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Abstract 

 

THE EFFECT OF TEMPERATURE ON THE TRANSDERMAL ABSORPTION OF 

ANTHRACENE IN HEALTHY INDIVIDUALS 

 

Killian Wustrow 

B.A., Wake Forest University 

M.A., Appalachian State University 

 

 

Chairperson:  Caroline Smith  

 

 

  

The respiratory routes of exposure to hazardous chemicals such polycyclic aromatic 

hydrocarbons among occupational groups such as coal tar workers, firefighters, and asphalt 

workers has been well studied; however, the contribution to dermal routes of exposure has 

remained understudied. Microdialysis (MD) is an intradermal sampling technique allowing 

bidirectional exchange of substances between the MD fiber and interstitial fluid, depending on 

concentration gradient and pressure. To determine if a noncarcinogenic PAH, anthracene, can 

be dermally absorbed and sampled via MD, multiple MD fibers were inserted into the ventral 

forearm and a 2.0% anthracene solution was applied over the sites.  Dialysate from the MD 

fibers were sampled over 4 hours at a rate of 1 µL/min. The dialysate was measured using 

liquid chromatography and tandem mass spectrometry. Anthracene concentration in the 

dialysate samples was similar between the hot and thermoneutral sites (P = 0.263), with values 

of 2.9 ± 0.4 ppm and 3.5 ± 0.4 ppm respectively. Absolute SkBF (flux) was significantly higher 

at the heated versus the thermoneutral site (P =0.001) with values of 35.7 ± 11.8 and 7.2 ± 1.0, 

respectively; however, values were not significantly different between sites when presented as 



 v 

a percentage of maximum cutaneous vascular conductance (%CVCmax; P= 0.057) with values 

of 29.2 ± 8.3 and 8.6 ± 2.3, respectively.  To our knowledge, this is the first protocol to examine 

dermal absorption of a PAH in vivo using MD.  
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Chapter 1 

Introduction 

Approximately 345,600 career and 814,850 volunteer fire fighters in the USA dedicate 

their lives administering aid and suppressing fires (21). Previous researchers have observed 

greater cancer incidence among fire fighters including excess myeloma, non-Hodgkin’s 

lymphoma, prostate and testicular cancer, compared to the general population (3, 14, 31, 41). 

Smoke from a structure burn contains a variety of organic materials resulting from the 

incomplete combustion of materials within the structure (24). These organic materials include 

many polycyclic aromatic hydrocarbons (PAHs), many of which have been identified as 

carcinogenic or potentially carcinogenic. During fire suppression, fire fighters wear turnout 

gear compliant to the National Fire Protection Association which includes a self-contained 

breathing apparatus (SCBA). The SCBA comprises a respirator with a full face mask that 

provides a skin and respiratory protection factor greater than 10,000, which should eliminate 

inhalation exposure to combustion products (3, 7). Despite this high level of protection, fire 

fighters do not appear to be completely protected from these hazardous chemicals including 

benzene and PAHs (17). Routes of exposure have been proposed as either re-breathing of 

PAHs when the apparatus is removed or dermal absorption during the fire suppression itself.  

Respiratory routes of exposure have received more attention than dermal absorption of 

the hazardous chemicals from fire suppression. While the skin serves as a barrier between the 

body and the environment, some substances penetrate the skin with relative ease. The structure 

of the epidermis is a complex “brick and mortar” due to the stratum corneum. This structure 

acts as a barrier that very selectively prevents hydrophilic chemicals from passing through the 
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epidermis. Lipophilic compounds tend to permeate through the lipid matrix of the stratum 

corneum and into the interstitial fluid and eventually the blood stream (37, 43). One important 

consideration regarding the putative dermal absorption of PAH’s in firefighters is the heat 

strain experienced during fire exposure and the associated increases in skin temperature (Tsk) 

and absorptive properties of the dermis. Several studies have examined the effects of 

temperature on dermal absorption of topically applied substances, focusing on maximizing 

absorption of pharmacologics. Increased skin temperature (Tsk) has been shown to increase 

permeability of various chemicals including lidocaine and fentanyl, with associated increases 

in skin blood flow (SkBf) further contributing to larger amounts of transdermal absorption and 

clearance of certain drugs versus thermoneutral conditions (20, 36-38, 44, 46, 63). Fire fighters 

are exposed to extremely high ambient temperatures as high as 200°C (59) during live fires 

and training exercises resulting in high cardiac output, SkBf and sweating rates to meet 

metabolic and thermoregulatory demands. Several studies have reported the presence of 

carcinogens on the skin surface of firefighters following fire exposure (2, 3, 12, 13), therefore 

increase Tsk and SkBf may exacerbate dermal absorption of carcinogens as a potential route of 

exposure.  

Currently, the specific route of carcinogen exposure in firefighters is unclear when 

considering the use of protective clothing (12). PAH’s or their metabolites have been identified 

in dermal swabs, blood, breath, and urine samples, yet, no studies have fully elucidated the 

mechanism of exposure. To further examine dermal absorption as a putative route of exposure, 

intradermal microdialysis may be employed. Microdialysis allows for a bidirectional exchange 

of substances between the microdialysis (MD) fiber and interstitial fluid, depending on 

concentration gradient and pressure. As an initial proof of concept, a non-carcinogenic PAH, 
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anthracene, will be applied to an area of the skin of healthy human subjects to determine; 1) 

PAHs can be sampled and measured via intradermal microdialysis and 2) PAH’s are dermally 

absorbed, and 3) skin temperature alters dermal absorption of anthracene. 

 

Problem Statement 

 The purpose of this study is to examine the effect of varying skin temperatures on the 

dermal absorption of anthracene in a healthy population (18-65 years old) via microdialysis 

sampling and diasylate analysis.     

Aim 1: To determine the efficacy of microdialysis as a technique for interstitial fluid 

sampling and recovery of the lipophilic compound anthracene by conducting a two-phase pilot 

study to ensure an adequate flow rate for anthracene recovery from interstitial fluid. 

Hypothesis: It is hypothesized that flow rates of 1uL/min will allow recovery of 

anthracene from the interstitial fluid, and that anthracene may be successfully measured via 

mass spectrometry.  

Aim 2: To determine the effect of skin temperature on dermal absorption of one non-

carcinogenic PAH, anthracene, sampled via intradermal microdialysis.  

Hypothesis: It is hypothesized that significantly higher concentrations of anthracene 

will be observed with increasing skin temperature due to enhanced transdermal absorption.  
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Summary 

 Fire fighters are exposed to many potentially hazardous chemicals during fire 

suppression including PAHs. Although there are strict standards of protection to limit 

exposure, evidence indicates the presence of hazardous chemicals on the skin surface and of 

metabolites in body fluids of fire fighters. With such strict protection standards, dermal 

absorption of these carcinogenic compounds may potentially be a route of exposure in fire 

fighters. Microdialysis is a technique that allows for the sampling of the interstitial fluid of the 

subcutaneous tissue. To assess the amount of absorption of such compounds, anthracene will 

be applied to the ventral forearm of healthy subjects and microdialysis will be utilized for 

sampling of the interstitial fluid. Fire fighters are exposed to high temperatures which has been 

shown to increase the amount of dermal absorption of some substances. In the present study, 

skin on the ventral forearm will be locally heated during the experimental phase of the protocol 

to determine the effect of temperature on absorption of the PAH anthracene. The protocol 

development to determine the amount of absorption of these lipophilic compounds will be used 

in future studies to assess absorption of these PAHs in fire fighters in the field during fire 

suppression. 
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Chapter 2 

Review of Literature 

2.1  Background 

 It has been established that fire fighters are exposed to a variety of different chemicals 

during fire suppression including polycyclic aromatic hydrocarbons (PAHs) (3, 7, 17, 26). 

These PAHs have been classified as either carcinogenic, probably carcinogenic, or possibly 

carcinogenic to humans by the International Agency for Research on Cancer (IARC) (25). Fire 

fighters wear turnout gear and a self-contained breathing apparatus (SCBA) which should 

eliminate the inhalation exposure to these carcinogenic compounds. Nevertheless, some 

studies have found that fire fighters have elevated risk for multiple types of cancers (14, 26, 

31, 55). Metabolites of carcinogens have been found in urine and blood, with respiratory 

rebreathing or dermal absorption as potential routes for exposure. Dermal carcinogen 

absorption has received limited attention compared to respiratory routes due to the challenges 

with measurement in vivo. Further, there are many factors affecting dermal absorption 

including the structure of the skin, the physical properties of the chemical, and many 

physiological responses. These factors determining dermal absorption will be explored in the 

following review.   

 

2.1.1  Skin Anatomy and Physiology 

The skin is the largest organ of the human body and provides the most protection from 

the external environment (32). This protection includes regulating which substances enter and 

exit the body through the skin. Skin is comprised of three layers: the epidermis, the dermis and 

the hypodermis. Functionally, the epidermis is impermeable to water and therefore serves to 
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conserve water in the body and prevent harmful water-soluble substances from diffusing 

through the skin. This remarkable ability to act as a barrier is attributed to the outer layer of 

the epidermis, the stratum corneum (43). Unlike many other structures, the stratum corneum 

consists of corneocytes interspersed throughout the extracellular matrix of lipids (40). With 

this milieu of lipid-infused extracellular matrix, the skin remains largely impenetrable to 

hydrophilic compounds but will allow for the diffusion and storage of lipophilic compounds. 

This structure prevents the loss of water from the body and act as a barrier to many topically 

applied drugs (16).  

 

2.1.2 Factors Affecting Dermal Absorption  

The permeability of the skin can be altered both chemically and physically with 

alterations in the skin structure allowing a chemical to pass more easily through the skin. 

Research has shown that many chemical enhancers will interact with the lipid matrix of the 

stratum corneum to enhance delivery. Solvents such as ethanol and methanol extract lipids 

from the stratum corneum, causing the corneocytes to expand or for gaps to occur between the 

cells which allows for greater absorption (16, 60). Iontophoresis and photomechanical waves 

(PW), or high amplitude pressure pulses generated during ablation by high-power lasers, have 

been shown to increase the rate of dermal drug delivery. While iontophoresis mainly acts on 

the charge of the chemical applied to the skin to add a driving force into the stratum corneum 

(27), PW have been shown to enhance transport of molecules through the stratum corneum by 

increasing its permeability (34).  

Research indicates that the transdermal delivery of many chemicals is enhanced with 

elevated skin temperature (2, 20, 37, 44, 53, 54, 65). A body of research has demonstrated that 
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increased temperature, either locally and/or systemically, increases the delivery of drugs and 

other substances. Petersen and colleagues (38) locally clamped Tsk at 43°C in healthy male 

subjects during application of a nicotine patch on their arm. The locally elevated Tsk of 43°C 

resulted in enhanced nicotine uptake compared a thermoneutral Tsk temperature of 32°C (38). 

Human studies have indicated an increased penetration of harmful chemicals using heat 

application techniques such as sauna, heated water baths and exercise-induced hyperthermia 

(2, 18, 28, 33). The increase in Tsk elicits a restructuring of the lipid matrix resulting in greater 

absorption of some chemicals. A significantly greater plasma concentration of lidocaine was 

observed when locally heated lidocaine patches were applied to the skin of healthy volunteers 

for 2, 4, and 12 hours versus non-heated patch application (33). A drug study involving the 

absorption of a transdermal fentanyl delivery system (fentanyl TDS) found that application 

through a controlled heat-assisted drug Delivery (CHADD) patch (a patch that produces local 

heat for several hours to increase skin temperature) increased peak plasma concentration (46) 

versus no heating. Further, significantly increased peak plasma concentrations of testosterone 

(939 ng/dL) have been observed when a heat-generating patch of testosterone was applied to 

the skin of six healthy adults compared to those with a patch with no heat (635 ng/dL). 

In more applied environments, when exposed to hot environments, systemic 

thermoregulatory responses are stimulated to dissipate heat through cutaneous vasodilation and 

sweating, likely altering absorption characteristics (9, 10). Firefighters can be exposed to 

environmental temperatures greater than 200°C (42) which significantly increases cutaneous 

vasodilation, cardiac output, and elicits high sweating rates in an attempt to reduce the 

increasing Tcore and Tsk. During fire suppression, fire fighters experience significantly elevated 
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Tsk, Tcore and cardiac output in response to extreme environmental temperatures, which could 

enhance the ability of the PAHs to penetrate through the skin and into circulation. 

 A further factor that may influence the microclimate of the skin and potentially dermal 

absorption is the presence of fluid on the skin surface. The human body primarily relies on 

heat dissipation through evaporation of sweat in hot environments and during exercise, with 

increasing sweating rate at higher workloads and more extreme temperatures. Firefighters 

experience higher rates of sweat loss during active duty (2950 ± 1034 mL of water in hot 

conditions vs. 1290 ± 525 mL in control conditions) (30), which may influence dermal 

properties, clothing and spreading of carcinogens over the skin surface. A body of research has 

documented a non-uniform pattern of sweating rates between different sites, making this a 

potential consideration for site sampling. Patterns of regional sweating rates in a study utilizing 

male athletes exercising at varied intensities (49) observed (a) sweat rates increased with 

increased exercise intensity in all regions of the body, (b), the posterior torso exhibited the 

greatest increase across all intensities (the only exception being the forehead), (c) and an 

increase in sweat rate from proximal to distal regions on the arms.  Although overall sweat 

rates were significantly higher in males compared to females, similar regional sweat rate 

patterns were observed. Selection of sampling sites should therefore be carefully considered, 

recognizing potentially exposed skin sites, SkBf, and regional sweating rates.  

 

2.3  Interstitial Sampling Via Intradermal Microdialysis  

Microdialysis (MD) is an in vivo technique that allows for continuous sampling of the 

dermal extracellular space (22, 35, 39). The MD technique requires a microdialysis probe, 

microperfusion pumps, a perfusion fluid and a sampling device (39). The semipermeable 
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membrane is surrounded by a copper guide wire, with an exposed portion (~1cm) of the 

membrane placed intradermally in the extracellular space to sample the interstitial fluid (ISF). 

This allows for bidirectional flow between the perfusate and IF, and depending on the 

concentration gradient, can either deliver or sample chemicals in the IF (22). MD has been 

widely utilized to examine diverse research problems including sampling neurotransmitter 

release in the interstitial fluid to examine the pathophysiology of neurological disorders (23, 

47). MD has also proven effective in delivering chemicals to the interstitial fluid to examine 

cell signaling pathways concerned with cutaneous microvascular function (12, 13, 48).   

The recovery of a substance from the IF via MD is influenced by many factors 

including pore diameter of the fiber, perfusion rate, molecular size, and charge of the substance 

(15). Lower perfusion rates tend to yield more diffusion of compounds into the perfusate but 

lower the amount of sample collected. High perfusion rates allow for a higher sample amount 

but decrease the recovery of substances form the ISF. The ideal perfusion rate for adequate 

sample size and adequate sampling recovery was found to be 0.5-1.0 uL/min (15). The lower 

the molecular weight, the higher the recovery of the dialysate, therefore, a drug or chemical 

which will be topically delivered must be of a lower molecular weight. All these factors must 

be carefully considered when determining the suitability of intradermal MD for sampling or 

delivery. 

 

2.5  Polycyclic Aromatic Hydrocarbons  

PAHs are a result of the incomplete combustion of items found in houses and from the 

burning of the structures themselves. A variety of PAHs are also found in soil due to 

contamination from long-range transport (58), as well as the production of coal tar and asphalt 
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(61). There are a variety of these compounds and many of them have been classified as 

carcinogenic corresponding to exposure level and time. A meta-analysis observed a rising 

increase of developing cancers such as multiple myeloma, non-Hodgkin’s’ lymphoma, prostate 

and testicular cancer among petrochemical refinery workers and other occupations involving 

exposure to PAHs (31). A variety of PAHs such as benz[a]anthracene and benzo[a]pyrene have 

been shown to cause tumorigenesis in mice (4). Studies performed through NIOSH indicate 

the contamination of SCBAs with PAHs after only 25 minutes of use during fire suppression. 

The presence of these toxic chemicals has been found both on and underneath the protective 

turnout gear (62). Dermal absorption rates have been analyzed through skin swipes and areas 

of thicker skin appear to be more protective than areas of thinner skin (57). 

 To assess the ability to recover and analyze the presence of the PAHs through a route 

of dermal exposure, a chemical that is similar in structure to these carcinogenic compounds to 

which firefighters and other workers are exposed need to be considered. Anthracene is a 

nonmutagenic, noncarcinogenic PAH with a relatively low molecular weight that is present in 

the environment. While many PAHs are classified as either carcinogenic or possibly 

carcinogenic, anthracene itself is not considered by the NTP to be problematic in developing 

cancer in either animal or human models. Anthracene is not classified as carcinogenic and has 

a relatively low molecular weight which makes it a good candidate for the present study to test 

dermal absorption through the skin into MD fibers.  

 

2.6  Summary 

Despite personal protective equipment including turnout gear and SCBA, firefighters are 

exposed to highly carcinogenic compounds produced as byproducts of incomplete combustion. 
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Increases in ambient temperature, skin temperature, and skin blood flow have all been shown 

to increase delivery of many chemicals through the skin. To determine if transdermal 

absorption is a likely route of absorption of carcinogenic molecules, intradermal MD will be 

utilized to sample recovery of a topically applied non-carcinogenic PAH in the interstitial fluid 

at thermoneutral and warm local skin temperatures.  
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Chapter 3 

Methods 

3.1 Subjects 

The subjects were recruited from Appalachian State University and the community of 

Boone through flier advertisements and email listserves. The subjects were healthy males and 

females aged 18-65 years old. Subjects were nonsmokers with no metabolic, cardiovascular or 

uncontrolled dermatological conditions. Females of reproductive age completed a pregnancy 

test and were excluded if positive. 

 

3.2 Exclusion Criteria  

Individuals with skin conditions including eczema, rashes, or disorders of pigmentation 

were excluded from the study as skin conditions that disrupt the normal structure of the dermis 

may alter the rate of absorption.  

 

3.3 Experimental Techniques 

Methods were developed for dermal delivery and recovery of anthracene (ANT). 

Intradermal microdialysis was utilized for the recovery of ANT from the interstitial fluid, 

following dermal application and detected via fluorescence and mass spectrometry (MS). 

Fluorescence was utilized in initial pilot studies simply to detect the presence of ANT in the 
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dialysate samples and MS was utilized by collaborators at North Carolina State University 

during the latter stages of pilot testing and experimental protocols for detection and 

quantification of ANT in the dialysate. These experimental techniques are outlined below. All 

procedures were approved by the Appalachian State University Institutional Review Board and 

the use of pharmacologics were approved by the Food and Drug Administration (FDA). 

 

3.3.1 Intradermal Microdialysis 

Subjects were instrumented with two intradermal microdialysis (MD) fibers (10-mm, 

30-kDa cutoff membrane, MD 2000; Bioanalytical Systems, West Lafayette, IN) placed in the 

left ventral forearm using sterile technique. Insertion and exit points were marked on the skin, 

which was cleaned with alcohol and betadine (51). MD fibers were kept at least 2 cm apart to 

prevent interference between the local heating units or any cross-contamination. Prior to MD 

fiber placement, ice was applied to the MD sites for 5 minutes to temporarily anesthetize the 

skin. A beveled 25-gauge needle was inserted horizontally into the intradermal layers such that 

the entry and exit sites were roughly 1.5 cm apart. MD fibers were then threaded through the 

lumen of the guide needle, and the needle was removed leaving the MD fiber in place. The 

MD fibers were perfused with lactated Ringer’s solution with 10% 2-hyroxypropyl-β-

cyclodextrin (HBC). HBC increases the solubility of lipophilic drugs because of a complex 

created between the drug and the lipophilic cavity of the HBC. The HBC was mixed 

immediately before usage, dissolved in lactated Ringer solution and sterilized with syringe 



 14 

microfilters (Acrodisc; Pall, Ann Arbor, MI). During the insertion trauma resolution period 

(~60 min), the solution was perfused through the MD fibers at a rate of 1 µL/min.  

 

3.3.2. Fluorescence  

For each of the pilot experiments involving fluorometry, an ANT standard curve was 

made for which sample values could be compared to and quantified. These calculations helped 

derive an estimate of the amount of ANT in any given sample and helps to reduce the baseline 

noise from the fluorometer. 

A spreadsheet was created with wavelengths from the emission spectra and the intensity 

in counts per second for the 1 parts per billion (ppb), 10 ppb and 100 ppb anthracene standards. 

Using the 1 ppb spectra as a baseline, the 1 ppb intensity was subtracted from the 10 ppb and 

the 100 ppb to get a 9 and 99 ppb emission spectrum, respectively. The maximum and 

minimum fluorescence was found for the 9 and 99 ppb anthracene spectrum. 

The averages of the peaks were subtracted out of the 9 ppb baseline and divided by the 

concentration (9 or 99 ppb) to give conversion factor of average fluorescence per ppb. This 

was then used to estimate the amount of ANT in a sample. The same formulas were used to 

subtract a solvent baseline from spectra from the dialysate samples. The conversion factors 

found above were then used to estimate the amount of ANT in the sample based on the amount 

of fluorescence. 
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3.3.3. Mass Spectrometry 

Mass spectrometry (MS) is an analytical technique that is highly sensitive and versatile, 

which allow the detection of specific substances within a simple or complex matrix. 

Collaborators at North Carolina State University, under the guidance of Dr. Nelson Vinueza, 

developed a quantitative method via tandem mass spectrometry  to measure anthracene from 

dialysate samples of this study (6, 19).  

All experiments were performed on a Velos Pro linear ion trap mass spectrometer 

(Thermo Fisher Scientific) coupled to a Ultimate 3000 UHPLC system. Samples were 

introduced via autosampler and the injection volume was set to 10 μL. The mobile phase was 

made up by an isocratic elution of acetonitrile and water at a ratio of 9:1. The system was 

configured to bypass the column and the total run time for each sample was 5 minutes. 

Ionization was performed on positive mode via an atmospheric-pressure chemical ionization 

(APCI) source. Targeted tandem mass spectrometry (MS/MS) was utilized to select and 

fragment the analyte (anthracene) and internal standard (deuterated anthracene) ions. The 

matrix ions fragment differently than the analyte and internal standard ions, since they are a 

different class of compounds. It is straightforward then to monitor only the product-ions of the 

analyte and internal standard, which are typically formed by acetylene-loss ([M – C2H2]+•). 

Product-ion monitoring differentiates the analyte and internal standard from surrounding 

matrix ions, offering a simpler spectrum with higher sensitivity. 
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3.3.3.1 Preparation of Standard Curve  

A calibration curve was established using an isotropic-labeled internal standard. 

Calibration solutions were prepared by collaborators at NC State by diluting stock solutions of 

anthracene in acetone. Detailed solutions for each calibration solution are shown in Table 1.  

Table 1. Composition of calibration solution  

Concentration: 

ppm 

Internal 

standard: μL 

Analyte 

solution: μL 

Solvent: 

μL 

Total 

volume: μL 

10 200 10 790 1000 

20 200 20 780 1000 

50 200 50 750 1000 

100 200 100 700 1000 

150 200 150 650 1000 

200 200 200 600 1000 

QC-30 200 30 770 1000 

QC-120 200 120 680 1000 

The abundance ratio between peak m/z =152 (anthracene fragment) and m/z = 160 

(deuterated anthracene fragment, internal standard) was recorded and a calibration curve 

(Figure 1) was established based on the relationship between concentration and abundance 

ratio. 
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Figure 1 . Anthracene calibration curve from MS/MS with sample concentration 10-200 

ppm. 

 

3.3.3.2 Analysis of Human Test Samples 

Following the development of the calibration curve, the dialysate samples from the 

interstitial fluid were analyzed. Samples were extracted and analyzed by tandem mass 

spectrometry. 300 μL of HPLC grade acetone was added to the sample tube. The tube was 

then stirred by a VWR vortex mixer for 15 seconds at 2200 rpm and centrifuged by a VWR 

minicentrifuge for 15 seconds at 8000 rpm. Then the supernatant was taken and transferred 

into a 2 mL HPLC vial and mixed with 200 μL of 24 ppm D10-anthracene solution. Then the 

extracted and prepared sample was analyzed by the same instrument conditions used to 
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establish the calibration curve. The abundance ratio obtained on each sample was then used 

to calculate anthracene concentration using the equation of the calibration curve. Samples S1 

from all six test subjects were tested and the data were summarized in Table 2. 

Table 2. Tandem mass spectrometry data from human test samples 

Sample Name 
Abundance 

m/z 152       m/z 160 

Ratio 

152/160 

ppm concentration 

P2_S1_HOT 3404.6 5719.2 0.595 2.4 

P2_S1_TN 6073.9 5376.0 1.130 4.6 

P3_S1_HOT 6085.3 10421.7 0.584 2.4 

P3_S1_TN 5411.9 8723.0 0.620 2.5 

P4_S1_HOT 4726.9 10783.5 0.438 1.8 

P4_S1_TN 7309.2 11565.4 0.632 2.6 

P5_S1_HOT 6391.4 10347.2 0.618 2.5 

P5_S1_TN 5968.7 9589.7 0.622 2.5 

P6_S1_HOT 4850.9 5043.6 0.962 3.9 

P6_S1_TN 5771.4 8064.6 0.716 2.9 

P7_S1_HOT 5989.4 5429.3 1.103 4.5 

P7_S1_TN 2507.0 1746.3 1.436 5.9 

 

3.4 Pilot Testing 

In vitro Testing 

Vehicles for Delivery of Anthracene 

Substances that are lipophilic in structure were required for the mixing of ANT and 

successful delivery through the skin. Extensive pilot work was conducted using different 

vehicle solutions to dissolve and deliver ANT into the skin. Further pilot work was required 

for recovery of ANT via MD which is a sampling technique that is frequently used for the 

delivery or recovery of hydrophilic substances. This presented a challenge to both deliver and 
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recover ANT from interstitial fluid into the MD fiber due to its lipophilicity. The pilot work 

conducted to achieve delivery and recovery of ANT via MD is outlined below.  

3.4.1 Mineral Oil 

Mineral oil (MO) is a clear liquid distilled from petroleum used in cosmetic products 

that has been reported to permeate into the stratum corneum. Due to this reported absorption 

and lipophilicity, a 0.1% and 0.2% solution of ANT in MO was achieved. Mixtures of 0.5% or 

higher were attempted, however, the ANT would not dissolve in concentrations greater than a 

0.2% solution. MD fibers were submerged in petri dishes containing a 0.2% ANT in MO 

solution and equilibrated for 20 minutes to allow bidirectional exchange with the MD fiber 

(microperfusion pumps turned off). Dialysate samples were collected in a series of collection 

periods at a rate of 1 µL/min (Table 3) from 20-30 minutes, 40-70 minutes and 80-90 minutes 

following submersion. Between sample collection periods, pumps were turned off to allow 

equilibration between the ANT solution and MD fiber. Dialysate collections were then 

analyzed for the presence of ANT via fluorescence, as described in section 3.3.2. 

 

Equilibrium Collection Equilibrium Collection Equilibrium Collection Equilibrium 

20 min 10 min 10 min 30 min 20 min 10 min 20 min 

Table 3. In vitro Testing Protocol 
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3.4.2 DMSO  

Dimethyl-sulfoxide (DMSO) is a colorless liquid solvent that dissolves both polar and 

nonpolar compounds and has been utilized in previous MD studies as a vehicle solution (50). 

A solution of 0.2% and 0.5% ANT and 10% DMSO in MO was achieved. MD fibers were 

placed in petri dishes and collection was attempted as described above. Dialysate samples were 

not collected due to the 10% DMSO dissolving the MD membrane and preventing ANT 

recovery. DMSO was therefore not considered further for use in the study. 

 

3.4.3. Vaseline 

MO and DMSO proved unsuccessful as vehicle delivery solutions for ANT. Prior 

studies have developed fluorescent markers using anthracene and other PAHs in Vaseline, 

indicating that ANT can be adequately dissolved in Vaseline (29).  A 1% mixture of ANT in 

Vaseline was achieved and the mixture was placed on a heating plate with a magnetic stir bar 

and heated to 75o C at 30 rpm to ensure adequate mixing. A MD fiber was placed in a petri dish 

with the 1% solution of ANT in Vaseline and with LR solution at a rate of 1 µL/min. Dialysate 

samples were collected at 2 hours, 6 hours, and 20 hours following initial submersion to 

determine recovery over time and to establish suitable equilibration periods. Between sample 

collection periods, pumps were turned off to establish equilibration. These dialysate samples 

were then measured using fluorescence as described in section 3.3.2. With some success in 

recovering ANT from the MD fiber with a 1% solution, the same protocol was attempted with 
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a 2% solution of ANT in Vaseline. However, the 2% of ANT did not dissolve fully into the 

Vaseline. 

 

 

3.4.4. Aquaphor  

The Vaseline proved successful as a vehicle delivery solution for ANT, however, no 

solution higher than 1% was achieved. As another option for vehicle delivery of ANT, a 2% 

solution of ANT in Aquaphor, an over-the-counter skin care ointment, was created and mixed 

on a heating plate at 75o C at 30 rpm. A MD fiber was soaked in the 2% solution and dialysate 

collections, using the sample protocol as stated in the section of above, were examined via 

fluorescence described in section 3.3. 2. With detection of ANT with Aquaphor as a vehicle 

for delivery, Aquaphor was chosen as the vehicle for delivery and recovery of ANT. 

 

3.4.5. Solution and Perfusion Rate for Anthracene Recovery 

MD is a technique that is frequently utilized for the delivery or recovery of hydrophilic 

substances, the lipophilicity of the Aquaphor and ANT created challenges for successful 

recovery from the interstitial fluid. The perfusion rate of the microinfusion pumps determines 

the absolute and relative recovery of the dialysate, however higher perfusion rates create a back 

pressure that does not allow for substances in the interstitial fluid to freely move into the MD 

fiber. Pilot work using MO as the vehicle did not prove successful at a higher perfusion rate. 

Standard procedure for MD perfusion is typically 2 µL/min, but a rate of 1 µL/min was selected 
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based on pilot work with menthol from other labs (12). It was determined that an equilibration 

period (microinfusion pumps off) was necessary to permit bidirectional exchange between the 

interstitial fluid and the MD fiber.  Two MD fibers were soaked in a 0.2% solution of ANT in 

MO as described above, with the perfusion rates set at 0.5 µL/min and 1 µL/min. The dialysate 

was collected occurring to table 3 and analyzed with fluorescence. This analysis determined 

that a perfusion rate of 1 µL/min was the optimal perfusion rate for detection and recovery. 

3.5. In Vivo Testing  

In conjunction with extensive in vitro pilot work to establish and detection of ANT using 

intradermal microdialysis, in vivo pilot work was simultaneously completed in the ventral 

forearm. The protocol utilized for in vivo testing is outlined in figure 3 below. 

Fiber 

Insertion 

Hyperemia Anthracene 

Application 

Dialysate 

Collection 

Break Dialysate 

Collection 

Remove 

Fibers 

Wash 

and 

Check 

Sites 

20 min 45-60 min 15 min 1.5 hrs 2.5 

hrs 

1.5 hrs 15 min 10 

min  
Table 4. In vivo Testing Protocol. 

 

 

3.5.1. Mineral Oil 

To assess the delivery and recovery of ANT from the MD fibers in vivo, two MD fibers 

were inserted into the left ventral forearm. The 0.2% ANT solution in MO was applied directly 

to a 1 cm2 area of skin directly over the ANT MD site (see figure 2).  The protocol involving 

equilibration and dialysate sampling was conducting according to table 3 and then analyzed 

via fluorescence.  
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Figure 2. In vivo graphic showing a MD site in mineral oil applied to the 1 cm2 and covered 

with plastic wrap to prevent evaporation.  

 

3.5.2. Vaseline 

Fluorescence analysis did not indicate the presence of ANT in the dialysate of the in 

vivo 2% ANT in MO solution. With in vitro success indicating the presence of ANT in the 1% 
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ANT in Vaseline solution, a 1% ANT solution in Vaseline was applied directly to the skin as 

described above. Dialysate samples were collected according to table 4 and then analyzed via 

fluorescence.  

 

3.5.3 Aquaphor 

Based on in vitro success with ANT recovery, a 2% ANT in Aquaphor solution was 

applied directly to the skin over MD sites using the protocols outlined in section 3.5.1. 

Dialysate samples were collected according to the protocol outlined in Table 5 and then 

analyzed via fluorescence. The fluorescence analysis indicated the presence of ANT starting 

~3 hours after application on the skin, which informed the final protocol (there was no dialysate 

collection for the first 2½ hours) as indicated by the peaks at 398 nm and 420 nm in the 

fluorescence curves in figure 3.  
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Figure 3. Representative traces of fluorescence patterns from dialysate collection. Traces 

indicate the absence of anthracene in the sample using mineral oil, dimethyl sulfoxide, or 

Vaseline as the vehicle (A) or the presence of anthracene utilizing Aquaphor as a vehicle (B) 

with peaks at 398 nm and 420 nm. 

 

3.6. Experimental Protocols 

All study procedures were approved by the institutional review board at Appalachian 

State University and conformed to the guidelines set forth in the Declaration of Helsinki. 

Written and verbal consent was voluntarily obtained from all subjects before participation in 
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the study. The experiment was conducted in a group of six young, healthy subjects who were 

free from dermatological conditions.  

All experiments were conducted under thermoneutral conditions in the Thermal and 

Microvascular laboratory, Leon Levine Hall of Health Sciences.  Subjects arrived at the lab in 

a fasting state (12-hour fast) for completion of an informed consent and an initial screening 

visit. All subjects completed a medical history and measurements of anthropometrics (height 

and weight), blood pressure, heart rate, and a blood panel. All female subjects had a negative 

urine pregnancy test for participation in the study. After screening, subjects attended the 

laboratory on a separate day for completion of the experimental testing. Subjects refrained 

from alcohol, caffeine, and intense exercise for 12 hours prior to the study.  The 2% ANT in 

Aquaphor solution was mixed prior to the experiment whereby Aquaphor was heated at 70 °C 

for 5 minutes before ANT was added. The chemicals were mixed using a magnetic stir bar on 

a heating stirring plate for another 10 minutes before being weighed, with 0.2 g required for 

each site. The ANT solution was covered with foil and protected from sunlight until use. 

applied. Upon arrival to the laboratory MD insertion sites were marked on the left ventral 

forearm, sterile technique was utilized, and MD fibers were inserted as described in section 

3.3.1. Two intradermal microdialysis fibers (30 kDa cutoff; MD 2000, LM-10, Bioanalytical 

Systems) were placed in the skin of the ventral surface of the forearm separated by at least 2 

cm to prevent cross reactivity. Entry and exit points were covered with a small piece of tape to 

prevent ANT contamination beneath the skin. A 1 cm2 template was used to create an isolated 

surface area of the skin for ANT cream placement. After fiber placement, 0.2 g of the 2% ANT 

in Aquaphor was applied to the skin over each MD fiber site. Subjects were then outfitted with 
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LH units (Moor Instruments, UK) and laser doppler probes to measure red blood cell flux 

(Moor Instruments)). After instrument implementation, a 10% HBC in lactated Ringer’s 

solution was perfused through all sites at a rate of 1 μl/min (BASi Bee Hive controller and 

Baby Bee syringe drive). Heart rate and blood pressure were measured every 5 minutes 

throughout the protocol via brachial auscultation. A series of dialysate collections were 

performed using the outline as described in Table 3. All samples were collected, labeled and 

refrigerated before being sent to collaborators at North Carolina State University for analysis 

using MS.  

Tsk was clamped at 33° C at both sites for 10 minutes and dialysate samples were 

collected during a thermoneutral baseline. One site (sites were randomized to counterbalance 

skin temperature site) was set to clamp Tsk at 43° C for a heating blood flow baseline. Both 

sites were clamped throughout the protocol. The experimental protocol was structured 

similarly to the outline in figure 3 in section 3.5. After ANT application, the MD fibers were 

perfused with a 10% 2 hydroxypropyl-beta-cyclodextrin in Lactated Ringer’s solution for 90 

minutes. A series of collections were performed starting 2 hours after the ANT application. 

After a 15-minute collection period, pumps were turned off for a 30-minute equilibration 

period. This procedure was followed for three sample collection periods. At the end of the 

collection period, the LH unit over the thermoneutral site was raised to 43° C and 56 mM 

sodium nitroprusside was perfused through the fibers at both MD sites at a rate of 4 µL/min to 

obtain maximal cutaneous vasodilation.  
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3.7. Data and Statistical Analysis 

Red blood cell flux was digitized and recorded at 40 Hz for later offline analysis using 

Windaq software and Dataq data acquisition system (Windaq: Dataq Instruments, Arkon, OH). 

A five-minute average of LDF data was measured during each sample collection period and 

cutaneous vascular conductance (CVC; LDF/MAP) was calculated. Data for a percentage of 

CVC maximum (%CVCmax) were measured by averaging LDF values from a sixty second 

plateau obtained during 56 mM SNP perfusions and simultaneous 43° C heating 

((CVC/CVCmax) *100). A two-tailed t-test was performed in SigmaPlot to determine 

significance (α = .05; n = 6) and presented as mean +/- standard error.  All descriptive subject 

characteristics were expressed as mean +/- standard error.    

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

 

Chapter 4 

Results 

Subject characteristics for the six (5 male, 1 female) healthy subjects that completed the 

experimental protocol are presented in table 5.  

 

Table 5. Subject characteristics. 

 

 Mean Standard Error of the Mean 

Age 32.0 4.9 

Height (cm) 162.7 10.7 

Weight (kg) 91.3 17.7 

RHR 64.2 5.3 

SBP (mmHg) 130 4 

DBP (mmHg) 74 3 

Glucose (mg/dL) 93.8 4.7 

HDL (mg/dL) 56.8 9.1 

LDL (mg/dL) 118 10.1 

Trigs (mg/dL) 141.7 26.0 

TC (mg/dL) 186.3 18.0 

Anthracene concentration (ppm) in the dialysate samples was similar between the hot 

and thermoneutral sites (P=0.263), with values of 2.9 ± 0.4 and 3.5 ± 0.4 respectively (Figure 

4). Absolute red blood cell flux (LDF) and cutaneous vascular conductance (%CVCmax) are 

illustrated in figure 5. Absolute SkBF was significantly higher at the heated versus the 

thermoneutral site (P=0.001) with values of 35.7 ± 11.8 and 7.2 ± 1.0, respectively. Values 

were not significantly different between sites when presented as %CVCmax (P=0.057) with 

values of 29.2 ± 8.3 and 8.6 ± 2.3, respectively.  
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Figure 4. Anthracene concentration in dialysate samples expressed in parts per million (ppm) 

at the thermoneutral (TN) and hot sites collected between 2h30 min and 2h45 min following 

dermal anthracene application. No significant differences were observed between sites 

(P>0.05; n = 6). 
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Figure 5.  Skin blood flow expressed as (A) absolute LDF and (B) normalized to maximum 

vasodilation (%CVC) during the sample collection period. Maximum LDF was significantly 

higher in the heated site (P=0.001) 0.05; n = 6). *** P ≤ 0.001. 
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Chapter 5 

Discussion 

A major finding in this study was that microdialysis can be successfully used to recover 

the PAH anthracene following dermal application in vivo. This finding is methodologically 

important for the development of a protocol that allows for continuous sampling of dermal 

absorption with microdialysis, coupled with the measurement of anthracene with MS. While 

many studies have examined the deposition of PAHs on the skin of firefighters and other 

occupational groups, to our knowledge, this is the first protocol to examine dermal absorption 

of a PAH in vivo using MD. In accordance with our findings, studies have shown that small 

concentrations of these PAHs could be absorbed through the skin by assessing biological 

markers following environmental exposure, including fire suppression and charcoal grilling 

(64). Dermal tape stripping and dermal swabs have shown the presence of PAH particulates 

on the skin of workers exposed to these PAHs and urine analysis of PAH metabolites indicate 

a route of exposure of these PAHs, whether it be respiratory or dermal.  Similarly, in vivo 

modeling studies used surface disappearance of dermally applied PAHs and 1-OH-pyrene 

excretion measurement to estimate differences in dermal PAH absorption (57). Recently, ex 

vivo human skin modeling found that benzo [a] pyrene was absorbed into the skin and its 

metabolites could be measured using high-performance liquid chromatography (8). While 

numerous studies have assessed the exposure to these toxic PAHs released during incomplete 

combustion with biological monitoring, including breath, urine, and dermal sampling, the 

intradermal sampling technique of MD allowed for the recovery of ANT directly from the 

interstitial fluid, directly demonstrating dermal absorption.   
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 Anthracene was detected in both sample sites following 2 h 30 minutes of exposure in 

all subjects, but the amount of ANT recovered between the heated and thermoneutral sites was 

similar. This finding was contrary to our hypothesis since substantial evidence suggests there 

is greater dermal absorption of a wide range of transdermal products at higher temperatures. 

This has been observed in pharmacological studies aiming to improve dermal drug delivery, 

for example, the assessment of differences in serum concentrations of testosterone after the 

application of a heat-generating patch (45). Authors observed both maximum peak and area 

under the curve plasma testosterone was significantly higher in the group with the heated patch 

vs a thermoneutral control (46). Similarly, the effects of local heating on the systemic delivery 

of fentanyl from a  CHADD patch has been assessed in multiple studies (20, 33, 46). The 

CHADD patch increased skin temperature to 41 ± 1°C and resulted in shortened peak serum 

fentanyl concentrations as well as increases in the total concentration of fentanyl (1, 46). Some 

literature remains inconsistent with the measurement of these transdermal drug delivery 

systems in vivo as many methods, such as exercise and increased ambient temperature, did not 

include a precise, controlled skin temperature measurement (2, 56). Nevertheless, much of the 

literature indicates that increased skin temperature from locally applied heat should increase 

the amount of anthracene recovered.  

 In the present study, one potential explanation for the similarity in ANT concentration 

between sites may be the significantly different skin blood flows. The LDF was significantly 

higher in the heated site which may have impacted the clearance of the interstitial fluid causing 

the anthracene to move away from the microdialysis membrane. In a study that investigated 

local blood flow on the recovery of sodium fluorescein via microdialysis in vivo, local 

vasodilation decreased the amount of fluorescein by approximately 50% (11). Recovery was 
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also increased at vasoconstricted sites suggesting that the recovery of a substance from a 

microdialysis probe will be directly impacted by the clearance of that substance. In conjunction 

with decreased recovery from increased clearance, the clearance rate of the substance is 

proportional to the blood flow around the MD pump (11). This may explain the similar 

concentration of anthracene recovered in the heated compared to the control site. Sampling via 

intradermal MD can be influenced by multiple factors and does not strictly measure dermal 

absorption directly. Recovery via MD does not fully reflect dermal absorption and therefore 

further work is needed to elucidate the effects of skin temperature on the dermal absorption of 

PAHs. Future studies should examine the effect of controlling skin blood flow beneath each 

MD fiber so that the effect of dermal absorption can be more fully elucidated without increased 

clearance as a confounding factor. Epinephrine has been observed to prolong the sensory 

blocking effects on anesthetics by slowing the clearance of these substances away from the site 

(5), and warrant further investigation.  

 Increases in dermal clearance due to higher blood flow may explain the similarity in 

the concentration of anthracene recovered from each site. Nevertheless, the successful recovery 

of a PAH such as anthracene through microdialysis has important practical applications. It is 

widely recognized that firefighters and other occupational groups such as coal tar workers and 

asphalt workers are exposed to these hazardous chemicals (7, 52). Respiratory routes of 

exposure are more commonly studied in the field, but deposition of PAHs on the clothing and 

skin of these workers are recognized. Currently, the overall contribution of dermal absorption 

to overall exposure is not known and may be underestimated. With the development of the 

present protocol, the amount of dermal absorption over time may be better assessed in the field 

during occupational exposure. Future studies could use this protocol to examine how dermal 
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PAH exposure contributes to the overall exposure of firefighters to carcinogens during fire 

suppression. Improving our understanding of dermal exposure and absorption may have 

greater relevance to consideration of the personal protective clothing worn by firefighters and 

other occupational groups during exposure to these harmful chemicals to ensure greater safety. 
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