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ABSTRACT

We build on the threshold unit root tests in Enders and Granger (1998) and develop tests based
on Lagrange Multiplier (LM) unit root tests. The asymptotic properties are derived and finite
sample properties are examined in simulations.



1. INTRODUCTION

Conventional linear unit root tests assume a symmetric adjustment process under the stationary
alternative. However, a growing body of research finds evidence of nonlinear or asymmetric
adjustments in many economic time series. To address these issues in a pioneering work,
Enders and Granger (1998, EG) develop Dickey—Fuller (DF) based threshold tests to test the
null of a unit root against an asymmetric stationary alternative. Their first test is based on the
threshold autoregressive (TAR) model developed by Tong (1983), where the autoregressive
decay process depends on whether the level of the demeaned and detrended series is above or
below the threshold level. EG additionally develop “momentum threshold autoregressive” (M-
TAR) tests, where the speed of adjustment depends on whether the change in the demeaned
and detrended series is above or below the threshold level. We build on the threshold models in
EG and develop new threshold tests based on the Lagrange Multiplier (LM) unit root tests of
Schmidt and Phillips, 1992 and Schmidt and Lee, 1991. In the linear framework, it is well known
that LM unit root tests can be more powerful than DF unit root tests in many cases.? Overall, we
find that similar greater power of the LM unit test carries over to the threshold framework.

2. LM THRESHOLD UNIT ROOT TESTS

Consider the data generating process (DGP) based on the unobserved components
representation:

1)
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where Z; contains deterministic terms. Following the LM (score) principle, the null restriction of
B =1is imposed to give the regression in differences:

(2)
Ayt=5AZt+ut.

Let E:':be the demeaned and detrended series 5': =Y - - Zi &, where ais the coefficient

estimated in the regression of Ay, on AZ; and Yis the restricted MLE (Jf =y, - Z; ). Following
EG, an LM TAR model can be described by:

(3)
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where |, is the “Heaviside” indicator function:

(4)

p=1if §,_;=nand [, =0 if §_, <



and n is the threshold value. An LM M-TAR (momentum) model can be similarly described by:

(5)
I, =1if AS_,=v and I, =0 if A5_, <n
The null and alternative hypotheses can be described by:

(6)
Ho: 1=¢p»,=0 and Ha: ¢ <0 and/or ¢,<0.

Under the null hypothesis the DGP is symmetric and there is a unit root in both regimes, while
under the alternative hypothesis there is a stationary process in at least one regime.

One may consider:
(7)
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where n* =0~ * T"¥?n is the normalized threshold parameter and o = T~ *E(S §;-1)% Since n

can potentially take on any value of S, -, providing critical values for different §,_; at each
possible value of n can be impractical. To mitigate this, we transform the threshold variable into
the percentile of the sorted threshold variable ™! T~ *25, _ % defined over all values of §,_,
(with trimming to eliminate endpoints). Let ."_;_t_l(T) = h” be the r-th percentile value of the
empirical distribution of §;_.% suchthat P[o™* T Y25, _ "< h =Plo"* T ¥25,_ "< §, %) =1.
Then, it follows that:

8

I, = :(cr VS > S |-:7:)—-fr;w.;r': >h') = W' (r)>T),

where W(r) is the usual Brownian motion defined on r € [0, 1], and W?(r) maps to W(r) in such a
way that the threshold value (h") matches the threshold percentile parameter (r) and the value
of the indicator function is maintained. A similar percentile procedure can be defined for the M-
TAR model by replacing 5,-; with AS,-,, where AS,-," is defined as the sorted threshold

variable of AS,_; and AS,_,%(7) = h is the r-th percentile of the empirical distribution of A S, _
Then, it follows that:

(9)

I, = I(M, >h) =107 A5, >0, A8} lr_.-])—rnu:r:.-.-»n.



where U(r) is a process defined on [0, 1] and 0,> = T *E(YAS,_1)>. Thus, the threshold
parameter is transformed into a percentile parameter (1) defined on the interval [0, 1] where the
asymptotic distribution of the test statistic depends only on T.

An F-statistic to test the null hypothesis ¢, = ¢, = 0 can be defined as follows:
(10)
F(T) = pir)'V(p(m)) ' pir)/ 2,

where A(T) = (P1(7). £2(7))'is the OLS estimator from regression (3) with variance ¥ (#(T)) ¢
The coefficient estimate £(7)is obtained by controlling for the effects of the remaining
deterministic terms and any significant augmented terms. Since I; and (1 - I;) are orthogonal,
F(7) is the sum of the two quadratic forms:

(11)

Fir) = 0.5(p, (7Y V(P (1)) pyi7) + po(TY'V(Py(T)) ' (],

where £i(Tland V[I"ri*’i':', i =1,2, are the corresponding OLS estimate and error variance,
respectively. The asymptotic distribution is described as follows:

Theorem 1. Let V(r) = W(r) - rW(1) be a standard Brownian bridge that is the weak limit of the

partial sum residual process T~ *?S,_,, and let V(r = Wr]—vﬁf’[r'rdr be a demeaned Brownian
Bridge where each term is defined on the interval r €[0, 1]. Under the null hypothesis,
¢ = ¢ =0 and F(1) follows as T — :

(12)
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where I; = I(W%(r) > 1) or I(U(r) > 1) and |, = 1 - |,. ¢,%is the usual error variance and o**is the
long-run variance; 0** = T"'E(3S)?with S; = u; + ... + U,

Proof. The distributions of A(TJand Y (#(7))are given as a function of the demeaned Brownian
Bridge as demonstrated in (A.9) and (A.11) in Lee and Strazicich (2003). The distribution of F(7)
is accordingly obtained from these expressions while interacting with the indicator functions
allowing for regime change.

In Table 1, we report critical values of the LM TAR and LM M-TAR F-statistics for the case
where the (percentile) threshold parameter is known prior to testing. Critical values were
obtained using the DGP in Eq. (1) under the unit root null (8 = 1, implying ¢, = ¢» = 0) and
calculated using 50,000 replications. Since the F-statistics are not invariant to the percentile
parameter, we report critical values at different threshold parameters, r= 0.1, 0.2, 0.3, 0.4, and
0.5. The critical values for r= 0.6, 0.7, .0.8, and 0.9 are symmetric and other critical values can
be interpolated.


http://0-www.sciencedirect.com.wncln.wncln.org/science/article/pii/S0165176510003526#fn0020

Tahle 1

Critical values of the Fstatistic in LM threshold unit root tests,

T % LM TAR with threshold variable 5, LM M-TAR with threshold variable A5,
T T
(18] L1 03 0.4 05 01 L1 03 0.4 0.5
50 10 370 3654 3584 3508 3512 3562 3610 3624 3645 3696
5 4555 4536 4434 4,369 4382 4458 4484 4508 4567 4610
1 G.602 G538 G308 G386 G484 6.503 G602 G582 G.589 679
100 10 3768 3639 3585 1512 3512 3541 3547 3610 3501 3618
5 4565 4446 4400 4371 4326 4356 4365 4433 4.464 4434
1 G483 G243 6291 G312 G.158 G336 G318 G386 G461 G330
250 10 3,798 3670 3.561 3517 3493 3520 3533 3.515 3547 3.548
5 4591 4458 4378 42495 4280 4335 4326 43712 4325 4351
1 G.395 G195 G218 G113 G096 G115 G133 G.159 G.143 G260
1000 10 3850 3704 3585 3511 3460 3516 3539 3543 3547 3493
5 4671 44E8 4378 4.304 427 47334 4343 4338 4344 4302
1 6.363 G313 G6.141 G041 G099 G6.156 G169 G.090 G129 G060
Mote: 7 is the percentile threshold parameter. Critical values are for the F-statistic to test the joint null hy pothesis &, = &, = 0when 7 is known a priori. All regressions indude an

intercept and trend. The cridcal values for 7=06, 0.7, 0.8, and 0.9 are symmetric around the reported catical values for 7=04, 03,02, and 0.1; other aitical values can be
inte mpolated.

If the threshold parameter is unknown prior to testing, we propose to jointly determine the
percentile parameter and number of augmented terms (k) by minimizing the sum of squared
residuals in regression (3). Equivalently, the percentile parameter can be obtained by
maximizing the F-statistic testing the null hypothesis ¢, = ¢, = 0 by performing a grid search
over all possible values of 1 (after trimming) to give:

(13)
T = argmaxF( 7).

This same F-statistic is used to test the null hypothesis that ¢, = ¢, = 0 and we denote this as
“F-max.” The F-max test statistic will be a supreme of the distribution of F(771°) given in Eq. (12).
The critical values are provided in Table 2. The critical values were calculated using 5,000
replications.

Table 2
Critical values of the Fmax statistic in LM threshold unit root tests.
% LM TAR with threshold variable LM M-TAR with threshold variable
S A%,

T=50 100 250 500 1000 T=50 100 250 500 1000

10 5246 5170 5231 5255 5293 3956 3881 3EI17 3804 3841
5 G263 G164 G109 G102 G710 44971 4756 4663 4702 4646
1 BE538 B.1Z7 BIES H296 BE3D6 7316 G935 6621 6494 G3EE

Mote: Critcal valies are for the maximim F-stabstic (F-max) that jointly determines
the percentile threshold parameter T and tests the unit root null hypothesis &, = do =0
All regressions include an intercept and trend.



3. FINITE SAMPLE PROPERTIES

In this section, we provide Monte Carlo simulations to investigate the finite sample power
properties of the LM TAR and LM M-TAR tests and compare power with similar versions of the
DF based tests. We compare power at different persistent parameters (¢, and ¢.) and different
percentile threshold parameters (1= 0.5 and 1= 0.3). The LM TAR and LM M-TAR tests are
denoted by TAR_ v and MTAR_y and the corresponding DF based tests are denoted by TARgg
and MTAREgg, respectively. To perform our simulations, pseudo-iid N(0,1) random numbers were
generated using RATS version 7.0, where the initial values of y, and &, are assumed to be
random and o, = 1. The simulations were calculated using 5,000 replications in sample size

T =100. The results are displayed in Table 3.

Table 3
Power comparisons of F-statistic (T= 100).
& b =05 =03
TAR; 3 TARz: MTAR; MTARg: TAR ThARg- MTAR 3 MTAR:
0025 0ms 0.064 0.056 0.063 0.070 0072 0061 0061 0.067
005 0075 0063 0082 0078 0085 0.DGE 0074 0074
010 0110 0084 0168 0.119 03 0092 o9 0,096
0135 0.131 0.100 0258 0.179 0.139 LINRI] o172 0116
015 0141 0.106 0308 0208 0.151 0115 o197 0.129
020 0.174 0.3z 0475 0342 0.194 0143 0304 0187
0.05 025 0.080 0.067 0.080 n.oez 0085 0.o72 0088 0.087
0.05 0,099 0.082 0086 0.0EE 0.104 0.089 0093 0,090
010 0147 0.115 0167 0134 0153 0125 o1z7 (VA RN
0135 0187 0143 0248 0.195 0.198 0153 0169 0.136
015 020 0.153 0288 024 0213 0166 o 0.146
020 0253 0192 0.454 0346 0272 0205 0278 0204
0.10 05 0115 0.094 0177 0139 iz 0101 0196 0135
.05 0.156 0119 0173 0.147 0152 01z 0145 0.163
010 0248 0.187 0226 0.197 0248 0197 0222 01493
0135 0314 0.240 0296 0252 0315 0253 0254 0218
015 0339 0261 0333 0284 0.344 0275 0269 0231
0.20 0423 0338 0.466 0.406 0438 0355 0338 0288
0.135 0135 0397 0313 0358 0316 039z 0328 0361 0320
MNote: 7is the percentile threshold parameter. The F-statistic tests the joint unit root null hypothesis &, =&z = 0when 7 is known 2 prior. All regressions include an intercept and trend

In nearly every case that we consider, the LM TAR and LM M-TAR tests are more powerful than
the DF based tests. The greater power of the LM based tests holds regardless of whether the
underlying model is symmetric (¢, = ¢,) or asymmetric (¢, # ¢), and regardless of the
threshold value. For example, when ¢; = — 0.025, ¢, = - 0.10, and 7 = 0.5, the power of the LM
TAR test is 31% greater than the DF TAR test. In the M-TAR tests the differences in power are
somewhat greater. For example, when ¢, = - 0.025, ¢, = - 0.10, and 7 = 0.5, the power in the
LM M-TAR test is 41% greater than the DF M-TAR test. We next compare the LM TAR test with
the LM M-TAR test. We see similar power in each test when close to a unit root. As we move
away from a unit root the differences in power are mixed, but the power of the LM M-TAR test is
generally greater than the power of the LM TAR test. For the LM TAR test, the power with

7= 0.3 is generally greater than with r = 0.5, although the differences are small. In the LM M-
TAR test, the power with 7 = 0.5 is generally greater than with 7=0.3.°



4. CONCLUSION

We build on the threshold unit root tests developed in Enders and Granger (1998) and provide
new threshold tests based on Lagrange Multiplier (LM) unit root tests. In addition, by adopting a
percentile value the nuisance parameter problem is mitigated and one standard set of critical
values can be utilized in each model. When the threshold value is unknown prior to testing, we
adopt a supreme type test. Asymptotic properties are derived and finite sample properties are
examined in simulations. Overall, we find that the suggested tests have favorably comparable
power properties.

NOTES

3. See, e.g., Stock, 1994 and Vougas, 2003 provides simulation results showing that LM tests
are more powerful than the corresponding DF tests.

4. If desired, we can allow for a delay parameter d and utilize §S"q0rASS 4 in Egs.
(3) and (5), respectively. We consider only d = 1 in our simulations.

5. In findings omitted here to conserve space, we examined simulations with a larger sample
size of T = 250 and found similar results. These results are available from the authors upon
request.
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