
Lee, J., Strazicich, M.C., & Chul Yu, B. (2011). LM Threshold Unit Root Tests. Economics Letters, 110(2): 113-116 

(Feb 2011). Published by Elsevier (ISSN: 0165-1765). http://0-

dx.doi.org.wncln.wncln.org/10.1016/j.econlet.2010.10.014 

 

 

 

 

 

 

 

LM threshold unit root tests 

Junsoo Lee, Mark C. Strazicich, and Byung Chul Yu 

 

 

 

 

 

 

ABSTRACT 

We build on the threshold unit root tests in Enders and Granger (1998) and develop tests based 

on Lagrange Multiplier (LM) unit root tests. The asymptotic properties are derived and finite 

sample properties are examined in simulations. 

  



1. INTRODUCTION 

Conventional linear unit root tests assume a symmetric adjustment process under the stationary 

alternative. However, a growing body of research finds evidence of nonlinear or asymmetric 

adjustments in many economic time series. To address these issues in a pioneering work, 

Enders and Granger (1998, EG) develop Dickey–Fuller (DF) based threshold tests to test the 

null of a unit root against an asymmetric stationary alternative. Their first test is based on the 

threshold autoregressive (TAR) model developed by Tong (1983), where the autoregressive 

decay process depends on whether the level of the demeaned and detrended series is above or 

below the threshold level. EG additionally develop “momentum threshold autoregressive” (M-

TAR) tests, where the speed of adjustment depends on whether the change in the demeaned 

and detrended series is above or below the threshold level. We build on the threshold models in 

EG and develop new threshold tests based on the Lagrange Multiplier (LM) unit root tests of 

Schmidt and Phillips, 1992 and Schmidt and Lee, 1991. In the linear framework, it is well known 

that LM unit root tests can be more powerful than DF unit root tests in many cases.3 Overall, we 

find that similar greater power of the LM unit test carries over to the threshold framework. 

 

2. LM THRESHOLD UNIT ROOT TESTS 

Consider the data generating process (DGP) based on the unobserved components 

representation: 

(1) 

 

where Zt contains deterministic terms. Following the LM (score) principle, the null restriction of 

β = 1 is imposed to give the regression in differences: 

(2) 

Δyt=δ'ΔZt+ut. 

Let be the demeaned and detrended series  = yt − − Zt , where is the coefficient 

estimated in the regression of Δyt on ΔZt and is the restricted MLE (  = y1 − Z1 ). Following 

EG, an LM TAR model can be described by: 

(3) 

 

where It is the “Heaviside” indicator function: 

(4) 

 



and η is the threshold value. An LM M-TAR (momentum) model can be similarly described by: 

(5) 

 

The null and alternative hypotheses can be described by: 

(6) 

H0:ϕ1=ϕ2=0 and Ha:ϕ1<0 and/orϕ2<0. 

Under the null hypothesis the DGP is symmetric and there is a unit root in both regimes, while 

under the alternative hypothesis there is a stationary process in at least one regime. 

One may consider: 

(7) 

 

where η* = σ− 1 T− 1/2η is the normalized threshold parameter and σ2 = T− 1E(∑ t − 1)
2. Since η 

can potentially take on any value of t − 1, providing critical values for different t − 1 at each 

possible value of η can be impractical. To mitigate this, we transform the threshold variable into 

the percentile of the sorted threshold variable σ− 1 T− 1/2
t − 1

⁎ defined over all values of t − 1 

(with trimming to eliminate endpoints). Let t − 1
⁎(τ) = h⁎ be the τ-th percentile value of the 

empirical distribution of t − 1
⁎, such that P[σ− 1 T− 1/2

t − 1
⁎ ≤ h⁎] = P[σ− 1 T− 1/2

t − 1
⁎ ≤ t−1

⁎(τ)] = τ. 

Then, it follows that: 

(8) 

 

where W(r) is the usual Brownian motion defined on r ∈ [0, 1], and W⁎(r) maps to W(r) in such a 

way that the threshold value (h⁎) matches the threshold percentile parameter (τ ) and the value 

of the indicator function is maintained. A similar percentile procedure can be defined for the M-

TAR model by replacing t − 1 with Δ t − 1, where Δ t − 1
⁎ is defined as the sorted threshold 

variable of Δ t − 1 and Δ t − 1
⁎(τ) = h is the τ-th percentile of the empirical distribution of Δ t − 1

⁎. 

Then, it follows that: 

(9) 

 



where U(r) is a process defined on [0, 1] and σ1
2 = T− 1E(∑Δ t − 1)

2. Thus, the threshold 

parameter is transformed into a percentile parameter (τ) defined on the interval [0, 1] where the 

asymptotic distribution of the test statistic depends only on τ. 

An F-statistic to test the null hypothesis ϕ1 = ϕ2 = 0 can be defined as follows: 

(10) 

 

where is the OLS estimator from regression (3) with variance .4 

The coefficient estimate is obtained by controlling for the effects of the remaining 

deterministic terms and any significant augmented terms. Since It and (1 − It) are orthogonal, 

F(τ) is the sum of the two quadratic forms: 

(11) 

 

where and , i = 1,2, are the corresponding OLS estimate and error variance, 

respectively. The asymptotic distribution is described as follows: 

Theorem 1. Let V(r) = W(r) − rW(1) be a standard Brownian bridge that is the weak limit of the 

partial sum residual process T− 1/2
t − 1, and let be a demeaned Brownian 

Bridge where each term is defined on the interval r ∈ [0, 1]. Under the null hypothesis, 

ϕ1 = ϕ2 = 0 and F(τ) follows as T → ∞: 

(12) 

 

where I1 = I(W⁎(r) > τ) or I(U(r) > τ) and I2 = 1 − I1. σu
2is the usual error variance and σ*2is the 

long-run variance; σ*2 = T− 1E(∑St)
2with St = u1 + … + ut. 

Proof. The distributions of and are given as a function of the demeaned Brownian 

Bridge as demonstrated in (A.9) and (A.11) in Lee and Strazicich (2003). The distribution of F(τ) 

is accordingly obtained from these expressions while interacting with the indicator functions 

allowing for regime change. 

In Table 1, we report critical values of the LM TAR and LM M-TAR F-statistics for the case 

where the (percentile) threshold parameter is known prior to testing. Critical values were 

obtained using the DGP in Eq. (1) under the unit root null (β = 1, implying ϕ1 = ϕ2 = 0) and 

calculated using 50,000 replications. Since the F-statistics are not invariant to the percentile 

parameter, we report critical values at different threshold parameters, τ = 0.1, 0.2, 0.3, 0.4, and 

0.5. The critical values for τ = 0.6, 0.7, .0.8, and 0.9 are symmetric and other critical values can 

be interpolated. 

http://0-www.sciencedirect.com.wncln.wncln.org/science/article/pii/S0165176510003526#fn0020


 

 

If the threshold parameter is unknown prior to testing, we propose to jointly determine the 

percentile parameter and number of augmented terms (k) by minimizing the sum of squared 

residuals in regression (3). Equivalently, the percentile parameter can be obtained by 

maximizing the F-statistic testing the null hypothesis ϕ1 = ϕ2 = 0 by performing a grid search 

over all possible values of τ (after trimming) to give: 

  (13) 

 

This same F-statistic is used to test the null hypothesis that ϕ1 = ϕ2 = 0 and we denote this as 

“F-max.” The F-max test statistic will be a supreme of the distribution of F( τˆ) given in Eq. (12). 

The critical values are provided in Table 2. The critical values were calculated using 5,000 

replications. 

 

 

 

 

 



3. FINITE SAMPLE PROPERTIES 

In this section, we provide Monte Carlo simulations to investigate the finite sample power 

properties of the LM TAR and LM M-TAR tests and compare power with similar versions of the 

DF based tests. We compare power at different persistent parameters (ϕ1 and ϕ2) and different 

percentile threshold parameters (τ = 0.5 and τ = 0.3). The LM TAR and LM M-TAR tests are 

denoted by TARLM and MTARLM and the corresponding DF based tests are denoted by TAREG 

and MTAREG, respectively. To perform our simulations, pseudo-iid N(0,1) random numbers were 

generated using RATS version 7.0, where the initial values of y0 and ε0 are assumed to be 

random and σε
2 = 1. The simulations were calculated using 5,000 replications in sample size 

T = 100. The results are displayed in Table 3. 

 

 

 

In nearly every case that we consider, the LM TAR and LM M-TAR tests are more powerful than 

the DF based tests. The greater power of the LM based tests holds regardless of whether the 

underlying model is symmetric (ϕ1 = ϕ2) or asymmetric (ϕ1 ≠ ϕ2), and regardless of the 

threshold value. For example, when ϕ1 = − 0.025, ϕ2 = − 0.10, and τ = 0.5, the power of the LM 

TAR test is 31% greater than the DF TAR test. In the M-TAR tests the differences in power are 

somewhat greater. For example, when ϕ1 = − 0.025, ϕ2 = − 0.10, and τ = 0.5, the power in the 

LM M-TAR test is 41% greater than the DF M-TAR test. We next compare the LM TAR test with 

the LM M-TAR test. We see similar power in each test when close to a unit root. As we move 

away from a unit root the differences in power are mixed, but the power of the LM M-TAR test is 

generally greater than the power of the LM TAR test. For the LM TAR test, the power with 

τ = 0.3 is generally greater than with τ = 0.5, although the differences are small. In the LM M-

TAR test, the power with τ = 0.5 is generally greater than with τ = 0.3.5 

 



4. CONCLUSION 

We build on the threshold unit root tests developed in Enders and Granger (1998) and provide 

new threshold tests based on Lagrange Multiplier (LM) unit root tests. In addition, by adopting a 

percentile value the nuisance parameter problem is mitigated and one standard set of critical 

values can be utilized in each model. When the threshold value is unknown prior to testing, we 

adopt a supreme type test. Asymptotic properties are derived and finite sample properties are 

examined in simulations. Overall, we find that the suggested tests have favorably comparable 

power properties. 

 

NOTES 

3. See, e.g., Stock, 1994 and Vougas, 2003 provides simulation results showing that LM tests 

are more powerful than the corresponding DF tests. 

4. If desired, we can allow for a delay parameter d and utilize S˜t-d or Δ S˜t-d in Eqs.  

(3) and (5), respectively. We consider only d = 1 in our simulations. 

5. In findings omitted here to conserve space, we examined simulations with a larger sample 

size of T = 250 and found similar results. These results are available from the authors upon 

request. 
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