
Hall numbers of some complete k−partite
graphs

Julian A. Allagan
School of Science Technology Engineering and Mathematics,

Gainesville State College, Watkinsville, GA- 30677, USA
aallagan@gmail.com

Abstract

The Hall number is a graph parameter closely related to the choice
number. Here it is shown that the Hall numbers of the complete
multipartite graphs K(m, 2, . . . , 2), m ≥ 2, are equal to their choice
numbers.

1 Introduction

Throughout this paper, the graph G = (V,E) will be a finite simple graph
with vertex set V = V (G) and edge set E = E(G).

A list assignment to the graph G is a function L which assigns a finite
set (list) L(v) to each vertex v ∈ V (G).

A proper L−coloring of G is a function ψ : V (G) →
⋃

v∈V (G)

L(v) satis-

fying, for every u, v ∈ V (G),

(i) (v) ∈ L(v),

(ii) uv ∈ E(G)→ ψ(v) 6= ψ(u).

The choice number or list−chromatic number of G, denoted by ch(G),
is the smallest integer k such that there is always a proper L−coloring
of G if L satisfies |L(v)| ≥ k for every v ∈ V (G). With χ denoting the
chromatic number, it is easy to see, and well known, that χ(G) ≤ ch(G).
The extremal equation χ(G) = ch(G) is a major research interest; see [1],
[2], and [3].

1.1 Hall’s Theorem

Theorem 1. ( P. Hall [5]). Suppose A1, A2, . . . , An are (not necessarily
distinct) finite sets. There exist distinct elements a1, a2, . . . , an such that
ai ∈ Ai, i = 1, 2, . . . , n, if and only if for each J ⊆ {1, 2, . . . , n},
|
⋃
j∈J

Aj | ≥ |J |.
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A list of distinct elements a1, . . . , an such that ai ∈ Ai, i = 1, . . . , n, is
called a system of distinct representatives of the sets A1, . . . , An. A proper
L−coloring of a complete graph Kn is simply a system of distinct repre-
sentatives of the finite lists L(v), v ∈ V , and any list A1, A2, . . . , An of sets
can be regarded as lists assigned to Kn. Therefore, as noted in [6], Hall’s
theorem can be restated as:

Theorem 2. ( Hall’s theorem restated). Suppose that L is a list assignment
to Kn. There is a proper L−coloring of Kn if and only if, for all U ⊆
V (Kn), |L(U)| = |

⋃
u∈U

L(u)| ≥ |U |.

Let L be a list assignment to a simple graph G, H a subgraph of G and
P a set of possible colors. If ψ : V (G) → P is a proper L−coloring of G,
then for any subgraph H ⊂ G, ψ restricted to V (H) is a proper L−coloring
of H.

For any σ ∈ P, let H(σ, L) = < {v ∈ V (H) | σ ∈ L(v)} > denote the
subgraph of H induced by the support set {v ∈ V (H) | σ ∈ L(v)}. For
convenience, we sometimes simply write Hσ.

For each σ ∈ P, ψ−1(σ) = {v ∈ V (G) | ψ(v) = σ} ⊆ V (Gσ); ψ−1(σ) is
an independent set because ψ is a proper L−coloring. Further, ψ−1(σ) ∩
V (H) ⊆ V (Hσ). So, |ψ−1(σ) ∩ V (H)| ≤ α(Hσ) where α is the vertex
independence number. This implies that∑

σ∈P
α(Hσ) ≥

∑
σ∈P
|ψ−1(σ) ∩ V (H)| = |V (H)| for all H ⊆ G.

When G and L satisfy the inequality∑
σ∈P

α(Hσ) ≥ |V (H)| (3.1)

for each subgraph H of G, they are said to satisfy Hall’s condition. By
the discussion preceding, Hall’s condition is a necessary condition for a
proper L−coloring of G. Because removing edges does not diminish the
vertex independence number, for G and L to satisfy Hall’s condition it
suffices that (3.1) holds for all induced subgraphs H of G.

Hall’s condition is sufficient for a proper coloring when G = Kn, because
if H is an induced subgraph of Kn then for each σ ∈ P,

α(Hσ) =

 1 if σ ∈
⋃

v∈V (H)

L(v)

0, otherwise.

So ∑
σ∈P

α(Hσ) = |
⋃

v∈V (H)

L(v)| ;
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therefore Hall’s condition, that∑
σ∈P

α(Hσ) ≥ |V (H)|

for every such H, is just a restatement of the condition in Theorem 2. (It
is necessary to point out here that if σ /∈ L(v) for all v ∈ V (H) then Hσ

is the null graph, and α(Hσ) = 0.) Consequently, Hall’s theorem may be
restated: For complete graphs, Hall’s condition on the graph and a list
assignment suffices for a proper coloring.

The temptation to think that there are many graphs for which Hall’s
condition is sufficient can be easily dismissed. Figure 1 is the smallest graph
with a list assignment L0 for which Hall’s condition holds, and yet G has
no proper L0−coloring.

Remark.
It is clear that if H is an induced subgraph of G and H 6= G, then

H ⊆ G− v for some v ∈ V (G). So, if G− v has a proper L−coloring, then
H ⊆ G− v must satisfy (by necessity) (3.1). Thus, in practice, in order to
show that G and L satisfy Hall’s condition, it suffices to verify that G− v
is properly L−colorable for each v ∈ V (G) and that G itself satisfies the
inequality (3.1).

Denoted by h(G), the Hall number of a graphG is the smallest positive
integer k such that there is a proper L−coloring of G, whenever G and L
satisfy Hall’s condition and |L(v)| ≥ k for each v ∈ V (G). So, by Theorem
2, h(Kn) = 1 for all n. In [6] the following facts are shown:

1. If |L(v)| ≥ χ(G) for every v ∈ V (G) then G and L satisfy Hall’s
Condition.

2. h(G) ≤ ch(G) for every G.

3. If ch(G) > χ(G) then h(G) = ch(G).

4. If h(G) ≤ χ(G) then χ(G) = ch(G).

5. If H is an induced subgraph of G then h(H) ≤ h(G).

Facts 3 and 4, are essentially equivalent since χ, h ≤ ch, make h a
parameter of interest of study of the extremal equation χ(G) = ch(G).
These facts and the following theorems underline our findings in the next
section.

Theorem A.(Erdös, Rubin and Taylor [2]) Let G denote the complete
k−partite graph K(2, 2, . . . , 2). Then ch(G) = k.
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Theorem B.(Gravier and Maffray [3]) Let G denote the complete
k−partite graph K(3, 3, 2, . . . , 2). If k > 2, then ch(G) = k.

When k = 2, it is shown that ch(K(3, 3)) = 3. See [4].

Corollary B. LetG denote the complete k−partite graphK(3, 2, . . . , 2).
Then ch(G) = k.

Proof. Since K(3, 2 . . . , 2) is a complete k−partite graph,
k = χ(K(3, 2 . . . , 2)) ≤ ch(K(3, 2 . . . , 2)). Further, K(3, 2 . . . , 2) is a sub-
graph of the complete k−partite graph K(3, 3, 2, . . . , 2). Therefore
ch(K(3, 2 . . . , 2)) ≤ k if k > 2. Thus, ch(K(3, 2 . . . , 2)) = k if k > 2. When
k = 2, we have K(3, 2), of which it is well known that the choice number
is 2. See [4], for instance.

Theorem C. ( Enomoto et al. [1],2002) Let Gk denote the complete
k−partite graph K(4, 2, . . . , 2). Then

ch(Gk) =

{
k if k is odd
k + 1 if k is even.

Theorem D. ( Enomoto et al. [1]) LetG denote the complete k−partite
graph K(5, 2, . . . , 2). If k ≥ 2 then ch(G) = k + 1.

Corollary D. LetG denote the complete k−partite graphK(m, 2, . . . , 2).
If k ≥ 2 and m ≥ 5, then h(G) = ch(G) ≥ k + 1.

Proof. Since ch(G) ≥ ch(K(5, 2 . . . , 2)) = k + 1 > k = χ(G), h(G) =
ch(G) by the previous fact 3.

2 Hall numbers of some complete multipar-
tite graphs

Throughout this section, L is a list assignment to V (G) such that for each
v ∈ V (G), L(v) ⊂ P, a set of symbols. If σ /∈ L(v) for all v ∈ V (G),
then Gσ is the null graph. Further, we denote by ψ, any attempted proper
L−coloring of G.
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2.1 Example

The following example originally appeared in [6]. Consider the complete
bipartite graph K(2, 2) in Figure 1 with parts Vi = {ui, vi}, i = 1, 2 and
L0 the list assignment indicated.

s
s

s
su1 v2

u2 v1

{a, b} {b, c}

{a, c} {c}

Figure 1: A list assignment to K(2,2).

If v1 is colored c, as it must be, then u2 must be colored a and v2 must
be colored b in a proper coloring, so u1 cannot be properly colored.

However, we will show that G and L0 satisfy Hall’s condition using the
argument described in a previous remark. First, for each v ∈ V (G), it
is easy to see that G − v is properly L0−colorable, meaning every proper
induced subgraph H ⊂ G satisfies, with L0, the inequality (3.1) in Hall’s
condition. We now proceed to verify the inequality (3.1) for G itself.

Now, α(Gc) = 2 and α(Gb) = α(Ga) = 1. So, 4 =
∑
σ∈P

α(Gσ) ≥

|V (G)| = 4. Thus, G and L0 satisfy Hall’s condition and yet G has no
proper L0−coloring. Thus, 1 < h(G) ≤ 2 by Fact 2 and Theorem A.
Therefore, h(G) = 2.

2.2 Some Hall numbers

Theorem 3. h(K(2, . . . , 2)) = k when k ≥ 2.

Proof. Let the partite sets of the complete k−partite graphG = K(2, . . . , 2)
be V1, . . . , Vk with Vi = {ui, vi}, for i = 1, 2, . . . , k.

In Example 2.1, we showed that h(G) = k when k = 2. So, to complete
the proof, we suppose k ≥ 3.

Let A be a nonempty set of colors with |A| = k−2 and a, b, c be distinct
colors not in A. We define L a list assignment to G as follows:

1. L(u1) = A ∪ {a, b}, L(u2) = L(u3) = . . . = L(uk−1) = A ∪ {a},
L(uk) = A ∪ {c} and
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2. L(v1) = A ∪ {b, c}, L(v2) = L(v3) = . . . = L(vk) = A ∪ {b}.

Observe that |L(v)| ≥ k − 1 for every v ∈ V (G).

Claim 1. The graph G is not properly L−colorable.

Proof.
In the following cases, we consider all possible distinct ways to properly

color the vertices of some part of G, say V1 . We then conclude that
the remaining subgraph H = G − V1 is not proper L′-colorable where

L′ = L−{α1, α2}, {α1, α2} ∈
⋃
v∈V1

L(v). (α1, α2 are not necessarily distinct

colors; they are the colors on V1.) Let ψ denote the attempted proper
coloring.

Case 1: ψ(u1) = b or ψ(v1) = b.
Let S =< {v2, . . . , vk} >, an induced subgraph of H. Then k − 2 =

|A| = |
⋃

v∈V (S)

L′(v)| < |V (S)| = k− 1. Since the subgraph S is a clique, we

cannot properly color S from L′.
Case 2: ψ(u1) = a and ψ(v1) = c.
Similarly as described in case 1, by letting S =< {u2, . . . , uk} >, it’s

clear that we cannot properly color S, from L′.
Case 3: ψ(u1) = γ or ψ(v1) = γ for some color γ ∈ A.

With S as in case 1, k− 2 = |
⋃

v∈V (S)

L′(v)| < |V (S)| = k− 1. Hence we

cannot properly color H from L′.

Claim 2.
∑
σ∈P

α(Gσ) ≥ |V (G)|.

Proof.
It is clear that α(Ga) = α(Gc) = 1, α(Gb) = 2; further, α(Gσ) = 2 for

every σ ∈ A. Hence
∑
σ∈P

α(Gσ) = 2(k − 2) + 4 = 2k = |V (G)|.

Claim 3. Every proper induced subgraph H of G is properly L−colorable.

Proof.
In the following cases we provide a (not necessarily unique) proper col-

oring for each induced subgraph H of G of the form G− v, v ∈ V (G).
Case 1: H = G− u1.
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Let ψ(v1) = c and color the 2(k−2) vertices of the subgraph G−(V1∪V2)
with the colors from A (by coloring vertices of the same part with the same
color). Then let ψ(u2) = a and ψ(v2) = b.

Case 2: H = G− v1.
Let ψ(u1) = a and color the 2(k−2) vertices of the subgraphG−(V1∪Vk)

with the colors from A with the same color appearing on ui and vi, i =
2, . . . , k − 1. Then, let ψ(uk) = c and ψ(vk) = b.

Case 3: H = G− ui, for some 2 ≤ i ≤ k.
Let ψ(vi) = b and color the remaining 2(k− 2) vertices of the subgraph

G− (Vi ∪ V1) with the colors from A. Then, let ψ(u1) = a and ψ(v1) = c.
Case 4: H = G− vi, for some 2 ≤ i ≤ k − 1.
Let ψ(ui) = a and color the remaining 2(k− 2) vertices of the subgraph

G− (Vi ∪ V1) with the colors from A. Then, let ψ(u1) = ψ(v1) = b.
Case 5: H = G− vk.
Let ψ(uk) = c and color the 2(k−2) vertices of the subgraphG−(V1∪Vk)

with the colors from A. Finally, let ψ(u1) = ψ(v1) = b.
From the previous claims, we can conclude that h(G) > k − 1. Thus,

by Theorem A and Fact 2, h(G) = k. This concludes the proof.

Corollary 3: h(K(3, 2 . . . , 2)) = k = h(K(3, 3, 2 . . . , 2)) for k > 2.

Proof. From Theorem 3, fact 5 and Theorem B, k = h(K(2, 2 . . . , 2)) ≤
h(K(3, 2 . . . , 2)) ≤ h(K(3, 3, 2 . . . , 2)) ≤ ch(K(3, 3, 2 . . . , 2)) = k. Thus,
h(K(3, 2 . . . , 2)) = k = h(K(3, 3, 2 . . . , 2)).

We note that when k = 2, h(K(3, 2)) = 2 since 2 = h(K(2, 2)) ≤
h(K(3, 2)) ≤ ch(K(3, 2)) = 2 by Corollary B. Also, since ch(K(3, 3)) = 3
by [4], it is clear from Fact 3 that h(K(3, 3)) = 3.

Theorem 4. Let G denote the complete k−partite graph
K(4, 2, . . . , 2) with k ≥ 2. Then

h(G) =

{
k if k is odd
k + 1 if k is even.

Proof. When k is even, from Theorem B we have that k = χ(G) <
ch(G) = k + 1. Thus, from Fact 3, it is clear that h(G) = ch(G) = k + 1
for all even k ≥ 2.

Suppose k ≥ 3 is odd.
Let the partite sets, or parts, V1, V2, . . . , Vk of the complete k−partite

graph G be V1 = {x1, x2, x3, x4} and Vi = {ui, vi}, i = 2, . . . , k, k ≥ 2.
Let C1 and C2 be disjoint k − 2 sets of colors and 0 an object not in

C1 ∪ C2. Let A = C1 ∪ {0}, B = C2 ∪ {0}. Let A1, A2 and B1, B2
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be disjoint (k − 1)/2 sets of colors partitioning A and B respectively, and
let 0 ∈ A2 ∩ B2. Let a,b be distinct objects not in A ∪ B. Define a list
assignment L to G as follows:

1. L(u2) = A, L(v2) = B, L(ui) = C1 ∪ {a} and L(vi) = C2 ∪ {b}, for
every 3 ≤ i ≤ k and

2. L(x1) = A1 ∪ B1, L(x2) = A1 ∪ B2, L(x3) = A2 ∪ B1 and L(x4) =
A2 ∪B2 ∪ {a}

Notice that |L(v)| = k − 1 for every v ∈ V (G).

Claim 1. G is not properly L−colorable.

Proof.
Every proper L−coloring of G − V1 = K(2, . . . , 2) uses k − 1 elements

of C1 ∪ {0, a} and k− 1 elements of C2 ∪ {0, b}. We proceed by exhausting
the possible cases in attempts to properly L−color G.

Case 1: suppose ψ(u2) 6= 0 6= ψ(v2). Then all of the colors of C1 ∪
C2 ∪ {a, b} will be used to color G − V1. Hence we cannot color x1 (since
A1 ∪B1 ⊂ C1 ∪ C2).

Case 2: suppose ψ(u2) = ψ(v2) = 0
Case 2.1: ψ(ui) 6= a and ψ(vi) 6= b for every 3 ≤ i ≤ k.
Then all of the colors of C1 ∪ C2 will be used to color G − (V1 ∪ V2).

Once again we cannot color x1.
Case 2.2: ψ(ui) = a and ψ(vj) = b for some i, j 6= 2.
Then there remains exactly one color, say c1 ∈ C1 and exactly one color,

say c2 ∈ C2. If c1 ∈ A1 and c2 ∈ B1, then we cannot color x4. Likewise if
c1 ∈ A1 and c2 ∈ B2, then we cannot color x3. Also if c1 ∈ A2 and c2 ∈ B1,
x2 cannot be colored and if c1 ∈ A2, c2 ∈ B2, x1 cannot be colored.

Case 2.3: ψ(ui) 6= a for all i 6= 2 and ψ(vj) = b for some j ≥ 3. Then
there remains exactly one color, say c2 ∈ C2 and none of C1. As in the
previous case, if c2 ∈ B1, then we cannot color x2. Likewise if c2 ∈ B2,
then we cannot color either of x1 and x3.

Case 2.4: ψ(ui) = a for some i ≥ 3 and ψ(vj) 6= b for all j ≥ 3. Then
there remains exactly one color, say c1 ∈ C1 and none of C2. As before,
if c1 ∈ A1, then we cannot color either of x3 and x4. Likewise if c1 ∈ A2,
then we cannot color either of x1 and x2.

Case 2.5: ψ(ui) 6= a and ψ(vj) 6= b for all 3 ≤ i, j ≤ k. Clearly the
coloring cannot be properly extended to any of x1, x2, x3.

Notice that we can skip the case where ψ(u2) = 0 and ψ(v2) 6= 0 (or
vice versa), since if there is a proper L−coloring with one of u2, v2 colored
with 0, then there is a proper L−coloring with both colored 0.
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From the previous cases we can conclude that G is not properly L−
colorable.

Claim 2.
∑
σ∈P

α(Gσ) ≥ |V (G)|.

Proof.
Notice that α(Gσ) = 2 for every σ ∈ C1 ∪ C2. Also α(G0) = 3 and

α(Ga) = α(Gb) = 1. Hence
∑
σ∈P

α(Gσ) = 2(2(k − 2)) + 5 = 4k − 3 ≥

2k + 2 = |V (G)| for every k ≥ 3.

Claim 3. If k ≥ 5, then every proper induced subgraph H of G is
properly L−colorable.

Proof.
We proceed by considering the possible subgraphs of G obtained by

deleting a single vertex.
Case 1: H = G− ui, for some i.
Let ψ(x2) = ψ(x3) = ψ(x4) = 0. Color G − V1 with the colors from

C1 ∪ C2 ∪ {a, b} (colors a, b included). Hence there remains exactly one
unused color of C1, say c1, and arrange that c1 ∈ A1. Let ψ(x1) = c1.

Case 2: H = G − vi, for some i. Following the coloring argument in
the previous case, there remains exactly one unused color of C2, say c2, and
arrange that c2 ∈ B1. Let ψ(x1) = c2.

Case 3: H = G − x1. Let ψ(x2) = ψ(x3) = ψ(x4) = 0. It is easy to
see that we can color the remaining subgraph G− V1 with the colors from
C1 ∪ C2 ∪ {a, b} (a, b included).

Case 4: H = G − x2. Let ψ(u2) = ψ(v2) = 0, and ψ(x4) = a. Color
the vertices of G− (V1∪V2) with the colors from C1∪C2∪{b} (b included).
Then there remains exactly one unused color of C2, say c2, and arrange
that c2 ∈ B1. Let ψ(x1) = ψ(x3) = c2.

Case 5: H = G − x4. Let ψ(u2) = ψ(v2) = 0. Color the vertices of
G−(V1∪V2) with the colors from C1∪C2∪{a, b} (a, b included). Then there
remains exactly one unused color of C1, say c1, and arrange that c1 ∈ A1,
and exactly one unused color of C2, say c2, and arrange that c2 ∈ B1. Let
ψ(x1) = c1 = ψ(x2) and ψ(x3) = c2.

Case 6: H = G − x3. Let ψ(u2) = ψ(v2) = 0. Color the vertices of
G−(V1∪V2) with the colors from C1∪C2∪{a, b} (a, b included). Then there
remains exactly one unused color of C1, say c1, and arrange that c1 ∈ A1,
and exactly one unused color of C2, say c2, and arrange that c2 ∈ B2. Let
ψ(x1) = c1 = ψ(x2) and ψ(x4) = c2.

Notice here that when k = 3, A2 = B2 = {0}. Therefore, the attempted
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coloring of H = G − x3 in case 6 fails, and, in fact H is not properly L−
colorable. However, H = G− x3 with the given list assignment L satisfies
the inequality (3.1). We can safely end the proof here when k = 3.

Still, there follows a list assignment specifically for the case when k = 3,
which we hope will be of interest.

We define a list assignment L to G = K(4, 2, 2) as follows:

1. L(u2) = {1, 0}, L(v2) = {2, 0, c}, L(u3) = {1, a}, L(v3) = {2, b} and

2. L(x1) = {1, 2}, L(x2) = {1, 0}, L(x3) = {0, a} and L(x4) = {b, c}

It is easy to verify that G and L satisfy the previous claims 1 and 2. We
proceed therefore to verify only claim 3 for the subgraphs H of K(4, 2, 2)
in the following cases.

Case1: H = G− u2.
Let ψ(v2) = 2, ψ(u3) = a, ψ(v3) = b. Also ψ(x2) = 0 = ψ(x3), ψ(x1) =

1 and ψ(x4) = c.
Case2: H = G− v2.
Let ψ(u2) = 1, ψ(u3) = a, ψ(v3) = b. Also ψ(x2) = 0 = ψ(x3), ψ(x1) =

2 and ψ(x4) = c.
Case3: H = G− u3.
Let ψ(u2) = ψ(v2) = 0, ψ(v3) = b. Also ψ(x1) = 1 = ψ(x2), ψ(x3) = a

and ψ(x4) = c
Case4: H = G− v3.
Let ψ(u2) = 1, ψ(v2) = c, ψ(u3) = a. Also ψ(x1) = 2, ψ(x2) = 0 =

ψ(x3) and ψ(x4) = b.
Case5: H = G− x1.
Let ψ(u2) = 1, ψ(v2) = 2, ψ(u3) = a andψ(v3) = b . Also let ψ(x1) =

0 = ψ(x2) and ψ(x4) = c.
Case6: H = G− x2.
Let ψ(u2) = 0 = ψ(v2), ψ(u3) = 1 andψ(v3) = b . Also ψ(x1) =

2, ψ(x3) = a and ψ(x4) = c.
Case7: H = G− x3.
Let ψ(u2) = 0 = ψ(v2), ψ(u3) = a andψ(v3) = b . Also ψ(x1) = 1 =

ψ(x2) and ψ(x4) = c.
Case8: H = G− x4.
Let ψ(u2) = 1, ψ(v2) = c, ψ(u3) = a and ψ(v3) = b . Also ψ(x1) = 2

and ψ(x2) = 0 = ψ(x3).
We conclude that G and L satisfy Hall’s Condition. So, k ≤ h(G) ≤

ch(G) = k by Fact 2 and Theorem B. Therefore, h(G) = k for all k ≥ 3
odd.
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Corollary 4: For m ≥ 2, k ≥ 2, h(K(m, 2 . . . , 2)) = ch(K(m, 2 . . . , 2)).

Proof. This follows from Corollaries D and 3, and Theorems C, D, 3
and 4.

Conjecture: If G is a complete multipartite graph with all parts of
size greater than 1, then h(G) = ch(G).

Since h(Kn) = 1 < n = ch(Kn), the conclusion of the conjecture fails if
parts of size 1 are allowed. Since h(G) = ch(G) whenever χ(G) < ch(G),
and since χ(G) < ch(G) for ”most” complete multipartite graphs G with
part sizes greater than 1, with Theorems 3 and 4 we may be within shouting
distance of confirming the conjecture.
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