C' =(z¢, yc), we first calculate the rise over run m = =22
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mod p [9]. Now we can successfully acquire zc = m?—x 4 —x5 mod p followed
by yo = m(xa — xc) — ya mod p to obtain coordinate C' [9].

The second scenario to be reexamined in the context of Z, is the doubling
of a coordinate A, or A + A [9]. Given the coordinate A € y? = 2> + cx +d
mod p to be defined as A = (z4,y4) the rise over run of the the contiguous
line, m = 329572'16 mod p, is found to acquire zc = m? x 2x4 mod p [9]. This is
succeeded by obtaining yo = m(zx4 — ) — ya mod p to conclude with the
coordinate C' [9].

The third scenario to be reexamined concerns oo as the result of the setup

of A+ —A, for which A, —A, oo, € y* = 23 + cx + d mod p [9).

2.5.8 Generating an Estimation for the Quantity of Coordinates

that Will Satisfy y* = 2* 4+ cx + d Over Z,

In establishing the order of the group formed by the elliptic curve over Z,,
there are a few means of achieving such with different levels of success. There
are means to compute the quantity of coordinates that satisfy y? = 23 +cx+d
over Z, using computing assets. The drawback of enumeration by brute
force is problematic as it does little to preserve the overall availability of
computing assets as the enumeration scales upwards with the parameters.
Smaller variations of y* = 2 + cx + d Z, will be faster to enumerate than
larger counterparts. A more efficient method of estimating the quantity of
elements for y* = x4 cx +d Z,, is through employing Hasse’s Inequality. To

utilize Hasse’s Inequality, we start by initially delineating Hasse’s Inequality
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to be |p +1 — N,| < 2,/p in which p is understood as the non-composite
number [10]. It then stands that N, is the quantity of coordinates that fulfill
the parameters established for y? = 2% 4+ cx + d Z,, [10]. An augmentation
can be employed to obtain the unraveled Hasse’s Inequality delineated as
p+1-2/p <N, <p+1+2,/p to dissolve the absolute value portion of
Hasse’s Inequallity [10].

Two examples for employing Hasse’s Inequality will be demonstrated:

Example 3. Given y?> = 23 + 33z + 19 mod 103 (can verify that 4(33)3 +
27(19)% mod 103 is 25), we will acquire an estimate for the quantity of ele-
ments in the set of coordinates that fulfill the parameters for the elliptic curve
group.

103+ 1 — 2103 < Nyg3 < 103 4+ 1+ 21103

84 < Nyog < 124

The quantity of elements in the set takes a value between 84 and 124.

The actual number of elements as checked by MATHEMATICA is 101.

Example 4. Given y* = 2 + 12x + 71 mod 251 (can verify that 4(12)° +
27(111)% mod 251 is 227), we can obtain an estimate for the quantity of
elements in the set of coordinates that fulfill the parameters for the elliptic
curve group.

251 + 1 — 2¢/251 < Nos; < 251 + 1+ 24/251

220 < Nas1 < 284

The quantity of elements in the set takes a value between 220 and 284.

The actual number of elements as checked by MATHEMATICA is 23).
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2.6 Delving Into Elliptic Curve Cryptography

Elliptic curve cryptography is a subfield of cryptography that originated from
combining the principles of group theory and the mathematical structures of
elliptic curves for the purpose of fulfilling cryptographic goals. Elliptic curve
cryptography belongs to the family of asymmetric cryptography, making a
considerably more fortified than symmetric cryptography counterparts. For a
bit of the history, elliptic curve cryptography can be traced to contemplations
of Victor Miller and Neal Koblitz within the year of 1985 [8]. The crutch
of elliptic curve cryptography safeguards lies in the inherent inclusion of
the discrete logarithm problem from the possibilities of repetitive elliptic
curve addition operations being utilized [8]. While acquiring a coordinate D
from a coordinate A being added to itself over some h iterations (h x A) is
reasonable, reverse engineering such will become incrementally toilsome in
reveal the value of h when employed well [8]. This safeguard is sustained in
various scenarios including under the conditions that unauthorized parties
manage to distinguish y*> = 23 + cx + d mod p along with the coordinate A
8].

The discrete logarithm problem is crucial to comprehending the appeal
that elliptic curve cryptography has for safeguarding information. The dis-
crete logarithm problem emerges in a context analogous or equivalent to the
simplicity of exponentiating using computational resources versus attempt-
ing to initiate and efficiently carry through on logarithmic implementations

[8]. The best possibility for an unauthorized party is that the value of h can
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be distinguished for h x A = D without having progressing to the extreme of
processing the entire set of coordinates that are in the set of ¥ = 23 +cx +d
mod p [8]. Note that this takes into assumption the unauthorized party has
previously managed to distinguish coordinate A as well as y* = 2> + cz + d
mod p. Utilizing this brute force method will diminish in efficiency in relation
to the rising magnitude of p once p is gargantuan [8]. Another safeguard is
to examine A to validate that A does not make h simple to obtain from the
elliptic curve group [8]. In the matter of cybersecurity, incrementing the time
expense that is necessary for being able to obtain plaintext form ciphertext
can limit if not prevent unauthorized parties from being able to access the
information in the plaintext during the lifespan said information is still of
reasonable value.

There exists a multitude of methods to employ elliptic curve cryptogra-
phy. The following explanation will be on the ElGamel variant.

Each participant in the transmission of the ciphertexts must have the
same established elliptic curve y? = 2% + cx + d mod p is agreed upon all
relevant participants, then a value f € Z that is restricted by 1 < f < p
is determined by each participant to act as their personal private key [11].
Each participant proceeds to acquire a coordinate a from the group y? =
23 + cx + d mod p to compute another coordinate 8 [11]. 3 is defined to
be f = « x f [11]. The public keys of the participants that are released
are a composition of 3, a, and p [11]. Given x € y* = 2 + cx + d mod p,

while z € Z under the restriction 1 < z < p is the sender’s private key, the

43



encryption can be observed to be carried out as e, (z, z) = (2 X (@), x+ 2 X 5)

= (y1,y2) [12]. The decryption counterpart for the encryption is carried out

as d.(y1,42) = y2 - f x 1 [12].

2.6.1 Examples of Elliptic Curve Cryptography
Two examples of elliptic curve cryptography shall be demonstrated:

Example 5. Let Alice and Bob be two participants in an encrypted trans-
action where Alice is attempting to send an encrypted transmission to Bob.
The elliptic curve to be used y*> = x> + 33z + 19 over Zyos.
Bob’s private key is f = 53. The coordinate that Bob chooses as part of his
public key is o = (79,82). Bob then calculates = 53 x (79,82) = (92,73).
Bob exposes Bob’s public key of B = (92,73), o = (79,82), as well as p =
105.
Alice acquires Alice’s own private key of z = 29. The plaintext that Alice
desires to transmit is v = (63,102).

Now Alice will begin the encryption process to send Bob the encrypted
ciphertext to protect the plaintext.
e,((63,102),29) = (29%(79,82), (63, 102)+29x (92, 73)) =((48, 50), (63, 102)+
(93,53) = ((48,50), (45,54)) = (y1,42)-
Bob receives the transmission from Alice containing the ciphertext. To re-
trieve the plaintext Bob must initiate and carry through with the decryption

process.

d.((48,50), (45,54)) = (45,54) —53 x (48,50) = (45,54)—(93,53) = (45, 54)+
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(93,50) = (63.102).

Now Bob has the plaintext from the ciphertext that was transmitted by Alice.

Example 6. Alice an Bob are once again trying to transmit messages to one
another. This time Bob is attempting to transmit a message to Alice utilizing
elliptic curve cryptography. The elliptic curve that they have agreed upon is
y? = a3 + 120 + 71 over Zos,.
Alice’s private key is assigned as f = 179, and the coordinate Alice chooses
is a = (198,144). Alice then takes a and f to be able to compute B =
(198,144) x f = (234,15). Alice now prepares to reveals Alice’s public key
that is composed of = (234,15), o = (198,144), and p = 251.
After Alice reveals Alice’s public key, Bob can now initiate preparations to
be send the intended message. Bob’s own private key is assigned as z = 132.
Bob’s personal selection of coordinate is established to be v = (121,219). The
plaintext that Bob desires to transmit is v = (157, 136).

Bob initiates the encryption process to be able to generate the ciphertext
to be transmitted to Alice.
e, ((157,136),132) = 132x (198, 144), (157,136)+132x (234, 15) = ((234, 15),
(157,136) + (9,54)) = ((234,15), (43,246)) = (y1,2)
Now that Alice has received the successful ciphertext transmission form Bob,
Alice can focus on the decryption process to be able to acquire the plaintext.
d.((234,15),(43,246)) = (43,246) — 179 x (234,15) = ((43,246) — (9,54)) =
(43,246) + (9,197)) = (157,136)

Now Alice has managed to acquire the plaintext from the transmitted cipher-
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text.

These examples were completed through the assistance of MATHEMAT-
ICA.

Thanks to the versatility and reduced overhead involved with elliptic
curve cryptography, elliptic curve cryptography has become an indispensable

asset to the assortment of cryptographic algorithms available.

2.7 Elliptic Curve Digital Signature Algorithm or ECDSA

The ECDSA is traced to Scott Vanstone who was attempting to fulfill a
request for the National Institute of Standards and Technology [13]. The
ECDSA is considered an equivalent to the DSA with the implementation
buttressed by the group defined by an elliptic curve over the field Z, [9].
Similar to elliptic curve cryptography, the ECDSA generally has increased
protection for each bit used in the keys generated than DSA that is buttressed
by the typical discrete logarithm problem [13]. This difference manifests in
minimized overhead when establishing the same measure of defence in the
keys for ECDSA in contrast to DSA [13]. Another consideration is that
for electronics or computing systems that manage limited computing assets,

ECDSA proves to be more effective under these restrictions than DSA [13].
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3 Methodology: Implementing ECDSA

The first phase of ECDSA is the creation of the keys that will be involved
in the ECDSA process. This is initiated in selection an elliptic curve y? =
o3 + cx + d that is established within the context of a field Z [9]. The order
of the elliptic curve group should have an enormous non-composite value
for a factor to raise tenability, let this factor be denoted as a [9]. Acquire
a coordinate J € y? = 2% + cx + d mod p that has the characteristic of
an order that is equivalent to the value of a [9]. Determine the value of
b from the restriction 1 < b < a — 1 in such a way that b is random or
sufficiently randomized [9]. Acquire K by implementing the formula K =
b x J then construct the public key from y? = 23 + cx +d mod p, J, a, K
but retain b to serve the purpose of being the relevant private key [9]. The
previous algorithmic sequence is performed by all relevant participants in the
transmissions that are to be subject to ECDSA [9].

This next portion, or phase 2, will detail the algorithmic sequence for
some participant, Alice, to create an endorsement of a transmission [9]. To
begin, Alice will determine the value of n from the restriction 1 <n <a-—1
and that n is randomly obtained or sufficiently randomized [9]. Get the
coordinate result from the formula n x J = M, then assign t =x,; mod a,
then check to ensure that t # 0 [9]. Now the inverse of n, n=!, should be
found within the context of n=! mod a for the next portion [9]. Now u =

n~Y(v(B) + bt) mod a is found, in which B is the content of the transmission
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[9]. The presence of v denotes usage of the Secure Hash Algorithm otherwise
referred to as SHA-1 [9]. As a precaution, there should be an effort to be
certain that u # 0 or phase 2 should be restarted to ensure that ECDSA
is implemented properly [9]. Now the endorsement for Alice’s transmission
content B is constructed of the tuple (¢,u) for the recipient to validate once
transmission content is obtained [9].

Phase 3 is the validation process once the transmission completes and
Bob has the transferred content from Alice [9]. Bob will check that 0 < ¢ < a
and 0 < u < a are satisfied with ¢ and u being whole numbers [9]. Obtain i by
employing the formula ¢ = u™! mod a [9]. Acquiring the produced hash from
v(B) is also a requirement [9]. Acquire the following through their respective
formulas: ¢; = v(B)i mod a, ¢ = ti mod a, ¢1J + @K = L = (xp,y1), to
set g = xz, mod a [9]. Bob will consider the endorsement for the transmission
content to be valid only when g is equivalent to ¢, otherwise the endorsement

is viewed as invalid [9].

3.1 An Example of Implementing ECDSA

The two examples detailed below are for the general setup of ECDSA dis-
played on elliptic curve groups. As detialed throughout this work, there are

precautions to be undertaken to produce tenable ECDSA implementations.

Example 7. Let Alice and Bob be two participants in a transmission where

Bob sends some written content to Alice and wants to endorse said written
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content so that Alice knows the transmission originates from Bob. For this
endorsement, Bob and Alice both agree that they should employ the usage of
ECDSA.

The elliptic curve that is agreed upon amongst Bob and Alice is the elliptic
curve y? = o3 + 122 + 71 over Zos,. This sets the value of a = 235. The
coordinate J = (1,109) as well as b = /4 are determined by Bob. Now Bob
can compose K = /4 x (1,109) = (208,86). Bob then provides the public
key of y* = 23 + 122 + 71 mod 251, J = (1,109), a = 235, K = (208, 86),
while at the same time retaining b as Bob’s private key.

Bob now will be creating an endorsement for the transmission to Alice.
n is found to be 23, so M = 23 x (1,109) = (132,188), from which t = 132
mod 235 is extracted. This is succeeded by Bob obtaining n™' = 92 mod 235.
The content Bob is trying to send is B = “Did you get the code?” which has
a hash of 915001962052955893960079561301661131068269364580. Bob then
moves to u = (92 x (915001962052955893960079561301661131068269364580
+ 44(132))) mod 235 = 126. The tuple for Bob’s endorsement is therefore
(132,126).

Now Bob transmits the content to send to Alice along with Bob’s own en-
dorsement. Alice now checks that 0 < t < 235 and 0 < u < 235 hold: 0 <
182 < 235 and 0 < 168 < 235. Alice will now find i =126~ mod 235 = 166
while gaining the product of the hash function taking the transmission con-
tent as an argument 915001962052955893960079561301661131068269364580.

The following sequence of formulas are then employed:
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¢ = (915001962052955893960079561301661131068269364580 x 166) mod
235= 100,
q2 = (132 x 166) mod 235 = 57,

= 100 x (1,109) + 57 x (208,86) = (136,70) + (190,39) = (132,188)
In comparing g to t, Alice finds that g = t, therefore confirms the endorse-
ment that was attached to the transmission contents. Bob s inferred to be

the originator of the transmission.

Example 8. Alice wants to send a message to Bob now, where the elliptic
curve agreed amongst Alice and Bob is y* = 23 +33x+19 mod 103 setting the
value of a = 17 (Alice wants to use the largest prime factor of the order of
the group which is 102). The coordinate chosen for J is J = (0,15) with b=
12 for Alice’s private key. Alice then calculates K = 12 x (0,15) = (96, 75).
Alice then provides the public key: y* = 2% + 33z + 19 mod 103, a = 17, J
=(0,15), K = (96,75) as b= 12 is retained as Alice’s private key.

Alice will follow by finding n = 3, thus M = 3 x (0,15) = (14,54) to
extract t = 14 mod 17. Alice then obtains n™' = 6 mod 17. The content that
Alice is sending is B = “244” which has a hash of
7697705000805084145471002903426679176264452593. Alice goes forward with
u = (6 x (7697705000805084145471002903426679176264452593 + 12 x 14))
mod 17 = 14. Now Alice sends the endorsement (14,14) along with B to
Bob.

Bob observes 0 < 14 < 17 as well as 0 < 14 < 17, thus ensures the validity

of (t,u). i = 1471 mod 17 = 11 is found along with v(B) =
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7697705000805084145471002903426679176264452593.

Now ¢; = 7697705000805084145471002903426679176264452593 x 11 mod 17
=8, ¢ = 14 x 11 mod 17 = 1, Bob then proceeds 8 x (0,15) + 1 x (96, 75)
= (98,48) + (96,75) = (14,54) to extract g = 14. Bob finds g =t as 14 =

14 confirming Alice to be the originator of the transmission.

4 Discussion

ECDSA remains an indispensable tool in the modern cryptographic toolset
for the value of its attributes and performance. When the the order of the
elliptic curve is a composite value, then the Hollman and Pohlig devised
method diminish the time expense to acquire the private key [9]. To elimi-
nate such a foible, the order of the elliptic curve should be a non-composite

value [9]. The more common Pollard’s Rho offense is noticed to have a time

T™Xm

5, in which m is the greatest prime factor for the value

complexity of
of the order of the elliptic curve [9, 13]. The time complexity is measured in
the quantity of elliptic curve operations that will be computed to yield the
answer to the implementation of the elliptic curve discrete logarithm prob-

lem [9, 13]. Pollard’s Rho has been accelerated thanks to the contributions

of Wiener, Zuccherato, Vanstone, Lambert, and Gallant to —”r;m 9, 13].
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4.1 Possible Exploits

When attempting to setup exploits in opposing a community or group of
participants that are employing ECDSA with exploits that may only target
a singular private key per deployment the quantity of deployments must be
replicated in relation to the quantity of targeted private keys [9]. The sum
of coordinates for the elliptic curve necessitates larger allocations of comput-
ing assets than that of comparable encryption systems [9]. The brute force
method of of attempting to decrypt private keys for ECDSA is identified
as the Naive Exhaustive Search [13]. Naive Exhaustive Search will simply
try to acquire h by repeated, sequential engagements of elliptic curve multi-
plication so that the private key b is deciphered [13]. The time complexity
extends in accordance to the order of the elliptic curve involved, making
Naive Exhaustive Search horribly inefficient as ECDSA scales upwards [13].
The next evolution of the Naive Exhaustive Search was the development of
the Baby-Step Giant-Step Algorithm [13]. Baby-Step Giant-Step Algorithm
exacerbates the strain on the memory assets to attempt to diminish the time
expense in deciphering the private key [13]. The time complexity is shrunken
to the /s, where s is the order of the elliptic curve group [13].
Pohlig-Hellman designed an exploit that diminishes the issue of time com-
plexity for elliptic curves that maintain an order that is characterized by
high factorability [13]. Employing the Chinese Remainder Theorem, the
non-composite factors of the order of the elliptic curve group can be used to

recontextualize the tenable conundrum to one that is less taxing on comput-
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ing assets [13].

Pollard’s Rho offense has also served for the development of two other
options for launching offenses against ECDSA architecture [13]. The first is
Pollard’s Rho being adapted for concurrently running instances, which can
be a potential means of bringing the time complexity down to a fraction of

what said time complexity would be [13]. The Parallelized Pollard’s Rho

offense’s time complexity can be examined to be ‘/Zzim [13]. Note that u is
the quantity of processors that are utilized to concurrently run the Pollard’s
Rho offense [13]. Parallelized Pollard Rho’s offense is determined to be the
optimal selection to employ for effectively all ECDSA architectures until
another is suggested that is characterized by enhanced swiftness in execution
[13]. The second option is Pollard’s Lambda offense, which is dependent on
the chance a foible embedded within set up of the ECDSA architecture when
deployed [13]. Pollard’s Lambda offense can be executed concurrently across
a multitude of available processors as well [13].

Following a ramification of Pollard Rho offense being successfully car-
ried out, there is an opportunity to initiate a Multiple Logarithms offense
[13]. The prerequisite of deploying the Multiple Logarithms offense is that
an equivalent coordinate J as well as elliptic curve exists for targets of the
Pollard Rho’s offense [13, 22]. Any similar offenses on replications of the
elliptic curve and J can be observed can be aided by applying previous work

to shave off time for any following deployments [13, 22]. A natural drawback

of the Multiple Logarithms offense is that the offense can only be deployed
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once a successful Pollard Rho’s offense is deployed [13]. Another is the pre-
condition that an equivalent elliptic curve and J are part of said deployments
[13].

A foible in a specific classification of elliptic curves termed supersingu-
lar elliptic curves exists for another possible exploit [13]. The detriment
of tenability manifests in the ECDSA architecture’s elliptic curve discrete
logarithm conundrum being recontextualized to the more favorable discrete
logarithm conundrum [13]. The time complexity for obliterating the ten-
ability of ECDSA when the ECDSA set up is founded on a supersingular is
diminshed to that of DSA and RSA [13].

A foible can emerge within ECDSA architecture when using specific non-
composite values in relation to the field the elliptic curve is structured upon
intertwines cardinality and the order of the elliptic curve group itself [13].
The offense is termed the Semaev-Smart-Satoh-Araki offense, with the pre-
condition delineated to be that the field cardinality is equivalent to the order
of the elliptic curve group [13].

An elliptic curve that is structured upon anything other than a non-
composite field can present innate foibles in the ECDSA architecture [13].
The instrument to be utilized within this scenario is the Weil descent al-
lowing potentially acceleration of the timeline required for the offense to be
successful beyond that achievable by Pollard’s Rho in specific cases [13]. The
Weil descent offensives have posed a severity of threat to such an extent that

only non-composite fields have been recommended to remove the potential
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foible that can be exploited with Weil descent [13].

4.1.1 Hash Offensives

There are suggestions to launch offensives with the aim being concentrated on
the hash functions that will be applied within the ECDSA architecture [13].
The two attributes that enable the hash function to be toilsome to decipher
is being insusceptible to collisions, or two inputs for the hash producing
a homogeneous hash result, and preimaging, or finding the input that can
generate a peculiar output of the hash function [13].

Another concern that has been raised are ECDSA architectures that

maintain a method of producing values that are not arbitrary in nature [13].

4.1.2 Quantum Computing Offensives

Quantum computing assets have been considered the nemesis of elliptic curve
cryptography thanks to Shor’s Algorithm [23]. The threat of quantum com-
puting assets are confined to the boundaries established by the current magni-

tude of capabilties and infrastructure of existing quantum computing assets.

4.2 Comparison with DSA and RSA as well and ECDSA

Specific Advantages

To juxtapose ECDSA to DSA to RSA, a key detail is the necessity to imple-

ment similar cryptographic safeguards relative to one another. To achieve
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equivalent tenability of the 1024-bit well-structured constructions of DSA
and RSA, the ECDSA would necessitate at the least a 160-bit non-composite
value order for the coordinate J with larger bit lengths noticably heighten-
ing the tenability [9]. According to Jurisic and Menezes, when measuring
the connection of the quantity of bits that composes the key to that of the
measure of protection granted by the asymmetric cryptographic architecture
the elliptic curve-centered architecture is unrivaled [9]. Compounding such
with the diminished necessity for an enormous quantity of bits for the cre-
ation of sustainable keys too displays the appeal and reason for the demand
for ECDSA architecture in cryptographic domains [9].

Another means of evaluating the ECDSA to the DSA architecture con-
cerns the the intricacy of the algorithms necessary to launch an offensive
against it. ECDSA would necessitate computational efforts that would reach
an exponential time complexity easily [21]. The RSA and DSA architectures
are founded upon the integer factorization as well as the discrete logarithm
conundrums respectively [21]. Integer factorization as well as discrete loga-
rithm conundrums are subject to the number sieve method to attempt to ob-
tain the resolve both conundrums [22]. The integer factorization and discrete
logarithm conundrums are subject to attacks that necessitate an expense be-
low that of an exponential time complexity [21]. Therefore, when adequately
set up, ECDSA will be more tenable when measuring the time expense of
offenses that will be utilized against it relative to DSA and RSA [21]. Con-

densed bit lengths of the keys involved produces less overhead for ECDSA
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than that of the RSA [22]. For the processes involving commensurate keys
for ECDSA and RSA, in all but the validation phase the ECDSA was ob-
served to be faster within the two [22]. More research has been conducted on
the expanse of the discrete logarithm conundrum along with its adaptations
which have not brought any new potentialities for a general foible to exploit

in ECDSA architecture [13].

4.3 ECDSA Acceleration

In terms of accelerating the overall ECDSA architecture, there a multitude of
ways to do so. To add what has already been inscribed inside of this article,
further options to accelerate the ECDSA architecture can be practiced. By
implementing ECDSA over Far, or finite field of characteristic two, accelera-
tion beyond the time expense of Z, can be attained [9]. ECDSA can be set
up with tinier elliptic curves thanks to the nature of the conundrum at the

core of ECDSA, promoting acceleration of the ECDSA architecture [21].

4.4 ECDSA Suggestions

Some of the involved institutions within the field of cryptography that have
presented attributes of desired elliptic curves for ECDSA set up include, but
are not restricted to, FIPS, ISO/IEC, SEC, and IEEE [13].
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5 Conclusion and Future Work

ECDSA has become a critical component of the modern cryptographic ecosys-
tem. Having been derived from multiple topics in mathematics, ECDSA
stands as a respected and reliable architecture for endorsements and ensur-
ing the validity of data. When ECDSA is being measured and critiqued
along with RSA and DSA for the cryprographic viability, ECDSA remains
an invaluable option. The benefits of the ECDSA is key to ECDSA being
persevered as a valued cryptographic signature architecture not only in gen-
eral, but additionally within the sustainability of the consistently growing
cryptocurrency cyberinfrastructure. ECDSA has been prominently included
within the Bitcoin cyberinfrastructure for cryptographic purposes for a con-
siderable span of time.

The research on ECDSA is continuing in the persevering motivations of
those attempting to discover novel or remove present exploits that jeopardize
the information that is safeguarded by ECDSA architectures. Said research
will continue to be a priority to ensure that the cyberinfrastructure will be

able to function successfully over continued usage.

5.1 Future Work

Future exploration into this topic will likely continue in regard to the exam-
ining the impact of quantum computing assets at a later date. Given enough

progress, quantum computing assets could present a unquestionable adver-
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sary for ECDSA through the underlying elliptic curve cryptography within
the ECDSA architecture. Another future component to explore is the sig-
nificance of ECDSA in the continued existence of cryptocurrencies. Given
the burst in the variety of cryptocurrencies as well as the ease of implement-
ing variants upon existing cryptocurrencies, observing the continued usage
or emergence of alternatives for ECDSA will also be a target of inquiry. If
alternatives to ECDSA are implemented on a noticable scale, then an exami-
nation can be made as to the benefits and costs of embedding the alternatives
into cryptocurrency systems instead of ECDSA. Another possibility would
be to develop a basic blockchain using a programming language to further
expand on the inquiries of ECDSA within blockchains and the systems built
atop said blockchains such as cryptocurrencies.

There could be new suggestions for strengthening ECDSA that can lead
to more nuances emerging within ECDSA architecture, or the creation of
distinguished variants of ECDSA altogether. Further exploration into these
variants would likely provide a better perspective of the advancements and

progression of ECDSA within the field of cryptography.
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A Appendix

A.1 MATHEMATICA

Usage of the software package MATHEMATICA is present within the span
of this paper. MATHEMATICA is owned and maintained by Wolfram Re-
search. It has a variety of capabilities in regards to building mathematical
functions, providing calculations, or providing graphical components to bet-
ter visualize mathematical implementations or concepts.

Wolfram Mathematica. Wolfram, 2021.

John McGee. ”Adding Points on an Elliptic Curve.”

http://demonstrations.wolfram.com/AddingPointsOnAnEllipticCurve/. Wol-
fram Demonstrations Project Published: March 7 2011
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