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Abstract

We answer in the affirmative a question posed by Al-Addasi and
Al-Ezeh in 2008 on the existence of symmetric diametrical bipar-
tite graphs of diameter 4. Bipartite symmetric diametrical graphs
are called S−graphs by some authors and diametrical graphs have
also been studied by other authors using different terminology, such
as self-centered unique eccentric point graphs. We include a brief
survey of some of this literature and advertise that the existence
question was also answered by Berman and Kotzig in a 1980 paper,
along with a study of different isomorphism classes of these graphs us-
ing a (1,−1)−matrix representation which includes the well-known
Hadamard matrices. Our presentation focuses on a neighborhood
characterization of S−graphs and we conclude our survey with a
beautiful version of this characterization known to Janakiraman.
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1 Introduction

We study finite connected bipartite graphs G = G(V,E) with no multiple
edges, no loops, and whose vertex set V can be partitioned into two partite
sets U and W with the convention that |U | ≤ |W |. The cartesian product
of graphs G and H, denoted by G�H, is the graph with vertex set V (G)×
V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)}, where (u1, v1) is adjacent to (u2, v2)
whenever u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G). The
distance d(v1, v2) between two vertices v1 and v2 is the number of edges in
a shortest path, or geodesic, connecting v1 and v2. The diameter of a graph
is d = max{d(v1, v2) | v1, v2 ∈ V }. If d(v, v′) = d then v and v′ are called
antipodes. If every vertex v has a unique antipode v′, the graph G is said
to be diametrical. If

1Contact Person Email: dslutzky@gsc.edu

1



d(v, z) + d(z, v′) = d(v, v′) = d for every antipodal pair (v, v′)
of the diametrical graph G and for any z ∈ V,

(1)

G is said to be symmetric in the sense of [?].
A bipartite symmetric diametrical graph is called an S−graph. For

example, the n−cube is an S−graph of diameter n. The inspiration of this
work is a question posed by Al-Addasi and Al-Ezeh in [?]. For bipartite
diametrical graphs of diameter 4, the orders of the partite sets U and W
must be even since the antipodal pairs must be in the same partite set. Al-
Addasi and Al-Ezeh showed that if |U | = 2m, then 2m ≤ |W | ≤ 2m. These
authors denote by G(2m, 2t) any S−graph of diameter 4 with |U | = 2m and
|W | = 2t where m ≤ t. They give constructions for S−graphs G(2m, 2m)
and G(2m, 2m) in the two extreme cases of the order of the largest partite
set and they ask if S−graphs G(2m, 2t) exist, in general, for m < t < 2m−1.

The answer to the preceding question is yes, and can be found in the
existing literature, namely the work of Berman and Kotzig on centrally
symmetric graphs in [?]. Berman and Kotzig define centrally symmetric
graphs (with at least one edge) by the property

for every vertex v there exists exactly one vertex v′ which
is more remote from v than every vertex adjacent to v′

(2)

Berman and Kotzig call v′ the opposite of v and show in [?] that the
opposite v′ of v must be the unique antipode of v, i.e. d(v, v′) = d. They
also show that property (2), which focuses on vertices adjacent to v′, ex-
tends to all vertices of the graph and implies the symmetric condition (1).
They then name bipartite centrally symmetric graphs S−graphs and con-
struct a (1,−1)−matrix representation for these graphs, which shows that
Hadamard graphs are examples of G(2m, 2m) for appropriate m. The ex-
istence of the proper (1,−1)−matrices, in the terminology of Berman and
Kotzig, implies the answer to the existence question of S−graphs.

We offer [?], [?] and [?] as good gateways to the literature on this topic,
and hope to advertise and add to this literature by providing a constructive
argument and, therefore, a more explicit answer to the existence question.
This construction has the further benefit of showing that the unique graph
G(2m, 2m) is universal in the set of all S−graphs with smaller partite set
of order 2m.

We begin with the neighborhood characterization of S−graphs, pro-
vide an example showing the importance of breaking condition (2) into
the two pieces, diametrical and symmetric, give the inductive construction
for S−graphs showing the universality of G(2m, 2m), and close with some
comments on S−graphs of higher diameters and potential further work.
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2 Neighborhood characterization for sym-
metric diametrical graphs of any diameter

For any graph G, denote the rank k neighborhood of a vertex v by Nk(v) =
{z ∈ V | d(v, z) = k}. A graph G is diametrical when Nd(v) is a singleton
and Nk(v) = ∅ for k > d for all v ∈ V . It is clear that when k = 0 and
k = 1, {v} = N0(v) and N(v) = N1(v) respectively for any vertex v. So we
choose to use these notations interchangeably when it is convenient. We
observe that graphs can be diametrical and not symmetric. For example,
consider the graphs G1 = K2�C6 and G2 = G1 \ e with e /∈ E(C6). It is
easy to see that G1 is symmetric diametrical but G2 is only diametrical.
Also, note that both G1 and G2 have diameter 4.

When a diametrical graph G is also symmetric, for an antipodal pair
(v, v′) we call v′ the dual of v. The symmetry condition (1) can be written
as

Nk(v) = Nd−k(v′) for all 0 ≤ k ≤ d and
all pairs of antipodes(v, v′)

(3)

Note that condition (3) incorporates both the diametrical and symmetry
conditions, since Nd(v) = N0(v′) = {v′}. It is important to point out
that not every symmetric diametrical graph is bipartite. For instance, the
graph G \ uv, where G = K2�W4 and degG(u) = degG(v) = 5 can easily
be verified as symmetric diametrical of diameter 3 and yet is not bipartite.
For the rest of this paper, we restrict our attention to bipartite graphs that
are diametrical and symmetric, namely the S−graphs. Condition (3) can
be revised to yield a useful characterization specifically for S−graphs of
diameter 4.

3 Neighborhood characterization for
S−graphs of diameter 4

Being an S−graph of diameter 4, antipodes v and v′ must be in the same
partite set and N2(v) = N2(v′) is the partite set containing v and v′ minus
v and v′. It is also an immediate consequence of being antipodes in a graph
with diameter greater than 2 that

N(v) ∩N(v′) = ∅ for all v (4)
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Theorem 1. A bipartite diametrical graph G of diameter 4 is an S−graph
if and only if

N(v) ∪N(v′) is the partite set not containing v and v′

for each antipodal pair (v, v′)
(5)

Proof. If G is an S−graph, and since N1(v) ∪ N3(v) is the partite set
not containing v and v′, condition (3) gives condition (5). Conversely, if (5)
holds, then N1(v′) must be N3(v), since N1(v) ∪ N3(v) = N1(v) ∪ N1(v′)
and N1(v) ∩N1(v′) = ∅ = N1(v) ∩N3(v).

Note that the graph G2 in our previous example does not satisfy condi-
tion (5). As remarked in [?] and [?], it is easy to see that if G is diametrical
and symmetric and u ∈ N1(w) then u′ ∈ N1(w′). Hence it is convenient
to describe an S−graph of diameter 4, G(2m, 2t), by describing the neigh-
borhoods of half of the vertices w, no two of which are dual, in the partite
set of order 2t. The dual neighborhood of w′ is the complement of the
neighborhood of w in U and the description of each neighborhood need
only specify the inclusion of one half of the vertices, no two of which are
dual, of the smaller partite set. This observation immediately gives the
bound |W | ≤ 2m and motivates the use of (1,−1)−matrices, as seen in [?]:
Relative to a labeling of the vertices of an S−graph G of diameter 4 as ui,
u′i, wi and w′i, let H = [aij ] be a matrix with 1 ≤ i ≤ m and 1 ≤ j ≤ t
where aij = ±1 is given by the rules:

1) aij = 1 if and only if ui is adjacent to wj and u′i is adjacent to w′j ,
and

2) aij = −1 if and only if ui is adjacent to w′j and u′i is adjacent to wj .

A proper (1,−1)−matrix is one in which no two rows and no two
columns are proportional. G is an S−graph of diameter 4 if and only
if H is a proper (1,−1)−matrix.

4 Construction of S−graphs of diameter 4 in
all possible orders

Let Gt = G(2m, 2t) be an S−graph for some integer t ∈ {m, . . . , 2m−1−1}.
For convenience, enumerate the vertices in pairs U = {u1, u

′
1, . . . , um, u′m}

and W = {w1, w
′
1, . . . , wt, w

′
t} so that v′ is the unique dual vertex of v. The

neighborhood of each wi is an m−tuple set of U of the form {ui1 , . . . , uim}
such that each uij is either uj or its antipode u′j and the neighborhood of
w′i is the complement N(w′i) = U − N(wi) = {u′i1 , . . . , u

′
im
}. Construct a
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new graph Gt+1 by adding two vertices wt+1 and w′t+1 to W and add edges
connecting these two new vertices to U by defining their neighborhoods to
be any pair of complementary m−tuples, of the form previously described,
that do not already appear as neighborhoods of the wi ∈ Gt. Since t < 2m−1

there must exist such a pair of m−tuples.

Theorem 2. Gt+1 is an S−graph G(2m, 2t + 2) of diameter 4.

Proof. The construction maintains the diameter, makes wt+1 and w′t+1

antipodes, and ensures that condition (5) is satisfied for each of the old
pairs of dual vertices and for the new pair (wt+1,w′t+1).

Corollary 2.1. S−graphs G(2m, 2t) exist for all 2 ≤ m ≤ t ≤ 2m−1.

Proof. [?] gives a construction for an S−graph G(2m, 2m) when m ≥ 2
and the rest follows inductively using the previously described construction.

Corollary 2.2. Every graph G(2m, 2t) is isomorphic to a subgraph of any
representative of G(2m, 2m).

Proof. It is clear by the neighborhood characterization as m−tuples,
from the perspective of W , that there is a unique isomorphism class of
S−graphs when |W | = 2m. The iterated construction builds from any
S−graph G(2m, 2t) a representative of G(2m, 2m) as a supergraph. Re-
striction of an isomorphism between two representatives of G(2m, 2m) to
the initial G(2m, 2t) produces an isomorphism between G(2m, 2t) and its
image.

5 S−graphs of diameter d ≥ 5

As remarked in [?], the cartesian product of any two S−graphs is again
an S−graph, and its diameter is the sum of the two diameters. Hence the
existence of S−graphs of diameter 1 (K2), diameter 2 (K2�K2), diameter
3 (any complete bipartite graph Km,m minus a 1−factor, with m ≥ 3) and
diameter 4 imply the existence of many S−graphs of any diameter greater
than 4.

A graph which cannot be represented as the cartesian product of two
smaller graphs is said to be primitive. However, not all S−graphs are carte-
sian products, and it remains an area of research to describe these primitive
S−graphs. Moreover, the convenient (1,−1)−matrix representation of [?]
only applies to S−graphs of diameter 4. Is there an analogous representa-
tion for S−graphs of higher diameters?

For S−graphs of diameter 4, |Nk(v1)| = |Nk(v2)| when v1 and v2 are in
the same partite set. Considering cartesian products of K2 and G(2m, 2t)
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when m 6= t, it can be seen for S−graphs of diameter greater than 4 that the
degrees of vertices in the same partite set can be different. This observation
implies that any representation of S−graphs of higher diameters must be
much more flexible than the (1,−1)−matrix representation for S−graphs
of diameter 4.

Though the previous observation indicates that the complexity of
S−graphs increases as the diameter increases, Janakiraman in [?] shows
that there is some uniformity of the orders of ranked neighborhoods with
the interesting characterization given by:

Theorem 3. ([?]) A diametrical graph G of diameter d is symmetric if
and only if |Nk(v)| = |Nd−k(v)| for all v ∈ V (G) and all 0 ≤ k ≤ d.

Perhaps more can be said about the structure of the primitive S−graphs,
leading to a useful representation that could be extended to all S−graphs
upon factorization into cartesian products.
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