Hall numbers of some complete k-partite graphs

Julian A. Allagan

School of Science Technology Engineering and Mathematics, Gainesville State College, Watkinsville, GA- 30677, USA aallagan@gmail.com

Abstract

The Hall number is a graph parameter closely related to the choice number. Here it is shown that the Hall numbers of the complete multipartite graphs $K(m,2,\ldots,2),\ m\geq 2$, are equal to their choice numbers.

1 Introduction

Throughout this paper, the graph G = (V, E) will be a finite simple graph with vertex set V = V(G) and edge set E = E(G).

A list assignment to the graph G is a function L which assigns a finite set (list) L(v) to each vertex $v \in V(G)$.

A proper L-coloring of G is a function $\psi:V(G)\to\bigcup_{v\in V(G)}L(v)$ satis-

fying, for every $u, v \in V(G)$,

- (i) $(v) \in L(v)$,
- (ii) $uv \in E(G) \to \psi(v) \neq \psi(u)$.

The choice number or list-chromatic number of G, denoted by ch(G), is the smallest integer k such that there is always a proper L-coloring of G if L satisfies $|L(v)| \geq k$ for every $v \in V(G)$. With χ denoting the chromatic number, it is easy to see, and well known, that $\chi(G) \leq ch(G)$. The extremal equation $\chi(G) = ch(G)$ is a major research interest; see [1], [2], and [3].

1.1 Hall's Theorem

Theorem 1. (P. Hall [5]). Suppose A_1, A_2, \ldots, A_n are (not necessarily distinct) finite sets. There exist distinct elements a_1, a_2, \ldots, a_n such that $a_i \in A_i, i = 1, 2, \ldots, n$, if and only if for each $J \subseteq \{1, 2, \ldots, n\}$, $|\bigcup_{j \in J} A_j| \geq |J|$.

A list of distinct elements a_1, \ldots, a_n such that $a_i \in A_i$, $i = 1, \ldots, n$, is called a *system of distinct representatives* of the sets A_1, \ldots, A_n . A proper L-coloring of a complete graph K_n is simply a system of distinct representatives of the finite lists L(v), $v \in V$, and any list A_1, A_2, \ldots, A_n of sets can be regarded as lists assigned to K_n . Therefore, as noted in [6], Hall's theorem can be restated as:

Theorem 2. (Hall's theorem restated). Suppose that L is a list assignment to K_n . There is a proper L-coloring of K_n if and only if, for all $U \subseteq V(K_n)$, $|L(U)| = |\bigcup_{u \in U} L(u)| \ge |U|$.

Let L be a list assignment to a simple graph G, H a subgraph of G and \mathcal{P} a set of possible colors. If $\psi:V(G)\to\mathcal{P}$ is a proper L-coloring of G, then for any subgraph $H\subset G$, ψ restricted to V(H) is a proper L-coloring of H

For any $\sigma \in \mathcal{P}$, let $H(\sigma, L) = \langle \{v \in V(H) \mid \sigma \in L(v)\} \rangle$ denote the subgraph of H induced by the support set $\{v \in V(H) \mid \sigma \in L(v)\}$. For convenience, we sometimes simply write H_{σ} .

For each $\sigma \in \mathcal{P}$, $\psi^{-1}(\sigma) = \{v \in V(G) \mid \psi(v) = \sigma\} \subseteq V(G_{\sigma}); \psi^{-1}(\sigma)$ is an independent set because ψ is a proper L-coloring. Further, $\psi^{-1}(\sigma) \cap V(H) \subseteq V(H_{\sigma})$. So, $|\psi^{-1}(\sigma) \cap V(H)| \leq \alpha(H_{\sigma})$ where α is the vertex independence number. This implies that

$$\sum_{\sigma \in \mathcal{P}} \alpha(H_{\sigma}) \ge \sum_{\sigma \in \mathcal{P}} |\psi^{-1}(\sigma) \cap V(H)| = |V(H)| \text{ for all } H \subseteq G.$$

When G and L satisfy the inequality

$$\sum_{\sigma \in \mathcal{P}} \alpha(H_{\sigma}) \ge |V(H)| \tag{3.1}$$

for each subgraph H of G, they are said to satisfy **Hall's condition**. By the discussion preceding, Hall's condition is a necessary condition for a proper L-coloring of G. Because removing edges does not diminish the vertex independence number, for G and L to satisfy Hall's condition it suffices that (3.1) holds for all induced subgraphs H of G.

Hall's condition is sufficient for a proper coloring when $G = K_n$, because if H is an induced subgraph of K_n then for each $\sigma \in \mathcal{P}$,

$$\alpha(H_{\sigma}) = \begin{cases} 1 & if \ \sigma \in \bigcup_{v \in V(H)} L(v) \\ 0, & otherwise. \end{cases}$$

So

$$\sum_{\sigma \in \mathcal{P}} \alpha(H_{\sigma}) = |\bigcup_{v \in V(H)} L(v)|;$$

therefore Hall's condition, that

$$\sum_{\sigma \in \mathcal{P}} \alpha(H_{\sigma}) \geq |V(H)|$$

for every such H, is just a restatement of the condition in Theorem 2. (It is necessary to point out here that if $\sigma \notin L(v)$ for all $v \in V(H)$ then H_{σ} is the null graph, and $\alpha(H_{\sigma}) = 0$.) Consequently, Hall's theorem may be restated: For complete graphs, Hall's condition on the graph and a list assignment suffices for a proper coloring.

The temptation to think that there are many graphs for which Hall's condition is sufficient can be easily dismissed. Figure 1 is the smallest graph with a list assignment L_0 for which Hall's condition holds, and yet G has no proper L_0 —coloring.

Remark.

It is clear that if H is an induced subgraph of G and $H \neq G$, then $H \subseteq G - v$ for some $v \in V(G)$. So, if G - v has a proper L-coloring, then $H \subseteq G - v$ must satisfy (by necessity) (3.1). Thus, in practice, in order to show that G and L satisfy Hall's condition, it suffices to verify that G - v is properly L-colorable for each $v \in V(G)$ and that G itself satisfies the inequality (3.1).

Denoted by h(G), the **Hall number** of a graph G is the smallest positive integer k such that there is a proper L-coloring of G, whenever G and L satisfy Hall's condition and $|L(v)| \geq k$ for each $v \in V(G)$. So, by Theorem $2, h(K_n) = 1$ for all n. In [6] the following facts are shown:

- 1. If $|L(v)| \ge \chi(G)$ for every $v \in V(G)$ then G and L satisfy Hall's Condition.
- **2.** $h(G) \leq ch(G)$ for every G.
- **3.** If $ch(G) > \chi(G)$ then h(G) = ch(G).
- **4.** If $h(G) \leq \chi(G)$ then $\chi(G) = ch(G)$.
- **5.** If H is an induced subgraph of G then $h(H) \leq h(G)$.

Facts 3 and 4, are essentially equivalent since χ , $h \leq ch$, make h a parameter of interest of study of the extremal equation $\chi(G) = ch(G)$. These facts and the following theorems underline our findings in the next section.

Theorem A.(Erdös, Rubin and Taylor [2]) Let G denote the complete k-partite graph $K(2, 2, \ldots, 2)$. Then ch(G) = k.

Theorem B.(Gravier and Maffray [3]) Let G denote the complete k-partite graph $K(3,3,2,\ldots,2)$. If k>2, then ch(G)=k.

When k = 2, it is shown that ch(K(3,3)) = 3. See [4].

Corollary B. Let G denote the complete k-partite graph $K(3,2,\ldots,2)$. Then ch(G)=k.

Proof. Since $K(3,2\ldots,2)$ is a complete k-partite graph, $k=\chi(K(3,2\ldots,2))\leq ch(K(3,2\ldots,2))$. Further, $K(3,2\ldots,2)$ is a subgraph of the complete k-partite graph $K(3,3,2,\ldots,2)$. Therefore $ch(K(3,2\ldots,2))\leq k$ if k>2. Thus, $ch(K(3,2\ldots,2))=k$ if k>2. When k=2, we have K(3,2), of which it is well known that the choice number is 2. See [4], for instance.

Theorem C. (Enomoto et al. [1],2002) Let G_k denote the complete k-partite graph $K(4,2,\ldots,2)$. Then

$$ch(G_k) = \begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even.} \end{cases}$$

Theorem D. (Enomoto et al. [1]) Let G denote the complete k-partite graph $K(5,2,\ldots,2)$. If $k\geq 2$ then ch(G)=k+1.

Corollary D. Let G denote the complete k-partite graph K(m, 2, ..., 2). If $k \geq 2$ and $m \geq 5$, then $h(G) = ch(G) \geq k + 1$.

Proof. Since $ch(G) \ge ch(K(5,2\ldots,2)) = k+1 > k = \chi(G), \ h(G) = ch(G)$ by the previous fact 3.

2 Hall numbers of some complete multipartite graphs

Throughout this section, L is a list assignment to V(G) such that for each $v \in V(G)$, $L(v) \subset \mathcal{P}$, a set of symbols. If $\sigma \notin L(v)$ for all $v \in V(G)$, then G_{σ} is the null graph. Further, we denote by ψ , any attempted proper L-coloring of G.

2.1 Example

The following example originally appeared in [6]. Consider the complete bipartite graph K(2,2) in Figure 1 with parts $V_i = \{u_i, v_i\}$, i = 1, 2 and L_0 the list assignment indicated.

Figure 1: A list assignment to K(2,2).

If v_1 is colored c, as it must be, then u_2 must be colored a and v_2 must be colored b in a proper coloring, so u_1 cannot be properly colored.

However, we will show that G and L_0 satisfy Hall's condition using the argument described in a previous remark. First, for each $v \in V(G)$, it is easy to see that G-v is properly L_0 -colorable, meaning every proper induced subgraph $H \subset G$ satisfies, with L_0 , the inequality (3.1) in Hall's condition. We now proceed to verify the inequality (3.1) for G itself.

Now,
$$\alpha(G_c) = 2$$
 and $\alpha(G_b) = \alpha(G_a) = 1$. So, $A = \sum_{\sigma \in \mathcal{P}} \alpha(G_\sigma) \geq 1$

|V(G)|=4. Thus, G and L_0 satisfy Hall's condition and yet G has no proper L_0 -coloring. Thus, $1< h(G)\leq 2$ by Fact 2 and Theorem A. Therefore, h(G)=2.

2.2 Some Hall numbers

Theorem 3. $h(K(2,\ldots,2))=k$ when $k\geq 2$.

Proof. Let the partite sets of the complete k-partite graph G = K(2, ..., 2) be $V_1, ..., V_k$ with $V_i = \{u_i, v_i\}$, for i = 1, 2, ..., k.

In Example 2.1, we showed that h(G) = k when k = 2. So, to complete the proof, we suppose $k \ge 3$.

Let A be a nonempty set of colors with |A| = k - 2 and a, b, c be distinct colors not in A. We define L a list assignment to G as follows:

1.
$$L(u_1) = A \cup \{a, b\}, \ L(u_2) = L(u_3) = \ldots = L(u_{k-1}) = A \cup \{a\}, \ L(u_k) = A \cup \{c\} \text{ and }$$

2.
$$L(v_1) = A \cup \{b, c\}, L(v_2) = L(v_3) = \ldots = L(v_k) = A \cup \{b\}.$$

Observe that $|L(v)| \ge k - 1$ for every $v \in V(G)$.

Claim 1. The graph G is not properly L-colorable.

Proof.

In the following cases, we consider all possible distinct ways to properly color the vertices of some part of G, say V_1 . We then conclude that the remaining subgraph $H=G-V_1$ is not proper L'-colorable where $L'=L-\{\alpha_1,\alpha_2\},\,\{\alpha_1,\alpha_2\}\in\bigcup_{v\in V_1}L(v).$ (α_1,α_2) are not necessarily distinct

colors; they are the colors on V_1 .) Let ψ denote the attempted proper coloring.

Case 1: $\psi(u_1) = b \text{ or } \psi(v_1) = b.$

Let $S=<\{v_2,\ldots,v_k\}>$, an induced subgraph of H. Then $k-2=|A|=|\bigcup_{v\in V(S)}L'(v)|<|V(S)|=k-1$. Since the subgraph S is a clique, we

cannot properly color S from L'.

Case 2: $\psi(u_1) = a \text{ and } \psi(v_1) = c.$

Similarly as described in case 1, by letting $S = \langle \{u_2, \dots, u_k\} \rangle$, it's clear that we cannot properly color S, from L'.

Case 3: $\psi(u_1) = \gamma$ or $\psi(v_1) = \gamma$ for some color $\gamma \in A$.

With S as in case 1, $k-2 = |\bigcup_{v \in V(S)} L'(v)| < |V(S)| = k-1$. Hence we

cannot properly color H from L'.

Claim 2.
$$\sum_{\sigma \in \mathcal{P}} \alpha(G_{\sigma}) \geq |V(G)|$$
.

Proof.

It is clear that $\alpha(G_a) = \alpha(G_c) = 1, \alpha(G_b) = 2$; further, $\alpha(G_\sigma) = 2$ for every $\sigma \in A$. Hence $\sum_{\sigma \in \mathcal{P}} \alpha(G_\sigma) = 2(k-2) + 4 = 2k = |V(G)|$.

Claim 3. Every proper induced subgraph H of G is properly L-colorable.

Proof.

In the following cases we provide a (not necessarily unique) proper coloring for each induced subgraph H of G of the form G - v, $v \in V(G)$.

Case 1: $H = G - u_1$.

Let $\psi(v_1) = c$ and color the 2(k-2) vertices of the subgraph $G - (V_1 \cup V_2)$ with the colors from A (by coloring vertices of the same part with the same color). Then let $\psi(u_2) = a$ and $\psi(v_2) = b$.

Case 2: $H = G - v_1$.

Let $\psi(u_1) = a$ and color the 2(k-2) vertices of the subgraph $G - (V_1 \cup V_k)$ with the colors from A with the same color appearing on u_i and v_i , $i = 2, \ldots, k-1$. Then, let $\psi(u_k) = c$ and $\psi(v_k) = b$.

Case 3: $H = G - u_i$, for some $2 \le i \le k$.

Let $\psi(v_i) = b$ and color the remaining 2(k-2) vertices of the subgraph $G - (V_i \cup V_1)$ with the colors from A. Then, let $\psi(u_1) = a$ and $\psi(v_1) = c$. Case 4: $H = G - v_i$, for some $2 \le i \le k-1$.

Let $\psi(u_i) = a$ and color the remaining 2(k-2) vertices of the subgraph $G - (V_i \cup V_1)$ with the colors from A. Then, let $\psi(u_1) = \psi(v_1) = b$.

Case 5: $H = G - v_k$.

Let $\psi(u_k) = c$ and color the 2(k-2) vertices of the subgraph $G - (V_1 \cup V_k)$ with the colors from A. Finally, let $\psi(u_1) = \psi(v_1) = b$.

From the previous claims, we can conclude that h(G) > k - 1. Thus, by Theorem A and Fact 2, h(G) = k. This concludes the proof.

Corollary 3: h(K(3,2...,2)) = k = h(K(3,3,2...,2)) for k > 2.

Proof. From Theorem 3, fact 5 and Theorem B, $k = h(K(2, 2..., 2)) \le h(K(3, 2..., 2)) \le h(K(3, 3, 2..., 2)) \le ch(K(3, 3, 2..., 2)) = k$. Thus, h(K(3, 2..., 2)) = k = h(K(3, 3, 2..., 2)). □

We note that when k = 2, h(K(3,2)) = 2 since $2 = h(K(2,2)) \le h(K(3,2)) \le ch(K(3,2)) = 2$ by Corollary B. Also, since ch(K(3,3)) = 3 by [4], it is clear from Fact 3 that h(K(3,3)) = 3.

Theorem 4. Let G denote the complete k-partite graph K(4, 2, ..., 2) with $k \ge 2$. Then

$$h(G) = \begin{cases} k & \text{if } k \text{ is odd} \\ k+1 & \text{if } k \text{ is even.} \end{cases}$$

Proof. When k is even, from Theorem B we have that $k = \chi(G) < ch(G) = k + 1$. Thus, from Fact 3, it is clear that h(G) = ch(G) = k + 1 for all even $k \ge 2$.

Suppose $k \geq 3$ is odd.

Let the partite sets, or parts, V_1, V_2, \ldots, V_k of the complete k-partite graph G be $V_1 = \{x_1, x_2, x_3, x_4\}$ and $V_i = \{u_i, v_i\}, i = 2, \ldots, k, k \geq 2$.

Let C_1 and C_2 be disjoint k-2 sets of colors and 0 an object not in $C_1 \cup C_2$. Let $A = C_1 \cup \{0\}$, $B = C_2 \cup \{0\}$. Let A_1 , A_2 and B_1 , B_2

be disjoint (k-1)/2 sets of colors partitioning A and B respectively, and let $0 \in A_2 \cap B_2$. Let a,b be distinct objects not in $A \cup B$. Define a list assignment L to G as follows:

- 1. $L(u_2) = A$, $L(v_2) = B$, $L(u_i) = C_1 \cup \{a\}$ and $L(v_i) = C_2 \cup \{b\}$, for every $3 \le i \le k$ and
- 2. $L(x_1) = A_1 \cup B_1$, $L(x_2) = A_1 \cup B_2$, $L(x_3) = A_2 \cup B_1$ and $L(x_4) = A_2 \cup B_2 \cup \{a\}$

Notice that |L(v)| = k - 1 for every $v \in V(G)$.

Claim 1. G is not properly L-colorable.

Proof.

Every proper L-coloring of $G - V_1 = K(2, ..., 2)$ uses k - 1 elements of $C_1 \cup \{0, a\}$ and k - 1 elements of $C_2 \cup \{0, b\}$. We proceed by exhausting the possible cases in attempts to properly L-color G.

Case 1: suppose $\psi(u_2) \neq 0 \neq \psi(v_2)$. Then all of the colors of $C_1 \cup C_2 \cup \{a,b\}$ will be used to color $G - V_1$. Hence we cannot color x_1 (since $A_1 \cup B_1 \subset C_1 \cup C_2$).

Case 2: suppose $\psi(u_2) = \psi(v_2) = 0$

Case 2.1: $\psi(u_i) \neq a$ and $\psi(v_i) \neq b$ for every $3 \leq i \leq k$.

Then all of the colors of $C_1 \cup C_2$ will be used to color $G - (V_1 \cup V_2)$. Once again we cannot color x_1 .

Case 2.2: $\psi(u_i) = a$ and $\psi(v_j) = b$ for some $i, j \neq 2$.

Then there remains exactly one color, say $c_1 \in C_1$ and exactly one color, say $c_2 \in C_2$. If $c_1 \in A_1$ and $c_2 \in B_1$, then we cannot color x_4 . Likewise if $c_1 \in A_1$ and $c_2 \in B_2$, then we cannot color x_3 . Also if $c_1 \in A_2$ and $c_2 \in B_1$, x_2 cannot be colored and if $c_1 \in A_2$, $c_2 \in B_2$, x_1 cannot be colored.

Case 2.3: $\psi(u_i) \neq a$ for all $i \neq 2$ and $\psi(v_j) = b$ for some $j \geq 3$. Then there remains exactly one color, say $c_2 \in C_2$ and none of C_1 . As in the previous case, if $c_2 \in B_1$, then we cannot color x_2 . Likewise if $c_2 \in B_2$, then we cannot color either of x_1 and x_3 .

Case 2.4: $\psi(u_i) = a$ for some $i \geq 3$ and $\psi(v_j) \neq b$ for all $j \geq 3$. Then there remains exactly one color, say $c_1 \in C_1$ and none of C_2 . As before, if $c_1 \in A_1$, then we cannot color either of x_3 and x_4 . Likewise if $c_1 \in A_2$, then we cannot color either of x_1 and x_2 .

Case 2.5: $\psi(u_i) \neq a$ and $\psi(v_j) \neq b$ for all $3 \leq i, j \leq k$. Clearly the coloring cannot be properly extended to any of x_1, x_2, x_3 .

Notice that we can skip the case where $\psi(u_2) = 0$ and $\psi(v_2) \neq 0$ (or vice versa), since if there is a proper L-coloring with one of u_2 , v_2 colored with 0, then there is a proper L-coloring with both colored 0.

From the previous cases we can conclude that G is not properly L- colorable.

Claim 2.
$$\sum_{\sigma \in \mathcal{P}} \alpha(G_{\sigma}) \geq |V(G)|$$
.

Proof.

Notice that $\alpha(G_{\sigma})=2$ for every $\sigma\in C_1\cup C_2$. Also $\alpha(G_0)=3$ and $\alpha(G_a)=\alpha(G_b)=1$. Hence $\sum_{\sigma\in\mathcal{P}}\alpha(G_{\sigma})=2(2(k-2))+5=4k-3\geq 2k+2=|V(G)|$ for every $k\geq 3$.

Claim 3. If $k \geq 5$, then every proper induced subgraph H of G is properly L-colorable.

Proof.

We proceed by considering the possible subgraphs of G obtained by deleting a single vertex.

Case 1: $H = G - u_i$, for some i.

Let $\psi(x_2) = \psi(x_3) = \psi(x_4) = 0$. Color $G - V_1$ with the colors from $C_1 \cup C_2 \cup \{a, b\}$ (colors a, b included). Hence there remains exactly one unused color of C_1 , say c_1 , and arrange that $c_1 \in A_1$. Let $\psi(x_1) = c_1$.

Case 2: $H = G - v_i$, for some *i*. Following the coloring argument in the previous case, there remains exactly one unused color of C_2 , say c_2 , and arrange that $c_2 \in B_1$. Let $\psi(x_1) = c_2$.

Case 3: $H = G - x_1$. Let $\psi(x_2) = \psi(x_3) = \psi(x_4) = 0$. It is easy to see that we can color the remaining subgraph $G - V_1$ with the colors from $C_1 \cup C_2 \cup \{a,b\}$ (a,b) included).

Case 4: $H = G - x_2$. Let $\psi(u_2) = \psi(v_2) = 0$, and $\psi(x_4) = a$. Color the vertices of $G - (V_1 \cup V_2)$ with the colors from $C_1 \cup C_2 \cup \{b\}$ (b included). Then there remains exactly one unused color of C_2 , say c_2 , and arrange that $c_2 \in B_1$. Let $\psi(x_1) = \psi(x_3) = c_2$.

Case 5: $H = G - x_4$. Let $\psi(u_2) = \psi(v_2) = 0$. Color the vertices of $G - (V_1 \cup V_2)$ with the colors from $C_1 \cup C_2 \cup \{a, b\}$ (a, b included). Then there remains exactly one unused color of C_1 , say c_1 , and arrange that $c_1 \in A_1$, and exactly one unused color of C_2 , say c_2 , and arrange that $c_2 \in B_1$. Let $\psi(x_1) = c_1 = \psi(x_2)$ and $\psi(x_3) = c_2$.

Case 6: $H = G - x_3$. Let $\psi(u_2) = \psi(v_2) = 0$. Color the vertices of $G - (V_1 \cup V_2)$ with the colors from $C_1 \cup C_2 \cup \{a, b\}$ (a, b included). Then there remains exactly one unused color of C_1 , say c_1 , and arrange that $c_1 \in A_1$, and exactly one unused color of C_2 , say c_2 , and arrange that $c_2 \in B_2$. Let $\psi(x_1) = c_1 = \psi(x_2)$ and $\psi(x_4) = c_2$.

Notice here that when k = 3, $A_2 = B_2 = \{0\}$. Therefore, the attempted

coloring of $H = G - x_3$ in case 6 fails, and, in fact H is not properly Lcolorable. However, $H = G - x_3$ with the given list assignment L satisfies
the inequality (3.1). We can safely end the proof here when k = 3.

Still, there follows a list assignment specifically for the case when k=3, which we hope will be of interest.

We define a list assignment L to G = K(4, 2, 2) as follows:

1.
$$L(u_2) = \{1, 0\}, L(v_2) = \{2, 0, c\}, L(u_3) = \{1, a\}, L(v_3) = \{2, b\}$$
 and

2.
$$L(x_1) = \{1, 2\}, L(x_2) = \{1, 0\}, L(x_3) = \{0, a\} \text{ and } L(x_4) = \{b, c\}$$

It is easy to verify that G and L satisfy the previous claims 1 and 2. We proceed therefore to verify only claim 3 for the subgraphs H of K(4,2,2) in the following cases.

Case1: $H = G - u_2$.

Let $\psi(v_2) = 2$, $\psi(u_3) = a$, $\psi(v_3) = b$. Also $\psi(x_2) = 0 = \psi(x_3)$, $\psi(x_1) = 1$ and $\psi(x_4) = c$.

Case2: $H = G - v_2$.

Let $\psi(u_2) = 1, \psi(u_3) = a, \psi(v_3) = b$. Also $\psi(x_2) = 0 = \psi(x_3), \psi(x_1) = 2$ and $\psi(x_4) = c$.

Case3: $H = G - u_3$.

Let $\psi(u_2) = \psi(v_2) = 0$, $\psi(v_3) = b$. Also $\psi(x_1) = 1 = \psi(x_2)$, $\psi(x_3) = a$ and $\psi(x_4) = c$

Case4: $H = G - v_3$.

Let $\psi(u_2) = 1, \psi(v_2) = c, \psi(u_3) = a$. Also $\psi(x_1) = 2, \psi(x_2) = 0 = \psi(x_3)$ and $\psi(x_4) = b$.

Case 5: $H = G - x_1$.

Let $\psi(u_2)=1,$ $\psi(v_2)=2,$ $\psi(u_3)=a$ and $\psi(v_3)=b$. Also let $\psi(x_1)=0=\psi(x_2)$ and $\psi(x_4)=c$.

Case6: $H = G - x_2$.

Let $\psi(u_2)=0=\psi(v_2), \psi(u_3)=1$ and $\psi(v_3)=b$. Also $\psi(x_1)=2, \psi(x_3)=a$ and $\psi(x_4)=c$.

Case7: $H = G - x_3$.

Let $\psi(u_2)=0=\psi(v_2), \psi(u_3)=a$ and $\psi(v_3)=b$. Also $\psi(x_1)=1=\psi(x_2)$ and $\psi(x_4)=c$.

Case8: $H = G - x_4$.

Let $\psi(u_2)=1, \psi(v_2)=c, \psi(u_3)=a$ and $\psi(v_3)=b$. Also $\psi(x_1)=2$ and $\psi(x_2)=0=\psi(x_3)$.

We conclude that G and L satisfy Hall's Condition. So, $k \leq h(G) \leq ch(G) = k$ by Fact 2 and Theorem B. Therefore, h(G) = k for all $k \geq 3$ odd.

Corollary 4: For $m \ge 2$, $k \ge 2$, h(K(m, 2..., 2)) = ch(K(m, 2..., 2)).

Proof. This follows from Corollaries D and 3, and Theorems C, D, 3 and 4. $\hfill\Box$

Conjecture: If G is a complete multipartite graph with all parts of size greater than 1, then h(G) = ch(G).

Since $h(K_n) = 1 < n = ch(K_n)$, the conclusion of the conjecture fails if parts of size 1 are allowed. Since h(G) = ch(G) whenever $\chi(G) < ch(G)$, and since $\chi(G) < ch(G)$ for "most" complete multipartite graphs G with part sizes greater than 1, with Theorems 3 and 4 we may be within shouting distance of confirming the conjecture.

Acknowledgement

The author expresses his gratitude to Professor Peter Johnson Jr for communicating this problem and encouraging this work.

References

- [1] Hikoe Enomoto, Kyoji Ohba, Katsuhiro Ota, Junko Sakamoto, Choice number of some complete multi-partite graphs *Discrete Math.* 244 (2002), 55-66.
- [2] P. Erdös, A.L.Rubin, H. Taylor, Choosability in graphs, *Congressus Numerantium* 26 (1980), 125-157.
- [3] S. Gravier and F. Maffray, Graphs whose choice number is equal to their chromatic number, *J. Graph Theory* 27 (1998), 87-97.
- [4] D. G. Hoffman and P.D. Johnson Jr, On the choice number of $K_{m,n}$, Congressus Numerantium 98 (1993), 105-111.
- [5] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
- [6] A. J. W. Hilton and P. D. Johnson Jr., Extending Hall's theorem, Topics in Combinatorics and Graph Theory: Essays in Honour of Gerhard Ringel, Physica-Verlag, Heidelberg, 1990, 359-371.