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Abstract
The present study analyzed the effectiveness of the OMNI-RES (0-10) and the electromyographic signal for
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Abstract

The present study analyzed the effectiveness of the OMNI-RES (0-10) and the
electromyographic signal for monitoring changes in the movement velocity during a set to
muscular failure performed with different relative loads in the bench press exercise (BP). Ten

males (30.8 £ 5.7 years) were evaluated on eight separate days with 48 hours of rest between

sessions. After determining the 1RM value, participants performed s to failure with

ovement velocity and

ords: OMNI-RES (0-10) scale, EMG, root mean square, muscular failure, accelerative

y, resistance training.



INTRODUCTION

The bench press is an integral part of the resistance training program utilized by most
athletes to strengthen and gain upper body muscle mass (38). Many athletes in different
disciplines use bench press on regular bases during the entire training season (39). For
example, strong positive relationships have been reported between the bench press
performance and playing ability in rugby players (3). Even though the maximal load that can

be moved in one maximal repetition (1RM) has been traditionally c a reference of

be faifficult to implement on the day by day basis. Consequently athletes and coaches

would need alternative methods to objectively monitor performance progression during
resistance training.

The utility of rating of perceived exertion (RPE) scales to monitor changes in
movement velocity using different relative loads have been previously demonstrated (16, 29,

32). However, the association of the perceptual response and the concomitant muscular



activation during resistance exercises is still unclear. Considering the increases in muscular
activity are a direct result of motor efferent commands, which, in turn, cause an increase in
the number of corollary signals toward the sensory cortex that may regulate the perception of
effort (25), it could be expected that if the mechanical changes experienced during resistance

exercise are anchored with the perceptual response they also should be reflected by

concomitant change in the neuromuscular activity. Although some studies support the

The sensitivity of both the perceived exertion and the electromyographic signal to
differentiate specific moments within the set where the movement velocity peaks, drops
below certain levels (i.e., 10%) from the maximum, or where the set approaches muscular
failure still needs specific consideration for each particular exercise and athletic population.
Consequently the aim of the present study was to explore the perception of effort and

neuromuscular activity where the movement velocity peaks, decreases 10% with respect to



the maximum, and at muscular failure during a continuous set, using different percentages of
the 1RM in the free weight bench press (BP) exercise. Furthermore, the ability of the RPE
and the neuromuscular activity to discriminate between relative loads across a wide range,
from 30 to 100%, divided into 10% incremental slots was also investigated. The available
literature allows us to formulate the following hypotheses: 1) the RPE and the

electromyographic signal at the end of the repetition will show significant differences between

specific moments within the set where the velocity concomitan ed as the set
approaches muscular failure; and 2) the RPE and the electrom i ured at

the beginning of each set will differentiate relative loads (

METHODS

Experimental Approach to the Problem

RM values, participants
e with the following

1RM perc - 30 to <40%, 40 to <50%, 50 to <60 Y10 <70%, 70 to

<90% and >90%. The mean accelerative velocity (MAV), the OMNI-RES (0-10)
, as a measure of the RPE, and the root mean square (RMS) surface
myography signal (amplitude EMG) were obtained for all the repetitions of each set.
The study assessed whether the instances where the movement velocity peaks, drops 10%
from the maximum, or reaches muscular failure show different values of the subjective
perception of effort and the neuromuscular activation measured over a set using seven

percentage ranges (30 to 100% of 1RM) in BP.



Subjects

Ten volunteers, recreationally resistance-trained males (age 30.8 + 5.7 years, body
mass 82.0 + 13.8 kg, and height 178.845.20 cm) took part in this study. To be eligible,
participants had to be free of injury in the last three months prior to the intervention. They
were furthermore required to train regularly between 2 to 3 times per week, using a routine

including bench press exercises for a minimum of two and a maximum of 5 years before the

sessions.

The OMNI Perceived Exertion Scale for Resistance Exercise (OMNI-RES), developed
and validated by Robertson and colleagues (35), includes both verbal and mode- specific
pictorial descriptors distributed along a comparatively narrow response range of 0 to 10
(Figure 1). These characteristics make the OMNI-RES scale a useful methodology to

control the intensity of resistance exercises over other previously published scales.



Figure 1
Exercise
The flat BP was performed using free weights. Participants were instructed to start
the exercise lying down on a bench with their elbows fully extended and to lower the bar
towards the chest using a controlled velocity. After a minimum pause (less than 1 s.),

participants performed the concentric phase with the maximal possible velocity. One qualified

instructor (a certified strength and conditioning coach, CSCS Strength and
Conditioning Association) monitored the appropriate range of m
Assessments

1RM and Repetitions to Failure tests

The 1RM BP was determined in the fi

the testing period. All the assessments were performed during the afternoon (12 to
6:00 pm).
Measurement of movement velocity

An optical rotary encoder (Winlaborat®, Buenos Aires, Argentina, model WLENOQ1)
with a minimum lower position register of 1 mm connected to the proprietary software Real

Speed Version 4.20 was used for measuring the position and calculating the velocity (v) in



m-s™ achieved during each repetition of the BP. The cable of the encoder was connected to
the right side of the bar in such a way that the exercise could be performed freely, which
enabled the cable to move in either vertical direction of the movement (31). In order to avoid
underestimation of the neuromuscular performance, the mean accelerative velocity (MAV)
calculated from the accelerative portion of the concentric phase, during which the

acceleration of the barbell was > -9.81 m-s?was used for estimating changes in movement

velocity (15).

The analysis of the MAV achieved during the RTF te

the muscular failure on

ent velocity is not always achieved

Control of the rating of perceived exertion (RPE)

During the familiarization sessions and the RFT tests the participants were instructed
to verbally report the RPE value indicating a number of the OMNI-RES (0-10) scale that
reflects their overall muscular effort at the end of each repetition of the BP. The investigators

used the same question before starting the first set of each exercise during the familiarization



sessions and immediately prior to each of the seven RTF tests: “how hard do you feel your
muscles are working during the exercise?” (33). A rating of 0 was associated with no effort
(seating or resting), and a rating of 1 corresponded to the perception of effort while performing
an extremely easy effort (27). A rating of 10 was considered to be maximal effort and
associated with the most stressful exercise ever performed (24). The OMNI-RES (0-10) scale

was in full view of participants at all times during the procedures.

Electromyography data collection

Bar position was monitored by 3D motion capture

limb in accordance with SENIAM r
were minimized by skin prepa i i ) prevent excessive movement during
bench press. EMG sig

sampling frequency @f 1000 Hz. A single nce electrode was placed on the humerus. All

synchronous quired using Qualisys track manager software (Qualisys, AB,

signals were corrected fo subtracting the signal
smoothed using a 2nd order bidirec pass filter with a cut-
Data were collected throughout the entire RTF test for all the seven evaluated ranges.
vertical displacement during the concentric phase (ascending movement) was recorded
by the rotary encoder and time-synchronized with the EMG signal, only the EMG data
relating to the concentric phase of each repetition was analyzed. As the present study was
focused on identifying changes in the accelerative velocity at four specific times along each
continuous set, the RMS signal was considered as the primary data for the analysis. The RMS

value is the standard method for defining the effective amplitude of a time-varying,



alternating signal, providing a meaningful representation of muscle activation at each of the
analyzed time points (20). For normalization purposes, the muscle activity of the anterior
deltoid was recorded and the maximum value determined during each of the RTF tests was
considered the reference for normalizing the RMS signal (N-RMS) (8).

Dependent Variables

Three main dependent variables (MAV, RPE and N-RMS) were analyzed for each of

the RTF tests. Furthermore, in order to assess the electromyographic si d the perceived

test-retest reliability coefficients (ICCs) and standard error of measurement (SEM)

e seven RTF tests were >0.92 and between 0.13 to 0.02 ms™ or 0 to 1.8 considering
r times points measured at the MAV and the OMNI-RES (0-10) scale respectively
9, 32).
Statistical Analyses
Means and standard deviations (SD) were determined for all of the variables analyzed
during the 1RM and RTF tests. Mauchly’s Test of Sphericity was used for testing the

normality of the difference data between all possible pairs of within-subject conditions.



To analyze the existence of differences within a continuous set for each dependent
variable (MAV, RPE, and N-EMG), one-way repeated measures analysis of variance
(ANOVA) was applied for each of the seven tested data range (first hypothesis). Repeated
measures ANOV As were also performed to determine differences between time points (MAV-
1, MAV-max, MAV-10%, MAV-F) across the seven percentage ranges for each of the three

dependent variables (MAV, RPE, and N-EMG) (second hypothesis). Bonferroni- adjusted

calculated. Average values are reported”a: unless stated otherwise. Statistical

power for the evaluations ranged fr ificance level was set at 0.05.

RESULTS

23.70+2.7 5) 71.49+1.08% and 15.80+2.57

ions; 6) 81.45+0.91% and

etitions; 7) 91.63+0.95% and 4.60+1.50 for 30 t0 <40%, 40 to <50%, 50% to
<70%, 70 to <80%, 80 to <90% and >90% respectively.
Mean Accelerative Velocity (MAV)

Table 1 shows the mean+SD of the MAV values, and the corresponding four time

points analyzed along the RTF test within and across the seven ranges evaluated.

Table 1



Comparison of the four time points within each range

Significant main time effects were observed for the seven ranges. For the first 4 ranges (30 to
70%), significant differences and large effect sizes (d >0.80) were observed between the four
time points with the exception of MAV-1 vs. MAV-10%. For the three heaviest ranges (70 to
<90%) MAV-F was different to the other three times points. At 70 to <80%, both MAV-1 and

MAYV-max were different from the MAV-10%.

Comparison of each of the time points across the ranges

Significant main range effects were observed for the

ad increases<across the seven assessed

1, the MAV-F.

s. For the lightest (30-

easured at the four time points were different between them (d>0.80). The RPE-F was
different from the other three time points at all the seven ranges (d=0.80).

Comparison of each of the time points across the ranges

Significant main range effects were observed for the RPE-1; RPE-max and RPE-

10%. The RPE-1 and RPE-max were lower (d >0.8) when compared the values expressed at

the 30 to 40% and >40 to 50% to all the other 6 ranges. Furthermore, RPE-1 and RPE-max at



both >60 to 70% and >70 to 80% were lower (d>0.80) than the observed at the two heaviest
ranges (>80% to >90%).

The RPE-10% was lower at the lightest range (30 to 40%) compared to the other 6
ranges. Significant lower values were also observed between the >40 to 50% to the 4 heaviest
ranges, from >50 to 60% to the three heaviest ranges and from >70 to 80% to the two superior

ranges (Table 2). No differences were observed for RPE-F across the seven range

percentages.

Table 3 depicts the 95% CI limits for the four analy. . The RPE
associated with each of the seven relative load ranges, c
(RPE-1) and estimate changes in movement vel -10%) while

performing continuous sets in the BP exercise.

Amplitude EMG, Normalized root
Table 4 shows the m es, and the corresponding four time

points analyzed along t the seven ranges evaluated.

S-1 was lower than N-RMS-max 3 50 to 70% both N-RMS-1

-max were lower the N-RMS-10% whilst at >70 te 80% N-RMS-max was lower
-10% (d=0.80). Furthermore at the heaviest load (>90%) both N-RMS-1 and N-
ax showed lover values that N-RMS-F (d=0.80). No other differences were observed
(Table 4).
Comparison of each of the time points across the ranges

Significant main range effects were observed for the four analyzed variables.

Pairwise comparison revealed that the N-RMS-1 was significantly lower at 30 to <40%

compared to the other 6 ranges. Additionally, N-RMS-1 was lower at >40 to 50% compared



to the two heaviest ranges (d=0.80), and from the >50 to 60 and >60 to 70 respect to the
heaviest range (d=0.80).
The N-RMS-max and N-RMS-10% showed significant lower values at both 30 <40%

and 40 <50% with respect to the others 5 ranges. No other main range effects were observed.

DISCUSSION

The main finding of the present investigation was that the

32), four erucial time points where

with the relative load used (ii) the

, the MAV-1 was similar to MAV-10% and lower than MAV-max. Reasons for the
observed lower values of MAV-1 may be related to the lack of specific previous
neuromuscular preparation (9). Some individuals may need 2 to 3 repetitions before reaching
the highest power production using submaximal resistance during exercises such as bench
press (4) or jump squat (3). This capability entails a specific physical conditioning requiring

specifically oriented training interventions (2) that was not particularly developed in our



participants. Conversely, the significant decrease of the movement velocity measured when a
10% loss of the MAV was determined could be caused by selective fast motor unit
disconnection mainly observed during continuous maximal wvelocity repetition sets (37).
Results from the present investigation confirm previous findings supporting the suitability of

the RPE for monitoring movement velocity changes during continuous sets of various

resistance exercises (27, 30, 32). However, different from the aforementioned studies that

measured at light (30 <50%) and moderate (<70%) to heavy (<80%) ranges compared to the
values observed at the highest load (>80% 1RM). The observed pattern of EMG responses
agreed with the study of Hollander et al. (20) who suggested a rise of the normalized RMS
signal as the contraction duration increases between 2, 3, 4 and 5 sec in the knee extension

exercise. For the present study the duration of each repetition increases as the set progress or



the load was progressively increased. In summary, the analysis within each range permits the
acceptance of the first hypothesis supporting the ability of the RPE and in some way the N-
RMS to show changes in the movement velocity during continuous repetitions sets in the BP
exercise.

The analysis across the ranges indicates that either the RPE-1 or the RPE-max are

different between the first three ranges (30% <60% of 1RM) and from these light loading

ds by perceived exertion.

discriminate bhetween

as was observed in the presen gation for the first four

<40% vs. 40 <50% vs. 50 <60% vs. 60 <70%); see Table 2. Potential
in the participants’ resistance training background or the longer familiarization
(12 sessions vs. 8) using the OMNI-RES scale could explain the more accurate
identification of lighter loading zones of our participants.

The present study is not without limitations. A limited number of male volunteers
(n=12) were studied, participants were young, recreationally resistance-trained, performing
the BP and familiarized with the use of OMNI-RES (0-10) scale for a minimum of 12

sessions before the assessment procedures. Therefore, the present results cannot be applied to



other populations such as high performance athletes or other exercises and modalities,
especially if there are relevant mechanical differences (i.e., a single joint exercise like arm
curl, or cyclic total body exercises like running, swimming or cycling) or employ different
muscle groups (i.e., lower body like leg extension), which have been shown to produce
different effort perceptions at the same percentage and repetitions when compared to lower

body exercises (14). Although similar perceptual responses and neurophysiological

performance would be observed in women or elderly participa

Its corroborate the use of the RPE

imate the relative amount of the load

ontinuous set to muscular failure or

gution of the present

athletes as an approach to distinguish different resistance loading zones by anchoring
the RPE-1 to a given range of relative load (% 1RM). Furthermore, the RPE-max and
RPE-10% can be used to identify specific moments over a set where the MAV-max
and MAV-10% are respectively produced. For example, to improve explosiveness,

the following OMNI-RES (0-10) scale values can be used to identify the



corresponding %1RM ranges: ~1 to 2 for 30<40% 1RM; 1.5 to 3 for 40<50% 1RM; 3

to 5 for 50<60% and 60<70% 1RM and 4 to 6 for 70<80% 1RM. Athletes will be
instructed to perform the exercise with maximal possible movement velocity avoiding
RPE values greater than 4, 6, 7 or >7 when exercising with 30<40% 1RM; 40<60%
1RM; 60<70% 1RM and 70<80% 1RM, respectively. On the other hand, for strength

oriented workout using >80% 1RM (1) the suggested RPE-1 would,be around 6, for

the >80 to 90% 1RM and <8 when using >90% 1RM.
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TABLES

Table 1. Mean (SD) for the MAV and the analyzed time points within the sets and across the seven ranges evaluated

Variables Percentage ranges One way ANOVA
30-40% 40 <50% 50 <60% 60 <70% 70 <80% 80 <90% >90% (7 assessments)
MAV (ms™) * * * * n
MAV-1 0.71(0.14)® 0.65 (0.11) * 0.58 (0.09) * 0.53 (0.08)° (0.12) 0.27(0.03) ST
o o o o § o F(b,54)=162.U1, p=U.U0U, n“=0.Y
MAV-max 0.86 (0.10) 0.76 (0.11) 0.66 (0.07) 0.59 (0.07) 9(0.06 0.39 (0.05) 0.27 (0.03) .
‘ § § ‘ ‘ § F(6,54)=120.95, p=0.00U, n“=0.93
MAV-10% 0.77 (0.09) 0.68 (0.10) 0.59 (0.08) 0.52 (0.0 /43 (0.05) 0.34 (0.06) 0.21 (0.04) .
F(b,94)=2./2, p=0.UZ2Z,nN“=0.23
MAV-F 0.21 (0.08) 0.21 (0.08) 0.15 (0.05) 0.16 (0.07) 0.12 (0.03) (0,54)=2.72,P i
G
One way ANOVA | F(3,9)=283.68, | F(3,9)=97.08, F(3,9)=223.69, . | F(3,9)=14.42, F(3,9)=59.98,
(4 time points) p=0.000, p=0.000, p=0.000, p=0.000,
n?=0.97 n?=0.92 n%=0.62 n?=0.87
G G G G

Differences within ranges: * p<0.001 betw
of MAV-1 vs. MAV-max. T p<0.001 between

Differences across ranges: * p<0.001 from the

0-40
>90%:; ¢ p=<0.05 between all the ranges with the ex€eption of >40-50% vs. >50-60% and >50-60% vs. >60% to 70%.

other time points and from MAV-max to MAV-10%.

t repetitions; MAV-max: Maximal mean accelerative velocity;

elerative velocity measured during the last repetition.

>40-50% and >50-60% to the other ranges; ® p<0.05 from >60-70% t0>30-40 and >90% °p<0.05 from 70-80% to




Table 2. Mean (SD) for the RPE and the analyzed time points within the sets and across the seven ranges evaluated

Variables Percentage ranges One way ANOVA
30 <40% 40 <50% 50 <60% 60 <70% 70 <80% 80 <90% >90% (7 assessments)
RPE (0-10) * * t ¥ *
RPE-1 1.6 (0.8)° 2.3(1.16)° 3.9(1.7)% 3.7(16)" 8.0 (0.5) e rm e .
b F(6,54)=43.3Y, p=0.00U, n-=0.83
RPE-max 2.1(0.9)° 3.2(0.9)° 4.4 (1.6)° 4.9 (0.9) 8.0 (0.5) .
. J . ‘ F(6,54)=25.32, p=0.000, n“=0./4
RPE-10% 3.4 (15) 4.7 (1.9) 51(1.3) 6.3 (0.5) 8.9(0.3) .
RPE-F 10 (0.0) 10 (0.0) 10 (0.0) 10 (0.0) 10 (0.0) 10 (0.0)
One way ANOVA F(3,9)=204.68, F(3,9)=91.83, F(3,9)=108.78, F(3,9)=51.06, F(3,9)=91.09,
(4 time points) p=0.000, p=0.000, p=0.000, p=0.000, p=0.000,
n2=0.96 n?=0.91 n2=0.92 n?=0.85 n?=0.91
G G G G G

RPE: rate of perceived exertion from OMNI-RES (0-10), scal
repetition that produced the maximal mean acceleratio
F: RPE value expressed immediately after completed
Differences within ranges: * p<0.05 from RPE-1 an
to the other 3 time points, $ p<0.05 between
Differences across ranges: ®p<0.001 between
to the two heaviest ranges 80 to >90%, ©p<0.05

the two superior ranges (80 to >90%).




Table 3. Mean CI (95%) determined on the RPE main variables determined along the seven-repetition to failure

test.
RPE-1 RPE-max RPE-10% RPE-F
1 RM ranges
Lower Upper Lower Upper Lower Upper Lower Upper

30 to <40% 1.1 2.1 1.6 2.6 2.5 4.3 10 10
40 to <50% 1.6 3.0 2.7 3.7 35 5.9 10 10
50 to <60% 2.9 4.9 3.5 53 4.3 10 10
60 to <70% 2.7 4.7 4.4 54 10
70 to <80% 4.2 5.8 4.8 6.2 10
80 to <90% 5.7 6.9 6.7 10
>90% 7.7 8.3 7.7 10




Table 4. Mean (SD) for the N-RMS and the analyzed time points within the sets and across the seven ranges evaluated

Variables Percentage ranges One way ANOVA
30-40% 40 <50% 50 <60% 60 <70% 70 <80% 80 <90% >90% (7 assessments)
N-RMS (%) * t 2 #
N-RMS-1 45.35(18.61)* | 55.32(15.27)° | 65.46(14.23)° | 67.65(16.40)° grar@ee) |
H(6,54)=15.96, p=0.U0U, n“=0.64
N-RMS-max 54.97 (15.58)° | 63.58(12.24)° 77.17 (9.50) 79.30 (6.71) 87.17 (6.66) .
F(6,54)=13.26, p=0.000, n“=0.6
N-RMS-10% 59.73 (17.60) 68.60 (13.02) 76.82 (14.13) 86.49 (4.27 88.25(12.89) 93.29 (9.60) .
F(6,54)=2.64, p=0.025, n“=0.23
N-RMS-F 75.81 (22.03) 83.96 (12.99) 76.12 (14.99) 6.62 (17.38) 82.94 (10.44) 97.23(5.21) (©.54) : "
G
One way ANOVA F(3,9)=4.28, F(3,9)=16.15, F(3,9)=1.78, F(3,9)=0.88, F(3,9)=9.54,
(4 time points) p=0.140, p=0.000, p=0.175, p=0.021, p=0.463, p=0.000,
n?=0.32 n?=0.64 n?=0.17 n2=0.30 n2=0.09 n%?=0.52

G

G

N-RMS: normalized room mean square signal, N-R
repetition where the MAV was measured; N-RMS-
Normalized signal determined for the last repetition.

Differences within ranges: *p<0.05 between the 4 t
p<0.05 from N-RMS-max to N-RMS-10%,
Differences across ranges: ® p<0.05 to the ot

others 5 superior ranges.

G

G

<0.05 from N-RMS-1 to
and N-RMS-max to N-RMS-F
. p<0.01 to the two heaviest ranges (>80 t6 >90%) © p<0.01 to >90% © p<0.05 from 30 <40% and 40 <50% to the

irst repetitions; N-RMS-max: Normalized signal achieved during the

ion where a 10% drop of the MAV was determined; N-RMS-F:

nax,  p<0.05 from N-RMS-1 and N-RMS-max to N-RMS-10%, §
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