Hall numbers of some complete k-partite graphs

Julian A. Allagan
School of Science Technology Engineering and Mathematics,
Gainesville State College, Watkinsville, GA- 30677, USA
aallagan@gmail.com

Abstract

The Hall number is a graph parameter closely related to the choice number. Here it is shown that the Hall numbers of the complete multipartite graphs $K(m, 2, \ldots, 2), m \geq 2$, are equal to their choice numbers.

1 Introduction

Throughout this paper, the graph $G=(V, E)$ will be a finite simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$.

A list assignment to the graph G is a function L which assigns a finite set (list) $L(v)$ to each vertex $v \in V(G)$.

A proper L-coloring of G is a function $\psi: V(G) \rightarrow \bigcup_{v \in V(G)} L(v)$ satisfying, for every $u, v \in V(G)$,
(i) $\quad(v) \in L(v)$,
(ii) $u v \in E(G) \rightarrow \psi(v) \neq \psi(u)$.

The choice number or list-chromatic number of G, denoted by $\operatorname{ch}(G)$, is the smallest integer k such that there is always a proper L-coloring of G if L satisfies $|L(v)| \geq k$ for every $v \in V(G)$. With χ denoting the chromatic number, it is easy to see, and well known, that $\chi(G) \leq \operatorname{ch}(G)$. The extremal equation $\chi(G)=\operatorname{ch}(G)$ is a major research interest; see [1], [2], and [3].

1.1 Hall's Theorem

Theorem 1. (P. Hall [5]). Suppose $A_{1}, A_{2}, \ldots, A_{n}$ are (not necessarily distinct) finite sets. There exist distinct elements $a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{i} \in A_{i}, i=1,2, \ldots, n$, if and only if for each $J \subseteq\{1,2, \ldots, n\}$, $\left|\bigcup_{j \in J} A_{j}\right| \geq|J|$.

A list of distinct elements a_{1}, \ldots, a_{n} such that $a_{i} \in A_{i}, i=1, \ldots, n$, is called a system of distinct representatives of the sets A_{1}, \ldots, A_{n}. A proper L-coloring of a complete graph K_{n} is simply a system of distinct representatives of the finite lists $L(v), v \in V$, and any list $A_{1}, A_{2}, \ldots, A_{n}$ of sets can be regarded as lists assigned to K_{n}. Therefore, as noted in [6], Hall's theorem can be restated as:

Theorem 2. (Hall's theorem restated). Suppose that L is a list assignment to K_{n}. There is a proper L-coloring of K_{n} if and only if, for all $U \subseteq$ $V\left(K_{n}\right),|L(U)|=\left|\bigcup_{u \in U} L(u)\right| \geq|U|$.

Let L be a list assignment to a simple graph G, H a subgraph of G and \mathcal{P} a set of possible colors. If $\psi: V(G) \rightarrow \mathcal{P}$ is a proper L-coloring of G, then for any subgraph $H \subset G, \psi$ restricted to $V(H)$ is a proper L-coloring of H.

For any $\sigma \in \mathcal{P}$, let $H(\sigma, L)=<\{v \in V(H) \mid \sigma \in L(v)\}>$ denote the subgraph of H induced by the support set $\{v \in V(H) \mid \sigma \in L(v)\}$. For convenience, we sometimes simply write H_{σ}.

For each $\sigma \in \mathcal{P}, \psi^{-1}(\sigma)=\{v \in V(G) \mid \psi(v)=\sigma\} \subseteq V\left(G_{\sigma}\right) ; \psi^{-1}(\sigma)$ is an independent set because ψ is a proper L-coloring. Further, $\psi^{-1}(\sigma) \cap$ $V(H) \subseteq V\left(H_{\sigma}\right)$. So, $\left|\psi^{-1}(\sigma) \cap V(H)\right| \leq \alpha\left(H_{\sigma}\right)$ where α is the vertex independence number. This implies that

$$
\sum_{\sigma \in \mathcal{P}} \alpha\left(H_{\sigma}\right) \geq \sum_{\sigma \in \mathcal{P}}\left|\psi^{-1}(\sigma) \cap V(H)\right|=|V(H)| \text { for all } H \subseteq G .
$$

When G and L satisfy the inequality

$$
\begin{equation*}
\sum_{\sigma \in \mathcal{P}} \alpha\left(H_{\sigma}\right) \geq|V(H)| \tag{3.1}
\end{equation*}
$$

for each subgraph H of G, they are said to satisfy Hall's condition. By the discussion preceding, Hall's condition is a necessary condition for a proper L-coloring of G. Because removing edges does not diminish the vertex independence number, for G and L to satisfy Hall's condition it suffices that (3.1) holds for all induced subgraphs H of G.

Hall's condition is sufficient for a proper coloring when $G=K_{n}$, because if H is an induced subgraph of K_{n} then for each $\sigma \in \mathcal{P}$,

$$
\alpha\left(H_{\sigma}\right)= \begin{cases}1 & \text { if } \sigma \in \bigcup_{v \in V(H)} L(v) \\ 0, & \text { otherwise. }\end{cases}
$$

So

$$
\sum_{\sigma \in \mathcal{P}} \alpha\left(H_{\sigma}\right)=\left|\bigcup_{v \in V(H)} L(v)\right| ;
$$

therefore Hall's condition, that

$$
\sum_{\sigma \in \mathcal{P}} \alpha\left(H_{\sigma}\right) \geq|V(H)|
$$

for every such H, is just a restatement of the condition in Theorem 2. (It is necessary to point out here that if $\sigma \notin L(v)$ for all $v \in V(H)$ then H_{σ} is the null graph, and $\alpha\left(H_{\sigma}\right)=0$.) Consequently, Hall's theorem may be restated: For complete graphs, Hall's condition on the graph and a list assignment suffices for a proper coloring.

The temptation to think that there are many graphs for which Hall's condition is sufficient can be easily dismissed. Figure 1 is the smallest graph with a list assignment L_{0} for which Hall's condition holds, and yet G has no proper L_{0}-coloring.

Remark.

It is clear that if H is an induced subgraph of G and $H \neq G$, then $H \subseteq G-v$ for some $v \in V(G)$. So, if $G-v$ has a proper L-coloring, then $H \subseteq G-v$ must satisfy (by necessity) (3.1). Thus, in practice, in order to show that G and L satisfy Hall's condition, it suffices to verify that $G-v$ is properly L-colorable for each $v \in V(G)$ and that G itself satisfies the inequality (3.1).

Denoted by $h(G)$, the Hall number of a graph G is the smallest positive integer k such that there is a proper L-coloring of G, whenever G and L satisfy Hall's condition and $|L(v)| \geq k$ for each $v \in V(G)$. So, by Theorem $2, h\left(K_{n}\right)=1$ for all n. In [6] the following facts are shown:

1. If $|L(v)| \geq \chi(G)$ for every $v \in V(G)$ then G and L satisfy Hall's Condition.
2. $h(G) \leq \operatorname{ch}(G)$ for every G.
3. If $\operatorname{ch}(G)>\chi(G)$ then $h(G)=\operatorname{ch}(G)$.
4. If $h(G) \leq \chi(G)$ then $\chi(G)=\operatorname{ch}(G)$.
5. If H is an induced subgraph of G then $h(H) \leq h(G)$.

Facts 3 and 4, are essentially equivalent since $\chi, h \leq c h$, make h a parameter of interest of study of the extremal equation $\chi(G)=\operatorname{ch}(G)$. These facts and the following theorems underline our findings in the next section.

Theorem A.(Erdös, Rubin and Taylor [2]) Let G denote the complete k-partite graph $K(2,2, \ldots, 2)$. Then $\operatorname{ch}(G)=k$.

Theorem B.(Gravier and Maffray [3]) Let G denote the complete k-partite graph $K(3,3,2, \ldots, 2)$. If $k>2$, then $\operatorname{ch}(G)=k$.

When $k=2$, it is shown that $\operatorname{ch}(K(3,3))=3$. See [4].

Corollary B. Let G denote the complete k-partite graph $K(3,2, \ldots, 2)$. Then $\operatorname{ch}(G)=k$.

Proof. Since $K(3,2 \ldots, 2)$ is a complete k-partite graph, $k=\chi(K(3,2 \ldots, 2)) \leq \operatorname{ch}(K(3,2 \ldots, 2))$. Further, $K(3,2 \ldots, 2)$ is a subgraph of the complete k-partite graph $K(3,3,2, \ldots, 2)$. Therefore $\operatorname{ch}(K(3,2 \ldots, 2)) \leq k$ if $k>2$. Thus, $\operatorname{ch}(K(3,2 \ldots, 2))=k$ if $k>2$. When $k=2$, we have $K(3,2)$, of which it is well known that the choice number is 2 . See [4], for instance.

Theorem C. (Enomoto et al. [1],2002) Let G_{k} denote the complete k-partite graph $K(4,2, \ldots, 2)$. Then

$$
\operatorname{ch}\left(G_{k}\right)= \begin{cases}k & \text { if } k \text { is odd } \\ k+1 & \text { if } k \text { is even } .\end{cases}
$$

Theorem D. (Enomoto et al. [1]) Let G denote the complete k-partite graph $K(5,2, \ldots, 2)$. If $k \geq 2$ then $\operatorname{ch}(G)=k+1$.

Corollary D. Let G denote the complete k-partite graph $K(m, 2, \ldots, 2)$. If $k \geq 2$ and $m \geq 5$, then $h(G)=c h(G) \geq k+1$.

Proof. Since $\operatorname{ch}(G) \geq \operatorname{ch}(K(5,2 \ldots, 2))=k+1>k=\chi(G), h(G)=$ $c h(G)$ by the previous fact 3 .

2 Hall numbers of some complete multipartite graphs

Throughout this section, L is a list assignment to $V(G)$ such that for each $v \in V(G), L(v) \subset \mathcal{P}$, a set of symbols. If $\sigma \notin L(v)$ for all $v \in V(G)$, then G_{σ} is the null graph. Further, we denote by ψ, any attempted proper L-coloring of G.

2.1 Example

The following example originally appeared in [6]. Consider the complete bipartite graph $K(2,2)$ in Figure 1 with parts $V_{i}=\left\{u_{i}, v_{i}\right\}, i=1,2$ and L_{0} the list assignment indicated.

Figure 1: A list assignment to $K(2,2)$.
If v_{1} is colored c, as it must be, then u_{2} must be colored a and v_{2} must be colored b in a proper coloring, so u_{1} cannot be properly colored.

However, we will show that G and L_{0} satisfy Hall's condition using the argument described in a previous remark. First, for each $v \in V(G)$, it is easy to see that $G-v$ is properly L_{0}-colorable, meaning every proper induced subgraph $H \subset G$ satisfies, with L_{0}, the inequality (3.1) in Hall's condition. We now proceed to verify the inequality (3.1) for G itself.

Now, $\alpha\left(G_{c}\right)=2$ and $\alpha\left(G_{b}\right)=\alpha\left(G_{a}\right)=1 . \quad$ So, $4=\sum_{\sigma \in \mathcal{P}} \alpha\left(G_{\sigma}\right) \geq$ $|V(G)|=4$. Thus, G and L_{0} satisfy Hall's condition and yet G has no proper L_{0}-coloring. Thus, $1<h(G) \leq 2$ by Fact 2 and Theorem A. Therefore, $h(G)=2$.

2.2 Some Hall numbers

Theorem 3. $h(K(2, \ldots, 2))=k$ when $k \geq 2$.
Proof. Let the partite sets of the complete k-partite graph $G=K(2, \ldots, 2)$ be V_{1}, \ldots, V_{k} with $V_{i}=\left\{u_{i}, v_{i}\right\}$, for $i=1,2, \ldots, k$.

In Example 2.1, we showed that $h(G)=k$ when $k=2$. So, to complete the proof, we suppose $k \geq 3$.

Let A be a nonempty set of colors with $|A|=k-2$ and a, b, c be distinct colors not in A. We define L a list assignment to G as follows:

1. $L\left(u_{1}\right)=A \cup\{a, b\}, L\left(u_{2}\right)=L\left(u_{3}\right)=\ldots=L\left(u_{k-1}\right)=A \cup\{a\}$, $L\left(u_{k}\right)=A \cup\{c\}$ and
2. $L\left(v_{1}\right)=A \cup\{b, c\}, L\left(v_{2}\right)=L\left(v_{3}\right)=\ldots=L\left(v_{k}\right)=A \cup\{b\}$.

Observe that $|L(v)| \geq k-1$ for every $v \in V(G)$.
Claim 1. The graph G is not properly L-colorable.

Proof.

In the following cases, we consider all possible distinct ways to properly color the vertices of some part of G, say V_{1}. We then conclude that the remaining subgraph $H=G-V_{1}$ is not proper L^{\prime}-colorable where $L^{\prime}=L-\left\{\alpha_{1}, \alpha_{2}\right\},\left\{\alpha_{1}, \alpha_{2}\right\} \in \bigcup_{v \in V_{1}} L(v) .\left(\alpha_{1}, \alpha_{2}\right.$ are not necessarily distinct colors; they are the colors on V_{1}.) Let ψ denote the attempted proper coloring.

Case 1: $\psi\left(u_{1}\right)=b$ or $\psi\left(v_{1}\right)=b$.
Let $S=<\left\{v_{2}, \ldots, v_{k}\right\}>$, an induced subgraph of H. Then $k-2=$ $|A|=\left|\bigcup_{v \in V(S)} L^{\prime}(v)\right|<|V(S)|=k-1$. Since the subgraph S is a clique, we cannot properly color S from L^{\prime}.

Case 2: $\psi\left(u_{1}\right)=a$ and $\psi\left(v_{1}\right)=c$.
Similarly as described in case 1 , by letting $S=<\left\{u_{2}, \ldots, u_{k}\right\}>$, it's clear that we cannot properly color S, from L^{\prime}.

Case 3: $\psi\left(u_{1}\right)=\gamma$ or $\psi\left(v_{1}\right)=\gamma$ for some color $\gamma \in A$.
With S as in case $1, k-2=\left|\bigcup_{v \in V(S)} L^{\prime}(v)\right|<|V(S)|=k-1$. Hence we cannot properly color H from L^{\prime}.

Claim 2. $\sum_{\sigma \in \mathcal{P}} \alpha\left(G_{\sigma}\right) \geq|V(G)|$.

Proof.

It is clear that $\alpha\left(G_{a}\right)=\alpha\left(G_{c}\right)=1, \alpha\left(G_{b}\right)=2$; further, $\alpha\left(G_{\sigma}\right)=2$ for every $\sigma \in A$. Hence $\sum_{\sigma \in \mathcal{P}} \alpha\left(G_{\sigma}\right)=2(k-2)+4=2 k=|V(G)|$.

Claim 3. Every proper induced subgraph H of G is properly L-colorable.

Proof.

In the following cases we provide a (not necessarily unique) proper coloring for each induced subgraph H of G of the form $G-v, v \in V(G)$.

Case 1: $H=G-u_{1}$.

Let $\psi\left(v_{1}\right)=c$ and color the $2(k-2)$ vertices of the subgraph $G-\left(V_{1} \cup V_{2}\right)$ with the colors from A (by coloring vertices of the same part with the same color). Then let $\psi\left(u_{2}\right)=a$ and $\psi\left(v_{2}\right)=b$.

Case 2: $H=G-v_{1}$.
Let $\psi\left(u_{1}\right)=a$ and color the $2(k-2)$ vertices of the subgraph $G-\left(V_{1} \cup V_{k}\right)$ with the colors from A with the same color appearing on u_{i} and $v_{i}, i=$ $2, \ldots, k-1$. Then, let $\psi\left(u_{k}\right)=c$ and $\psi\left(v_{k}\right)=b$.

Case 3: $H=G-u_{i}$, for some $2 \leq i \leq k$.
Let $\psi\left(v_{i}\right)=b$ and color the remaining $2(k-2)$ vertices of the subgraph $G-\left(V_{i} \cup V_{1}\right)$ with the colors from A. Then, let $\psi\left(u_{1}\right)=a$ and $\psi\left(v_{1}\right)=c$.

Case 4: $H=G-v_{i}$, for some $2 \leq i \leq k-1$.
Let $\psi\left(u_{i}\right)=a$ and color the remaining $2(k-2)$ vertices of the subgraph $G-\left(V_{i} \cup V_{1}\right)$ with the colors from A. Then, let $\psi\left(u_{1}\right)=\psi\left(v_{1}\right)=b$.

Case 5: $H=G-v_{k}$.
Let $\psi\left(u_{k}\right)=c$ and color the $2(k-2)$ vertices of the subgraph $G-\left(V_{1} \cup V_{k}\right)$ with the colors from A. Finally, let $\psi\left(u_{1}\right)=\psi\left(v_{1}\right)=b$.

From the previous claims, we can conclude that $h(G)>k-1$. Thus, by Theorem A and Fact $2, h(G)=k$. This concludes the proof.

Corollary 3: $h(K(3,2 \ldots, 2))=k=h(K(3,3,2 \ldots, 2))$ for $k>2$.
Proof. From Theorem 3, fact 5 and Theorem B, $k=h(K(2,2 \ldots, 2)) \leq$ $h(K(3,2 \ldots, 2)) \leq h(K(3,3,2 \ldots, 2)) \leq \operatorname{ch}(K(3,3,2 \ldots, 2))=k$. Thus, $h(K(3,2 \ldots, 2))=k=h(K(3,3,2 \ldots, 2))$.

We note that when $k=2, h(K(3,2))=2$ since $2=h(K(2,2)) \leq$ $h(K(3,2)) \leq \operatorname{ch}(K(3,2))=2$ by Corollary B. Also, since $\operatorname{ch}(K(3,3))=3$ by [4], it is clear from Fact 3 that $h(K(3,3))=3$.

Theorem 4. Let G denote the complete k-partite graph
$K(4,2, \ldots, 2)$ with $k \geq 2$. Then

$$
h(G)= \begin{cases}k & \text { if } k \text { is odd } \\ k+1 & \text { if } k \text { is even } .\end{cases}
$$

Proof. When k is even, from Theorem B we have that $k=\chi(G)<$ $\operatorname{ch}(G)=k+1$. Thus, from Fact 3, it is clear that $h(G)=\operatorname{ch}(G)=k+1$ for all even $k \geq 2$.

Suppose $k \geq 3$ is odd.
Let the partite sets, or parts, $V_{1}, V_{2}, \ldots, V_{k}$ of the complete k-partite graph G be $V_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $V_{i}=\left\{u_{i}, v_{i}\right\}, i=2, \ldots, k, k \geq 2$.

Let C_{1} and C_{2} be disjoint $k-2$ sets of colors and 0 an object not in $C_{1} \cup C_{2}$. Let $A=C_{1} \cup\{0\}, B=C_{2} \cup\{0\}$. Let A_{1}, A_{2} and B_{1}, B_{2}
be disjoint $(k-1) / 2$ sets of colors partitioning A and B respectively, and let $0 \in A_{2} \cap B_{2}$. Let a, b be distinct objects not in $A \cup B$. Define a list assignment L to G as follows:

1. $L\left(u_{2}\right)=A, L\left(v_{2}\right)=B, L\left(u_{i}\right)=C_{1} \cup\{a\}$ and $L\left(v_{i}\right)=C_{2} \cup\{b\}$, for every $3 \leq i \leq k$ and
2. $L\left(x_{1}\right)=A_{1} \cup B_{1}, L\left(x_{2}\right)=A_{1} \cup B_{2}, L\left(x_{3}\right)=A_{2} \cup B_{1}$ and $L\left(x_{4}\right)=$ $A_{2} \cup B_{2} \cup\{a\}$

Notice that $|L(v)|=k-1$ for every $v \in V(G)$.

Claim 1. G is not properly L-colorable.

Proof.

Every proper L-coloring of $G-V_{1}=K(2, \ldots, 2)$ uses $k-1$ elements of $C_{1} \cup\{0, a\}$ and $k-1$ elements of $C_{2} \cup\{0, b\}$. We proceed by exhausting the possible cases in attempts to properly L-color G.

Case 1: suppose $\psi\left(u_{2}\right) \neq 0 \neq \psi\left(v_{2}\right)$. Then all of the colors of $C_{1} \cup$ $C_{2} \cup\{a, b\}$ will be used to color $G-V_{1}$. Hence we cannot color x_{1} (since $A_{1} \cup B_{1} \subset C_{1} \cup C_{2}$).

Case 2: suppose $\psi\left(u_{2}\right)=\psi\left(v_{2}\right)=0$
Case 2.1: $\psi\left(u_{i}\right) \neq a$ and $\psi\left(v_{i}\right) \neq b$ for every $3 \leq i \leq k$.
Then all of the colors of $C_{1} \cup C_{2}$ will be used to color $G-\left(V_{1} \cup V_{2}\right)$. Once again we cannot color x_{1}.

Case 2.2: $\psi\left(u_{i}\right)=a$ and $\psi\left(v_{j}\right)=b$ for some $i, j \neq 2$.
Then there remains exactly one color, say $c_{1} \in C_{1}$ and exactly one color, say $c_{2} \in C_{2}$. If $c_{1} \in A_{1}$ and $c_{2} \in B_{1}$, then we cannot color x_{4}. Likewise if $c_{1} \in A_{1}$ and $c_{2} \in B_{2}$, then we cannot color x_{3}. Also if $c_{1} \in A_{2}$ and $c_{2} \in B_{1}$, x_{2} cannot be colored and if $c_{1} \in A_{2}, c_{2} \in B_{2}, x_{1}$ cannot be colored.

Case 2.3: $\psi\left(u_{i}\right) \neq a$ for all $i \neq 2$ and $\psi\left(v_{j}\right)=b$ for some $j \geq 3$. Then there remains exactly one color, say $c_{2} \in C_{2}$ and none of C_{1}. As in the previous case, if $c_{2} \in B_{1}$, then we cannot color x_{2}. Likewise if $c_{2} \in B_{2}$, then we cannot color either of x_{1} and x_{3}.

Case 2.4: $\psi\left(u_{i}\right)=a$ for some $i \geq 3$ and $\psi\left(v_{j}\right) \neq b$ for all $j \geq 3$. Then there remains exactly one color, say $c_{1} \in C_{1}$ and none of C_{2}. As before, if $c_{1} \in A_{1}$, then we cannot color either of x_{3} and x_{4}. Likewise if $c_{1} \in A_{2}$, then we cannot color either of x_{1} and x_{2}.

Case 2.5: $\psi\left(u_{i}\right) \neq a$ and $\psi\left(v_{j}\right) \neq b$ for all $3 \leq i, j \leq k$. Clearly the coloring cannot be properly extended to any of x_{1}, x_{2}, x_{3}.

Notice that we can skip the case where $\psi\left(u_{2}\right)=0$ and $\psi\left(v_{2}\right) \neq 0$ (or vice versa), since if there is a proper L-coloring with one of u_{2}, v_{2} colored with 0 , then there is a proper L-coloring with both colored 0 .

From the previous cases we can conclude that G is not properly $L-$ colorable.

Claim 2. $\sum_{\sigma \in \mathcal{P}} \alpha\left(G_{\sigma}\right) \geq|V(G)|$.

Proof.

Notice that $\alpha\left(G_{\sigma}\right)=2$ for every $\sigma \in C_{1} \cup C_{2}$. Also $\alpha\left(G_{0}\right)=3$ and $\alpha\left(G_{a}\right)=\alpha\left(G_{b}\right)=1$. Hence $\sum_{\sigma \in \mathcal{P}} \alpha\left(G_{\sigma}\right)=2(2(k-2))+5=4 k-3 \geq$ $2 k+2=|V(G)|$ for every $k \geq 3$.

Claim 3. If $k \geq 5$, then every proper induced subgraph H of G is properly L-colorable.

Proof.

We proceed by considering the possible subgraphs of G obtained by deleting a single vertex.

Case 1: $H=G-u_{i}$, for some i.
Let $\psi\left(x_{2}\right)=\psi\left(x_{3}\right)=\psi\left(x_{4}\right)=0$. Color $G-V_{1}$ with the colors from $C_{1} \cup C_{2} \cup\{a, b\}$ (colors a, b included). Hence there remains exactly one unused color of C_{1}, say c_{1}, and arrange that $c_{1} \in A_{1}$. Let $\psi\left(x_{1}\right)=c_{1}$.

Case 2: $H=G-v_{i}$, for some i. Following the coloring argument in the previous case, there remains exactly one unused color of C_{2}, say c_{2}, and arrange that $c_{2} \in B_{1}$. Let $\psi\left(x_{1}\right)=c_{2}$.

Case 3: $H=G-x_{1}$. Let $\psi\left(x_{2}\right)=\psi\left(x_{3}\right)=\psi\left(x_{4}\right)=0$. It is easy to see that we can color the remaining subgraph $G-V_{1}$ with the colors from $C_{1} \cup C_{2} \cup\{a, b\}$ (a, b included).

Case 4: $H=G-x_{2}$. Let $\psi\left(u_{2}\right)=\psi\left(v_{2}\right)=0$, and $\psi\left(x_{4}\right)=a$. Color the vertices of $G-\left(V_{1} \cup V_{2}\right)$ with the colors from $C_{1} \cup C_{2} \cup\{b\}$ (b included). Then there remains exactly one unused color of C_{2}, say c_{2}, and arrange that $c_{2} \in B_{1}$. Let $\psi\left(x_{1}\right)=\psi\left(x_{3}\right)=c_{2}$.

Case 5: $H=G-x_{4}$. Let $\psi\left(u_{2}\right)=\psi\left(v_{2}\right)=0$. Color the vertices of $G-\left(V_{1} \cup V_{2}\right)$ with the colors from $C_{1} \cup C_{2} \cup\{a, b\}$ (a, b included). Then there remains exactly one unused color of C_{1}, say c_{1}, and arrange that $c_{1} \in A_{1}$, and exactly one unused color of C_{2}, say c_{2}, and arrange that $c_{2} \in B_{1}$. Let $\psi\left(x_{1}\right)=c_{1}=\psi\left(x_{2}\right)$ and $\psi\left(x_{3}\right)=c_{2}$.

Case 6: $H=G-x_{3}$. Let $\psi\left(u_{2}\right)=\psi\left(v_{2}\right)=0$. Color the vertices of $G-\left(V_{1} \cup V_{2}\right)$ with the colors from $C_{1} \cup C_{2} \cup\{a, b\}$ (a, b included). Then there remains exactly one unused color of C_{1}, say c_{1}, and arrange that $c_{1} \in A_{1}$, and exactly one unused color of C_{2}, say c_{2}, and arrange that $c_{2} \in B_{2}$. Let $\psi\left(x_{1}\right)=c_{1}=\psi\left(x_{2}\right)$ and $\psi\left(x_{4}\right)=c_{2}$.

Notice here that when $k=3, A_{2}=B_{2}=\{0\}$. Therefore, the attempted
coloring of $H=G-x_{3}$ in case 6 fails, and, in fact H is not properly $L-$ colorable. However, $H=G-x_{3}$ with the given list assignment L satisfies the inequality (3.1). We can safely end the proof here when $k=3$.

Still, there follows a list assignment specifically for the case when $k=3$, which we hope will be of interest.

We define a list assignment L to $G=K(4,2,2)$ as follows:

1. $L\left(u_{2}\right)=\{1,0\}, L\left(v_{2}\right)=\{2,0, c\}, L\left(u_{3}\right)=\{1, a\}, L\left(v_{3}\right)=\{2, b\}$ and
2. $L\left(x_{1}\right)=\{1,2\}, L\left(x_{2}\right)=\{1,0\}, L\left(x_{3}\right)=\{0, a\}$ and $L\left(x_{4}\right)=\{b, c\}$

It is easy to verify that G and L satisfy the previous claims 1 and 2 . We proceed therefore to verify only claim 3 for the subgraphs H of $K(4,2,2)$ in the following cases.

Case1: $H=G-u_{2}$.
Let $\psi\left(v_{2}\right)=2, \psi\left(u_{3}\right)=a, \psi\left(v_{3}\right)=b$. Also $\psi\left(x_{2}\right)=0=\psi\left(x_{3}\right), \psi\left(x_{1}\right)=$ 1 and $\psi\left(x_{4}\right)=c$.

Case2: $H=G-v_{2}$.
Let $\psi\left(u_{2}\right)=1, \psi\left(u_{3}\right)=a, \psi\left(v_{3}\right)=b$. Also $\psi\left(x_{2}\right)=0=\psi\left(x_{3}\right), \psi\left(x_{1}\right)=$ 2 and $\quad \psi\left(x_{4}\right)=c$.

Case3: $H=G-u_{3}$.
Let $\psi\left(u_{2}\right)=\psi\left(v_{2}\right)=0, \psi\left(v_{3}\right)=b$. Also $\psi\left(x_{1}\right)=1=\psi\left(x_{2}\right), \psi\left(x_{3}\right)=a$ and $\psi\left(x_{4}\right)=c$

Case4: $H=G-v_{3}$.
Let $\psi\left(u_{2}\right)=1, \psi\left(v_{2}\right)=c, \psi\left(u_{3}\right)=a$. Also $\psi\left(x_{1}\right)=2, \psi\left(x_{2}\right)=0=$ $\psi\left(x_{3}\right)$ and $\quad \psi\left(x_{4}\right)=b$.

Case5: $H=G-x_{1}$.
Let $\psi\left(u_{2}\right)=1, \psi\left(v_{2}\right)=2, \psi\left(u_{3}\right)=a \operatorname{and} \psi\left(v_{3}\right)=b$. Also let $\psi\left(x_{1}\right)=$ $0=\psi\left(x_{2}\right)$ and $\psi\left(x_{4}\right)=c$.

Case6: $H=G-x_{2}$.
Let $\psi\left(u_{2}\right)=0=\psi\left(v_{2}\right), \psi\left(u_{3}\right)=1$ and $\psi\left(v_{3}\right)=b$. Also $\psi\left(x_{1}\right)=$ $2, \psi\left(x_{3}\right)=a$ and $\psi\left(x_{4}\right)=c$.

Case7: $H=G-x_{3}$.
Let $\psi\left(u_{2}\right)=0=\psi\left(v_{2}\right), \psi\left(u_{3}\right)=a$ and $\psi\left(v_{3}\right)=b$. Also $\psi\left(x_{1}\right)=1=$ $\psi\left(x_{2}\right)$ and $\psi\left(x_{4}\right)=c$.

Case8: $H=G-x_{4}$.
Let $\psi\left(u_{2}\right)=1, \psi\left(v_{2}\right)=c, \psi\left(u_{3}\right)=a$ and $\psi\left(v_{3}\right)=b$. Also $\psi\left(x_{1}\right)=2$ and $\psi\left(x_{2}\right)=0=\psi\left(x_{3}\right)$.

We conclude that G and L satisfy Hall's Condition. So, $k \leq h(G) \leq$ $c h(G)=k$ by Fact 2 and Theorem B. Therefore, $h(G)=k$ for all $k \geq 3$ odd.

Corollary 4: For $m \geq 2, k \geq 2, h(K(m, 2 \ldots, 2))=\operatorname{ch}(K(m, 2 \ldots, 2))$.

Proof. This follows from Corollaries D and 3, and Theorems C, D, 3 and 4.

Conjecture: If G is a complete multipartite graph with all parts of size greater than 1 , then $h(G)=\operatorname{ch}(G)$.

Since $h\left(K_{n}\right)=1<n=\operatorname{ch}\left(K_{n}\right)$, the conclusion of the conjecture fails if parts of size 1 are allowed. Since $h(G)=\operatorname{ch}(G)$ whenever $\chi(G)<\operatorname{ch}(G)$, and since $\chi(G)<\operatorname{ch}(G)$ for "most" complete multipartite graphs G with part sizes greater than 1 , with Theorems 3 and 4 we may be within shouting distance of confirming the conjecture.

Acknowledgement

The author expresses his gratitude to Professor Peter Johnson Jr for communicating this problem and encouraging this work.

References

[1] Hikoe Enomoto, Kyoji Ohba, Katsuhiro Ota, Junko Sakamoto, Choice number of some complete multi-partite graphs Discrete Math. 244 (2002), 55-66.
[2] P. Erdös, A.L.Rubin, H. Taylor, Choosability in graphs, Congressus Numerantium 26 (1980), 125-157.
[3] S. Gravier and F. Maffray, Graphs whose choice number is equal to their chromatic number, J. Graph Theory 27 (1998), 87-97.
[4] D. G. Hoffman and P.D. Johnson Jr, On the choice number of $K_{m, n}$, Congressus Numerantium 98 (1993), 105-111.
[5] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
[6] A. J. W. Hilton and P. D. Johnson Jr., Extending Hall's theorem, Topics in Combinatorics and Graph Theory: Essays in Honour of Gerhard Ringel, Physica-Verlag, Heidelberg, 1990, 359-371.

