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Abstract

Suppose ch(G) and χ(G) denote, respectively, the choice num-
ber and the chromatic number of a graph G = (V,E). If ch(G) =
χ(G) then G is said to be chromatic-choosable. Recently, Reed et
al. proved a conjecture by Ohba that states that G is chromatic-
choosable whenever |V (G)| ≤ 2χ(G) + 1. Here, we present other
classes of chromatic-choosable graphs that do not satisfy the hypoth-
esis of the proven conjecture. Moreover, we give the upper bounds for
the choice numbers of the Mycielski graphs and the cartesian product
of any two graphs, in terms of a vertex-neighborhood condition.

Keywords: List coloring, chromatic-choosable, cartesian product.

1 Basic notions

Throughout this paper, G = (V,E) denotes a loopless connected graph
where V = V (G) and E = E(G) denote, respectively, the set of vertices
and the set of edges of G. An edge e ∈ E with endpoints u, v ∈ V is
denoted by uv; u and v are adjacent in G and e is said to be incident with
u and v. We denote by NG(u) = {x ∈ V | ux ∈ E} the (open) neighbor
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set in G of u ∈ V . When it is unnecessary to distinguish the graph G, the
subscript G on N will be omitted. ∆(G), Kn and Cn denote, respectively,
the maximum degree of G, a complete graph and a cycle on n vertices.

2 Preliminaries

A list assignment to the graph G = (V,E) is a function L which assigns a
finite set (list) L(v) to each vertex v ∈ V . A proper L-coloring of G is a
function φ : V → ∪v∈V L(v) satisfying, for every u, v ∈ V , (i) φ(v) ∈ L(v)
and (ii) uv ∈ E → φ(v) 6= φ(u).

The choice number or list-chromatic number of G, denoted by ch(G),
is the smallest integer k such that there is always a proper L-coloring of G
if L satisfies |L(v)| ≥ k for every v ∈ V . We define G to be k-choosable
if it admits a proper L-coloring whenever |L(v)| ≥ k for all v ∈ V ; then
ch(G) is the smallest integer k such that G is k-choosable. The following
is a well-known result in the estimation of choice number.

Theorem A. (Erdős, Rubin and Taylor [3]) If G is a connected graph
that is neither a complete graph nor an odd cycle, then ch(G) ≤ ∆(G).

Corollary A. For any graph G, ch(G) ≤ ∆(G) + 1.

Proof. Clearly ch(G) is the maximum of the choice numbers of the compo-
nents of G. If H is a complete graph or an odd cycle then ch(G) = ∆(G)+1.
The conclusion now follows from Theorem A.

Corollary A also follows by a ”greedy coloring” argument.
Since the chromatic number χ(G) is similarly defined with the restric-

tion that the list assignment is to be constant, it is clear that for all G,
χ(G) ≤ ch(G). There are many graphs whose choice number exceeds (some-
times greatly) their chromatic number. Figure 1 depicts the smallest graph
G whose choice number exceeds its chromatic number.

It is easy to see that G is not properly L-colorable, so ch(G) > 2 = χ(G).
Since G is connected, and neither a complete graph nor an odd cycle, it
follows from Theorem A that ch(G) ≤ ∆(G) = 3. Thus, ch(G) = 3.

Any graph G for which the extremal equality χ(G) = ch(G) holds is
said to be chromatic-choosable. It is not hard to see that cycles, cliques
and trees are all chromatic-choosable.

The topic of list colorings was introduced by Vizing [9] and indepen-
dently by Erdős, Rubin and Taylor [3]. Since the beginning, several results
have sought to address specifically which classes of graphs are chromatic-
choosable; Ohba’s conjecture [8] is a well-known problem which has recently
been settled by Reed et al.[7]. We state their result (or Ohba’s conjecture)
without proof, in the next theorem.
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{a, c}{a, b}

{a, b}

Figure 1: G = θ(1, 3, 3) with a list assignment L.

Theorem B.(Noel, Reed and Wu [7]) If |V (G)| ≤ 2χ(G) + 1 then G is
chromatic-choosable.

The graph in Figure 1 shows that this result is sharp when χ(G) = 2. In
[2], examples are given in which |V (G)| = 2χ(G)+2 and ch(G) = χ(G)+1,
for all even χ(G) > 2. We do not know if Ohba’s Theorem is sharp for odd
χ(G) ≥ 3.

It is obvious that the proposed bound in Theorem B is weak in charac-
terizing chromatic-choosable graphs, especially graphs with low chromatic
numbers. For instance, according to this theorem, any bipartite graph of
order smaller than 6 is chromatic-choosable, while it is well-known that any
even cycle (of any order) is chromatic-choosable.

It is important to point out that the problem of finding chromatic-
choosable graphs contains the famous list coloring conjecture which is gen-
erally attributed to Vizing [9], namely: the line graph of any graph is
chromatic-choosable. So far, this has been proved to be correct for the line
graphs of bipartite graphs by Galvin, as stated in

Theorem C.(Galvin [4]) The line graph of any bipartite multigraph is
chromatic-choosable.

3 Choice number of the Mycielski graphs

We construct the Mycielski graph M(G) from a graph G whose vertices are
V (G) = {v1, v2, . . . , vn}, by introducing the set
U = {u1, u2, . . . , un} ∪ {w}, disjoint from V (G). The vertices of M(G) are

V (G)∪U , and its edges are E(G)∪
n⋃

i=1

[
{uiz | z ∈ NG(vi)} ∪ {wui}

]
. It is

well known that χ(M(G)) = χ(G) + 1.
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Lemma 3.1. ch(M(G)) ≤ ∆(G) + 2.

Proof. Let k = ∆(G) + 2 ≥ ch(G) + 1, by Corollary A, and suppose M(G)
is supplied with lists L of length k. Since G is k-choosable, we can color
each vi ∈ V (G) so that the coloring is proper. Remove from the L(ui)

′s
the colors from their neighbors in G. Because each ui has at most ∆(G)
neighbors in G, this leaves at least 2 colors in each L(ui), i = 1, . . . , n. Now
color w and then proceed to properly color the u′is from their lists, giving
a proper L-coloring of M(G).

Corollary 3.1. If G is a complete graph or an odd cycle, then ch(M(G)) =
∆(G) + 2.

Proof. Applying Lemma 3.1, ∆(G)+2 = χ(G)+1 = χ(M(G)) ≤ ch(M(G))
≤ ∆(G) + 2.

From the argument in the proof of Corollary 3.1 follows

Corollary 3.2. The Mycielski graph M(Kn) is chromatic-choosable for all
n ≥ 1.

Corollary 3.3. The Mycielski graph M(C2r+1) is chromatic-choosable for
all r ≥ 1.

M(C5) is the Grötzsch graph, which is 4-chromatic and triangle-free.
It is not too hard to see that the Mycielski of a star graph, K1,n, is
chromatic-choosable and perhaps M(G) is chromatic-choosable whenever
G is chromatic-choosable. We leave this as an open question, but from the
fact that χ(M(G)) = χ(G) + 1 it would suffice to show that ch(M(G)) ≤
ch(G) + 1 for any graph G.

4 Choice number of the cartesian product of
some graphs

Here, we present some results on an upper bound on the choice numbers of
the Cartesian product of two graphs.

The Cartesian product of graphs G and H, denoted by G�H, is the
graph with vertex set V (G) × V (H) = {(u, v) | u ∈ V (G), v ∈ V (H)},
where (u1, v1) is adjacent to (u2, v2) whenever u1 = u2 and v1v2 ∈ E(H),
or v1 = v2 and u1u2 ∈ E(G). For instance, K2�K2

∼= C4.

Theorem 4.1. Suppose that V (G) = V1 ∪ V2, V1 and V2 are disjoint and
non-empty, Gi = G[Vi], i = 1, 2, and no vertex in V2 has, in G, more that
r neighbors in V1. Then ch(G) ≤ max{ch(G1), ch(G2) + r}.
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Proof. Let k = max{ch(G1), ch(G2) + r} and suppose that L is a list as-
signment to G such that |L(v)| ≥ k for all v ∈ V (G). Because k ≥
ch(G1), there is a proper L-coloring φ of G1. [More precisely, there is
a proper L-restricted-to-V1 coloring of G1.] Define L′ on G2 by L′(u) =
L(u)\{φ(v) | v ∈ NG(u)∩V1}. By the hypothesis of the Theorem, |L′(u)| ≥
|L(u)|− r ≥ k− r ≥ ch(G2), for all u ∈ V2, and, therefore, there is a proper
L′-coloring of G2. Putting this coloring together with φ, we have a proper
L-coloring of G. L was arbitrary, so ch(G) ≤ k.

Corollary 4.1. For n ≥ 2, ch(H�Pn) ≤ ch(H) + 1.

Proof. Let the vertices of Pn be 1, . . . , n; let V1 = V (H) × {1, . . . , n − 1}
and V2 = V (H)×{n}. Then V1 and V2 are disjoint and non-empty, V (G) =
V1 ∪ V2, and every vertex in V2 is adjacent in G = H�Pn to exactly one
vertex in V1. Further, V1 induces G1

∼= H�Pn−1 in G, and V2 induces
G2
∼= H in G. The conclusion follows from Theorem 4.1 by induction on

n.

The graphs in the next two corollaries each contain the subgraph H =
θ(1, 3, 3), giving a lower bound of their choice number. The upper bound
follows from Corollary 4.1, giving each result.

Corollary 4.2. For m ≥ 2, n ≥ 3, ch(Pm�Pn) = 3.

Corollary 4.3. For r ≥ 2, n ≥ 2, ch(C2r�Pn) = 3.

We note that Corollary 4.2 also follows from a result by Alon and Tarsi
who showed that every bipartite planar graph is 3-choosable [1]. Also,
it is worth noting that by Theorem B, ch(Cm�P2) ≤ 3 for all m ≥ 3.
Therefore, ch(Cm�P2) = 3 when m is odd. Together with Corollary 4.3,
we can conclude that ch(Cm�P2) = 3 for all m ≥ 3.

Corollary 4.4. Suppose that u ∈ V (H) has degree r > 0 in H; then

ch(G�H) ≤ max{ch
(
G�(H − u)

)
, ch(G) + r}.

Proof. G�H can be formed by connecting G�(H − u) to a disjoint copy
of G in such a way that every vertex of the added G has r neighbors in
G�(H − u).

Corollary 4.4 is just a special case of an obvious application of Theorem
4.1, in which V (G�H) = V (G)× V (H) is partitioned into V (G)× U1 and
V (G) × U2 for some partition of V (H) into U1 ∪ U2. In Corollary 4.4,
|U2| = 1. However, neither Corollary 4.4 nor its generalization seems to
help in determining the choice numbers of the cylindrical grid C2r+1�Pn

or the toroidal grid Cm�Cn, m, n ≥ 3. Because these graphs contain
θ(1, 3, 3) and have maximum degree 4, their choice numbers are in {3, 4}.
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We close this section with a more general upper bound on the choice
number of the cartesian product of any two graphs.

Theorem 4.2. ch(G�H) ≤ max{|V (G)|, |V (H)|} with equality when G =
H = Kn.

Proof. If G and H are two graphs of order at most n, then G�H ⊆ Kn�Kn

and ch(G�H) ≤ ch(Kn�Kn) = ch(L(Kn,n)) = n, with the last equality
following from Theorem C.

Corollary 4.5. If |V (G)| ≤ n then ch(G�Kn) is chromatic-choosable.
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