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ABSTRACT 

The usual cointegration tests often entail nuisance parameters that hinder precise inference. 

This problem is even more pronounced in a nonlinear threshold framework when stationary 

covariates are included. In this paper, we propose new threshold cointegration tests based on 

instrumental variables estimation. The newly suggested IV threshold cointegration tests have 

standard distributions that do not depend on any stationary covariates. These desirable 

properties allow us to formally test for threshold cointegration in a nonlinear Taylor rule. We 

perform this analysis using real-time U.S. data for several sample periods from 1970 to 2005. In 

contrast to the linear model, we find strong evidence of cointegration in a nonlinear Taylor rule 

with threshold effects. Overall, we find that the Federal Reserve is far more policy active when 

inflation is high than when inflation is low. In addition, we reaffirm the notion that the response to 

counteract high inflation was weakest in the 1970s and strongest in the Greenspan era. 

  



1. INTRODUCTION 

A large and growing literature utilizes a threshold regression (TR) to capture the nonlinear 

relationships found among many macroeconomic variables. As in the linear regression 

framework, the estimation results from nonlinear regressions will be spurious if nonstationary 

I(1) variables are not cointegrated. In this regard, Balke and Fomby (1997) examined threshold 

cointegration by assuming that cointegration exists within a certain range of deviations from the 

long-run equilibrium implied by the null, but did not provide formal tests for threshold 

cointegration. Enders and Siklos (2001) provide critical values for threshold cointegration tests 

in a specific threshold specification that permits asymmetric adjustment in the error correction 

term. Nevertheless, testing for threshold cointegration is difficult when the distributions of the 

relevant test statistics depend on nuisance parameters. For example, the usual cointegration 

tests will depend on a nuisance parameter when stationary covariates are included, and the 

problem becomes even more pronounced in a nonlinear framework. However, bootstrapping the 

critical values does not appear a good solution in such cases. Enders et al. (2007) find that 

bootstrapping a test for persistence in a TR leads to excessively wide confidence intervals. 

In this paper, we adopt a new methodology using instrumental variables (IV) estimation where, 

with one caveat, inference in a TR can be undertaken free of nuisance parameters. For this 

purpose, we extend the linear IV cointegration tests of Enders et al. (2009) and introduce new 

IV threshold cointegration tests can result in test statistics that can have standard normal, t, F or 

χ2 distributions. This outcome permits us to perform inference without the necessity of 

bootstrapping or using nonstandard distributions that depend on the particular model 

specification. In our methodology, the asymptotic distributions of threshold cointegration, weak-

exogeneity, and symmetry tests are all standard even when stationary covariates are included. 

Monte Carlo experiments demonstrate that the IV threshold cointegration test has reasonable 

size and power properties. 

Then, we apply our methodology to test for threshold cointegration in a nonlinear Taylor rule 

(Taylor, 1993). There are strong reasons to believe that modeling the Taylor rule is especially 

amenable to our methodology. Given a growing body of literature on testing nonlinear Taylor 

rules, it is somewhat surprising that no paper performs tests for nonlinear cointegration. 

However, this outcome may be due to difficulties found in the existing tests. To explain the 

issues involved, consider a standard linear Taylor rule specification: 

 (1) 

 

where it is the nominal federal funds interest rate, r⁎ is the equilibrium real interest rate, πt is the 

average inflation rate over the previous four quarters, π⁎ is the central bank's inflation target, yt 

is the “output gap” measured as the percentage deviation of real GDP from potential real GDP, 

α0 = r⁎ − α1
⁎π⁎, α1 = 1 + α1

⁎, and εt is an error term. The lagged terms it − 1 and it − 2 are included to 

allow for the possibility of interest rate smoothing, where adjustment to the target rate is gradual. 



The recent macroeconometric literature suggests that simple OLS or GMM estimation of Eq. (1) 

may not be appropriate. For example, Bunzel and Enders, 2010 and Österholm, 2005 show that 

the federal funds rate and inflation rate act as unit root processes and the output gap is 

stationary. These papers employ a battery of Johansen, 1988 and Johansen, 1991 cointegration 

tests and conclude that there is no meaningful linear cointegrating relationship between the 

inflation rate, output gap, and federal funds rate. We reconfirm similar results in this paper using 

real-time data. Concurrently, a growing body of literature suggests that the relationship between 

the federal funds rate, output gap, and inflation rate is likely to be some form of nonlinear 

regime-switching model; see, for example, the papers by Bec et al., 2002, Boivin, 2006, Taylor 

and Davradakis, 2006 and Qin and Enders, 2008. Intuitively, we note that the model 

specification in Eq. (1) already shows possible instability in its underlying parameters. For 

example, the intercept term, α0 = r⁎ − α1
⁎π⁎, can vary if the central bank's inflation target π⁎ 

changes. Furthermore, to the extent that the Federal Reserve is more concerned about high 

inflation than low inflation, the response of it is expected to be more dramatic when inflation is 

above the target rate than when inflation is below the target. Moreover, if it is more difficult for 

the Fed to reduce inflation than to increase inflation, the response of it should be greater for 

positive values of (πt − π⁎) than for negative values. Since similar arguments can be made 

regarding the relationship between it and the output gap, it seems reasonable to modify Eq. (1) 

to estimate the relationship between it, πt and yt in a threshold framework. However, this poses 

an important fundamental question. In order to correctly estimate a Taylor rule with threshold 

effects, we must first know if a threshold cointegrating relationship exists. 

Testing for threshold cointegration in a nonlinear Taylor rule is complicated by (a) the presence 

of the stationary covariate yt, (b) the presence of the lagged interest rate terms, and (c) the 

possibility that the variables in the model are jointly endogenous. While a researcher might want 

to include yt, it − 1 and it − 2 in a test for cointegration between it and πt in order to reduce the 

estimated variance of the error term, including these variables will cause the test statistics to 

depend on nuisance parameters. Perhaps for these reasons, the literature has been silent in 

providing evidence of threshold cointegration in a nonlinear Taylor rule. Indeed, the extant 

literature does not contain a straightforward threshold cointegration test without nuisance 

parameters. As we will demonstrate, by including stationary IV in our tests we can conduct 

statistical inference concerning cointegration and threshold behavior in a nonlinear Taylor rule 

without the need to resort to a bootstrap procedure. 

To preview our empirical findings, we show that the behavior of the Federal Reserve during the 

Burns–Miller period was very different from that during the Volcker and Greenspan periods. For 

each subsample beginning with the Paul Volcker era, our testing procedure indicates the 

presence of a significant threshold cointegrating relationship in a nonlinear Taylor rule. A 

particularly interesting result is that the Federal Reserve is far more policy active when inflation 

is high than when inflation is low. While these findings are robust to several different time 

periods, we find that the Federal Reserve was most aggressive to counteract inflation during the 

Greenspan era and least aggressive in the 1970s. 

The paper proceeds as follows. In Section 2, we describe our testing methodology. The 

asymptotic properties are derived and finite sample properties are examined in simulations. 



Proofs are provided in Appendix A. In Section 3, we present our empirical findings of testing for 

threshold cointegration in a nonlinear Taylor rule. Concluding remarks are provided in Section 4. 

 

2. ESTIMATION AND TESTING METHODOLOGY 

In this section, we present a general testing methodology for threshold cointegration that, with 

one caveat, avoids the nuisance parameter problem. Consider the following threshold 

autoregressive distributed lag (ADL) model: 

 (2a) 

Δx1t=[α11x1,t−1+α′12x2,t−1+ϕ′11dt+ϕ′12st]I1t+[β11x1,t−1+β′12x2,t−1+γ′11dt+γ′12st]I2t+u1tΔx1t=[α11

x1,t−1+α′12x2,t−1+ϕ′11dt+ϕ′12st]I1t+[β11x1,t−1+β′12x2,t−1+γ′11dt+γ′12st]I2t+u1t 

 (2b) 

Δx2t=[α21x1,t−1+α′22x2,t−1+ϕ′21dt+ϕ′22st]I1t+[β21x1,t−1+β′22x2,t−1+γ′21dt+γ′22st]I2t+u2tΔx2t=[α21

x1,t−1+α′22x2,t−1+ϕ′21dt+ϕ′22st]I1t+[β21x1,t−1+β′22x2,t−1+γ′21dt+γ′22st]I2t+u2t 

 (2c) 

I1t=I(ht>τ)andI2t=1−I1t, 

where xt = (x1t, …, xpt)′ is a p-dimensional I(1) time series, dt includes a constant term (or all 

relevant deterministic terms) and lagged differenced terms that correct for serial correlation, st 

includes one or more stationary right hand variables, and ut ~ N(0, Σ). I1t is a Heaviside indicator 

such that I1t = 1 if ht > τ and I1t = 0 otherwise, where ht is the threshold variable (or function) and 

τ is the threshold value or parameter. If desired, we can allow for a delay parameter d, where ht 

is replaced throughout with ht − d. Following Li and Lee (2010), we adopt percentiles of the 

threshold variable and consider different indicator functions where the threshold variable ht can 

be I(0) as in Hansen and Seo (2002) or I(1) as in Seo (2006). When ht is I(0), 

 (3a) 

I1t=I(ht>τ)=I(ht>ht*(c))→I(U(r)>c),I1t=I(ht>τ)=Iht>ht*c→IUr>c, 

where ht
⁎(c) denotes the threshold value which is the c-th percentile of the empirical distribution 

of ht and U(r) is a univariate process having a uniform distribution on r ∈ [0,1]. Alternatively, 

when ht is I(1), 

 (3b) 

I1t=I(ht>τ)=I(σ−1T−1/2ht>σ−1T−1/2ht*(c))→I(W(r)>W*(c)),I1t=I(ht>τ)=Iσ−1T−1/2ht>σ−1T−1/2ht*

c→I(Wr>W*(c)), 

where W(r) is a Brownian motion on r ∈ [0,1], σ2 = T− 1E(∑Δht)2∑Δht2, ht
⁎(c) denotes the 

threshold value which is the c-th percentile of the empirical distribution of the normalized ht, and 



W*(c) is a Brownian motion using a sorted time series evaluated at the c-th percentile. Thus, in 

both indicator functions, the threshold parameter is transformed into the percentile parameter. 

Note that unlike in Seo (2006), it is unnecessary to assume a fixed threshold value that 

vanishes asymptotically.4 

In this paper, we will consider a single equation threshold version of the threshold ADL 

cointegration test. If the variable x2t in Eq. (2b) is weakly exogenous, it is necessary to add Δx2t 

as a regressor in the equation describing the conditional expectation of Δx1t given Δx2t. Then, 

we can consider the following conditional model in a single equation testing regression: 

 (4) 

Δx1t=[α11x1,t−1+α′12x2,t−1+ϕ′11dt+ϕ′12st+ϕ′13Δx2t]I1t+[β11x1,t−1+β′12x2,t−1+γ′11dt+γ′12st+γ′13Δx2t

]I2t+u1t.Δx1t=[α11x1,t−1+α′12x2,t−1+ϕ′11dt+ϕ′12st+ϕ′13Δx2t]I1t+[β11x1,t−1+β′12x2,t−1+γ′11d

t+γ′12st+γ′13Δx2t]I2t+u1t. 

We consider the following hypotheses for the null (H0) of no cointegration against the alternative 

(Ha) of cointegration in at least one regime: 

equation(5a) 

ADLH0:α11=β11=0againstHa:α11<0orβ11<0or both 

 (5b) 

 

Note that Eq. (5b) imposes the additional restriction that the coefficients of x2,t − 1 equal zero, as 

advocated by Boswijk (1994) for ADL linear cointegration models. 

Throughout, we adopt instrumental variables (IV) estimation to avoid nuisance parameter 

problems. We begin with the simplest case where the value of the threshold parameter (τ) is 

known. Consider the stationary instruments, wit, defined as: 

(6) 

wit=xi,t−1−xi,t−m,i=1,…,p,wit=xi,t−1−xi,t−m,i=1,…,p, 

where m is a finite number, m ≪ T. Clearly, wit is stationary whether or not the model is 

cointegrated. For instance, wit = (xi,t − 1 − xi,t − 2) + … + (xi,t − m + 1 − xi,t − m) = Δxi,t − 1 + … + Δxi,t − m + 1, 

where each term in the summation is stationary, even if xit is I(1). We use wit as an instrument 

for xi,t − 1, since these two variables are correlated (under the null and alternative) while wit is 

uncorrelated with uit.
5 Specifically, to estimate Eq. (4), we employ a set of stationary instruments 

(w1tI1t, w1tI2t, w2tI1t, w2tI2t) for the I(1) regressors (x1,t − 1I1t, x1,t − 1I2t, x2,t − 1I1t, x2,t − 1I2t). 

For brevity, we rewrite Eq. (4) in the general form: 



 (7) 

  

where θ = (α′, β′)′ and b = (ϕ′, γ′)′. Eq. (7) contains two subsets of variables (zt, qt), where zt is 

the set of lagged I(1) variables to be instrumented and qt is the remaining set of regressors, 

including any deterministic terms, lagged differences, and stationary covariates in the testing 

regression (4). Each of zt and qt can be decomposed into the terms operable in each regime; 

that is, zt = (z1t, z2t′)′ with z1t = (x1,t − 1I1t, x2,t − 1
′I1t) and z2t = (x1,t − 1I2t, x2,t − 1

′I2t)′, and qt = (q′
1t, q

′
2t)′ 

with q1t = (dt′I1t, st′I1t, Δx2tI1t)′ and q2t = (dt′I2t, st′I2t, Δx2tI2t)′, respectively. 

We can use the simplified expressions in Eq. (7) controlling for the effect of qt to examine the 

parameter θ. The effect of qt can be easily controlled for by using the residuals from the 

regression of xt on qt. Letting z = (zm + 1, …, zT)′ and q = (qm + 1, …, qT)′, we obtain the residuals 

as z˜ = Mqz, where Mq is the projection onto the orthogonal space of qt with 

Mq = IT − m − q(q′q)− 1q′. Similarly, we obtain the residuals w˜ = Mqw, where w = (wm + 1, …, wT)′. 

Then, we can use w˜ with w˜t = ( w˜1tI1t, w˜1tI2t, w˜2tI1t, w˜2tI2t)′ as the 

instruments for z˜. It is important to notice that the deterministic terms and stationary 

covariates in qt = (dt, st) contain lower order terms Op(T
− 1/2) that vanish asymptotically. We let 

ξt = (ξ1t,…, ξpt)′ with ξit = ui,t − 1 + … + ui,t − m. Specifically, the following results hold under the null: 

 (8) 

 

 

 (9) 

 

Note that the stationary covariates do not affect the asymptotic distribution of the test statistic, 

since they are simply the element of qt that enters the second terms in Eqs. (8) and (9). Instead, 

as in Hansen (1995), adding the stationary covariates st to the testing regression reduces the 

variance of the estimated residuals, implying an increase in power. By including stationary 

covariates our IV tests gain power without affecting the standard null distributions.6 If qt = (dt, st) 

includes the usual trend, or higher order trends, the estimated coefficients will be properly 

normalized and have standard normal distributions. 



To estimate Eq. (7) we can use the 2SLS estimator in the usual software packages. The 

following Wald statistic can be considered to test the null hypothesis (5a) and (5b): 

equation(10) 

 

where σ^12 is the estimated error variance from Eq. (4), and R is a selection matrix to 

impose the restrictions under the null hypothesis (5a) and (5b). We denote the Wald statistics 

from Eq. (10) as ADL⁎ and ADL2⁎ to test the null hypotheses in Eqs. (5a) and (5b), respectively. 

Theorem 1. Suppose that α1j = β1j = 0, j = 1, 2, in the data generating process in Eq.(4)and the 

threshold parameter τ is known. Then, for each of the null hypotheses in Eqs. 

(5a) and (5b)under Assumption 1, as T → ∞, the Wald statistic given in Eq.(10)follows 

 

 where r is the number of restrictions on α1jand β1j, j = 1, 2, and t‐stat(α1j)→Z and t‐stat(β1j)→Z. 

Proof. See appendix of Enders et al. (2009). 

Theorem 1 implies that the asymptotic distributions of the Wald statistics ADL⁎ and ADL2⁎ are 

free of nuisance parameters. Specifically, the limiting distributions of the Wald statistics and t-

statistics do not depend on the linear deterministic terms dt, the number of regressors, and, 

more importantly, the presence of any stationary covariates, st. Thus, the results for the linear IV 

cointegration tests of Enders et al. (2009) are extended to the nonlinear threshold tests. 

Therefore, statistical inference tests for threshold cointegration and nonlinearity can all be 

conducted using standard distribution theory.7 This property is in sharp contrast to the tests 

using OLS estimation. Note also that the distribution of the Wald statistic does not depend on 

the threshold indicator function ht or the threshold parameter τ. Thus, the threshold variable can 

be any I(1) or I(0) variable or combination of variables. Whereas previous papers on threshold 

cointegration rely on the error correction term or its first difference to serve as the threshold 

variable, we can also model the threshold function in more flexible forms. For example, when 

we estimate the Taylor rule in Section 3, we let the threshold parameter depend on a weighted 

average of the past inflation rate and the output gap. 

 

2.1. IV tests with an unknown threshold 

In the above, we have assumed that the threshold parameter τ is given or known to the 

researcher. However, if τ is unknown and must be estimated, then the relevant test statistic for 

our cointegration test depends on whether or not a threshold value is identified under the null 

hypothesis. To explain, note that under the null hypothesis in Eqs. (5a) and (5b), the threshold 

parameter is not identified if ϕ = γ in Eq. (7). In such cases, the well-known Davies (1987) 

problem will occur if nonlinearity is confined to the cointegrating terms. However, if ϕ ≠ γ, a 



threshold parameter τ can be identified regardless of whether the null hypothesis of no 

cointegration holds in Eqs. (5a) and (5b). Hence, we have two cases to consider that we 

summarize by the following condition: 

Condition 1. In Eq. (7), ϕ = γ. 

Note that Condition 1 requires a strong assumption that the corresponding parameters in ϕ and 

γ should be identical in each regime. If any of the parameter values of ϕ and γ are significantly 

different, this condition is not satisfied. In contrast, if Condition 1 does not hold, then the model 

is a threshold process under the null and alternative hypothesis. Given that the threshold 

parameter must be estimated, the Wald statistic in Eq. (10) can be defined as: 

equation(11) 

 

where τ^ is the estimated threshold parameter, z˜*=z˜τ˜ and 

w˜*=w˜τ^. Thus, in Eq. (2c), we replace I1t = I(ht > τ) with I1t( τ^) = I(ht > τ^), and I2t

τ^ = 1 − I1t( τ^). As in Eqs. (3a)–(3b), the estimate of the threshold parameter is transformed 

into a percentile of the threshold variable. 

To find the asymptotic distribution of Wald( τ^) in Eq. (11), we retain Assumption 1 and, in 

Appendix A, show that8: 

Theorem 2. Suppose that α1j = β1j = 0, j = 1, 2, in the data generating process in Eq.(4), and the 

threshold parameter τ is unknown. Then, for each of the null hypotheses in Eqs. 

(5a) and (5b)under Assumption 1, as T → ∞, 

(a) 

If Condition 1holds such that ϕ = γ, the Wald( τ^) in Eq.(11)has a nonstandard distribution as 

given in Eq. (A.15) ofAppendix A. 

(b) 

If Condition 1does not hold such that ϕ ≠ γ, the Wald( τ^) in Eq.(11)approaches the same chi-

square distribution as the Wald statistic in Eq.(10)with a known threshold parameter τ. 

Proof. See Appendix A. 

The key point is that if Condition 1 does not hold, τ can be consistently estimated under the null 

hypothesis of no cointegration and the Davies (1987) problem will not occur. This outcome 

occurs in partial stability models where a subset of parameters is allowed to differ, regardless of 

whether the persistence parameters differ in each regime. This outcome can occur, for example, 

if there are shifts in the mean and/or different short-run dynamics in different regimes. Then, 

when ϕ ≠ γ, and following Shin and Lee (2003), we obtain the result that τ^ is a consistent 



estimator of τ where T( τ^ − τ) = Op(1). In rare cases when Condition 1 holds, the Wald( τ^) in 

Eq. (11) will no longer have a standard distribution. This outcome is described by the well-

known Davies (1987) problem involving an unidentified nuisance parameter, and the asymptotic 

distribution of Wald( τ^) in Eq. (11) will no longer be chi-square. In such cases, following 

Davies (1987) and numerous other papers, we can tabulate bounds for the critical values of a 

supreme type statistic. We call this statistic SupWald, where 

  

τ^ is estimated by identifying the value where the Wald statistic is maximized, or equivalently 

where the sum of squared residuals is minimized. Note that the asymptotic distribution of 

SupWald will not depend on any other nuisance parameters, unlike in the corresponding OLS-

based tests; it is simply the order statistic of a chi-square distribution with a particular degree of 

freedom.9 The critical values of the SupWald test are provided in Table 1 for two different sets of 

trimming values over the search interval for the threshold parameter: (c1, c2) = [0.15, 0.85] and 

(c1, c2) = [0.10, 0.90].10 

 

 

 

Since a researcher may not know if Condition 1 holds in the data generating process (DGP), it 

might be tempting to take a conservative approach and use the wide confidence intervals 



provided by the SupWald critical values in Table 1 (instead of the values from a χ2 table). 

However, it is important to note that while we include the SupWald test for completeness we 

recommend against its use in empirical applications. To explain, it is easy to over-fit the data 

with a nonlinear model, and we strongly agree with those cautioning against estimating a 

nonlinear model unless there are compelling reasons to do so. 

Hence, there is a caveat to our claim that the IV tests are invariant to nuisance parameters. Our 

test does not enable the researcher to distinguish whether Condition 1 holds and the 

appropriate critical values for the SupWald test will depend on the difference between ϕ and γ. 

As such, the magnitude of |ϕ − γ| becomes a nuisance parameter for the SupWald test and the 

test statistic diverges asymptotically as the difference between ϕ and γ increases in the DGP.11 

The point is that the SupWald test is not a test for linear versus nonlinear adjustment. 

 

2.2. Finite sample performance 

In order to examine the small-sample properties of our test, we perform several Monte Carlo 

experiments using the DGP: 

 (12) 

 

 where vt ~ N(0, σv
2), ut ~ N(0, σu

2), and εt ~ N(0, σε
2). This DGP is similar to that in Kremers et 

al. (1992), except that we explicitly include the stationary covariate st. Notice that ρ captures the 

persistence of the stationary covariates and that δ indicates the strength of the cointegrating 

relationship. Under the null of no cointegration, δ = 0 and under the alternative, δ < 0. In order to 

conserve space, we report simulation results for 5000 Monte Carlo replications using ρ = 0.9, 

T = 100, and δ = [0, − 0.1]. We report the size and power of our tests using the asymptotic chi-

square distribution at the 5% significance level. The value of m is selected to minimize the sum 

of squared residuals. 

We consider four indicators with different threshold variables: ht − 1, Δht − 1, I(1) and I(0). The 

variables ht − 1 and Δht − 1 capture asymmetric level and momentum threshold effects, 

respectively, using the residuals (in differences) from the cointegrating regression in levels, 

x1t − βx2t. I(1) and I(0) represent any arbitrary independent I(1) or I(0) threshold variable from 

inside or outside the model. In our simulations, we use the median value of the threshold 

variable as the threshold parameter. To examine the effect of using different signal–noise ratios, 

we set σv
2 = 1, θ = 1, and consider different values of σu. We consider the cases of (φ, 

σu) = (1.0, 1), (0.5, 6), and (0.5, 16), respectively. 

The simulation results for ADL⁎ and ADL2⁎ are displayed in Table 2. We begin by examining the 

results in Panel A, where the stationary covariate st is omitted. It is clear that all of the IV 

threshold cointegration tests are invariant to the signal–noise ratio under the null δ = 0. Although 



the tests show a mild negative size distortion (under rejections), except with the I(1) threshold 

variable, overall, the tests have reasonable size properties with virtually no over rejections. It is 

important to note that the power increases dramatically as the signal–noise ratio increases. The 

intuition is clear: the contemporaneous regressor Δx2t in Eq. (12) acts as a stationary covariate 

and the power increases as the signal–noise ratio increases. This phenomenon can be 

explained in the same spirit as when adding stationary covariates to unit root tests as described 

by Hansen (1995). However, while the OLS-based unit root or cointegration test with stationary 

covariates has a nuisance parameter problem under the null, the IV based tests do not entail 

this problem.12 In contrast, in the IV based tests the size properties under the null are unaffected 

by including Δx2t or stationary covariates, and the power increases significantly under the 

alternative. Moreover, while it can be difficult to find desirable stationary covariates in unit root 

tests, this is not the case here, since Δx2t is naturally included in the testing regression and acts 

a stationary covariate. While the size and power properties differ somewhat depending on the 

threshold variable, the differences are small. 



 

 

In Panel B of Table 2, we examine the effect of explicitly including the stationary covariate 

variable st in the testing regression. The results under the null differ little from those in Panel A. 

We still observe (somewhat greater) negative size distortions under the null, but with no over 

rejections. The sizes are again unaffected by the signal–noise ratio. In particular, the sizes do 

not depend on the values of ρ and ψ in Eq. (12) that describe the stationary covariates. Most 

important, the power increases when the stationary covariate st is included, and increases 

monotonically as the value of ψ increases and/or as the signal–noise ratio increases. Again, the 

size properties are virtually the same regardless of the threshold variable that is adopted. 



3. EMPIRICAL RESULTS 

To estimate a Taylor rule in the form of Eq. (1), we obtained monthly observations of the federal 

funds rate from the Federal Reserve Bank of St. Louis' data base FRED II 

(http://research.stlouisfed.org/fred2/). Unlike interest rates, price and output data can be subject 

to substantial revisions. As pointed out by Orphanides (2001), to best ascertain the behavior of 

the Federal Reserve it is necessary to use the data actually available to the Fed at the time their 

decisions are made. As such, we obtained real-time data on real output and the output price 

index, pt, from the Philadelphia Federal Reserve Bank's website. 

Since the output and price data is reported quarterly and the interest rate data is reported 

monthly, we use the quarterly average of the federal funds rate as the dependent variable it. We 

follow standard practice and construct an inflation measure, πt, as the average inflation rate 

over the past year. Specifically, 

πt=100(lnpt−lnpt−4),πt=100lnpt−lnpt−4, 

where all values of pt − i are the real-time price indices for time period t − i reported at time period 

t. 

Several different methods have been proposed to measure the output gap, yt. Since we use the 

data set originally constructed by Croushore and Stark (2001), we adopt their methodology and 

filter the real output data with an HP filter. As indicated in Croushore and Stark (2001), our aim 

is not to ascertain the way that real output evolves over the long-run. Instead, the goal is to 

obtain a reasonable measure of the pressure felt by the Federal Reserve to use monetary policy 

to affect the level of output. Since we use real-time data, we first HP filter the entire real-time 

output series available for each time period t. We construct yt as the percentage difference 

between the values of real-time output and the HP filtered output.13 

 

3.1. Results using linear models 

We first examine the Taylor rule in a linear framework. In Table 3, we report estimates of the 

Taylor rule for five sample periods often examined in the literature. The 1970:1–1979:2 period 

represents the tenure of William Martin, Arthur Burns and G. William Miller as Federal Reserve 

chairmen. The so-called Volcker–Greenspan period spanned 1979:4–2005:4. A number of 

empirical papers omit the first few years of this period since the Fed experimented with money 

base targeting in the early part of the Volcker period. The pure Greenspan period begins in 

1987:4 and ends in 2005:4. 

 



 

There are several important issues to note about the estimates shown in Table 3. For all time 

periods, the estimated coefficients on πt and yt are positive and usually significant at 

conventional levels. However, there are some problems with the estimates that might be 

dubbed “Some unpleasant Taylor rule arithmetic.” Specifically: 

 The coefficients, or the sum of the coefficients, on the lagged federal funds rate are all 

quite large. Although this is often referred to as ‘interest rate smoothing,’ the amount of 

smoothing seems excessive. In fact, the estimates are close enough to unity to suggest 

the possibility of a unit root in the federal funds rate. Of course, it could also be argued 

that it, πt and yt are jointly endogenous variables so that GMM estimation is preferable to 

OLS estimation. Nevertheless, there are several other problems that are unlikely to be 

resolved by GMM estimation. 

 As shown in Table 4, diagnostic checking indicates that the interest rate and inflation 

variables act as unit root processes. Specifically, Dickey–Fuller tests indicate that for all 

sample periods ending in 2005:4 it is not possible to reject the null hypothesis of a unit 

root plus drift (against an alternative of stationary about a fixed mean) in either it or πt. 

When intercepts are included in the unit root test equations, the output gap appears to 

be stationary over the entire sample period, but it is not clear whether yt acts as a 

stationary process during the 1970:1–1979:2 and 1987:4–2005:4 sub-periods. A well-

known problem of the Dickey–Fuller test is that it loses power in the presence of 

deterministic regressors in the estimating equation that are not in the data generating 

process. For all sample periods under consideration, the HP filtered output gap had a 

mean near zero. Moreover, the intercepts in the Dickey–Fuller τμ test were all 

insignificant at any conventional significance level. When these insignificant intercept 

terms were eliminated from the τμ version of the Dickey–Fuller test, the null hypothesis of 

a unit root in yt could be rejected at the 1% level in all sub-periods. Therefore, we will 

proceed with the assumption that yt is stationary in all periods. 

 The possibility of nonstationary variables implies that the Taylor rule equation is spurious 

unless the I(1) variables are cointegrated. Even if the variables turn out to be 

cointegrated, the distribution of the coefficient estimates obtained by using OLS (or 

GMM) do not have the usual properties since they multiply nonstationary variables. 



 

 

Given the above, the first important task is to check for the existence of a cointegrating 

relationship among the nonstationary variables. Respectively, Table 5 and Table 6 report the 

results of the Engle–Granger and Johansen linear cointegration tests for the various sample 

periods.14 At conventional significance levels in the Engle–Granger tests, the null hypothesis of 

no cointegration could not be rejected in any of the sample periods. When we used the 

Johansen test, the null hypothesis of no cointegration could be rejected only for the Volcker–

Greenspan period (1979:4–2005:4). In this period, the sample values of λmax and λtrace of 18.50 

and 22.13 exceeded the 5% asymptotic critical values of 15.67 and 19.96. Nevertheless, the 

estimated cointegrating relationship is problematic since the long-run relationship is 

it = − 59.666 + 29.092πt and the speed of adjustment coefficients are both positive. The only 

evidence of a reasonable cointegrating relationship was for the Greenspan period (1987:4–

2005:4) when we checked for cointegration between it, πt and yt. When yt was treated as I(1), 

the estimated cointegrating relationship for this period is: 

 (13) 

it=–5.783+4.283πt+6.991yt. 

 



 

 

 

With three variables in the potential cointegrating relationship, the sample values of λmax and 

λtrace of 24.63 and 36.69 exceeded the 5% asymptotic critical values of 22.00 and 34.91, 

respectively. There was no strong evidence of a second cointegrating vector. Inflation and the 

output gap appear to be weakly exogenous, while the speed of adjustment coefficient for it was 

− 0.075 with a t-statistic of − 4.965. Yet, some would argue with this finding since it is unlikely 

that yt actually contains a unit root. Still more would be concerned that the sample period 

contains only 65 observations whereas each equation in the 8-lag VAR has 40 coefficients. 

 

3.2. Threshold estimation 

We began by estimating a baseline OLS threshold model using Chan's (1993) method to obtain 

a consistent estimate of the threshold value τ. The form of the baseline model is: 

it=[α0+α1πt+α2yt+α3it−1+α4it−2]I1t+[β0+β1πt+β2yt+β3it−1+β4it−2]I2t+εt,it=α0+α1πt+α2yt+α3it−1+α

4it−2I1t+β0+β1πt+β2yt+β3it−1+β4it−2I2t+εt, 

where I1t is the Heaviside indicator that I1t = 1 if πt − d > τ and I1t = 0 otherwise, I2t = 1 − I1t; and d 

is the delay parameter estimated as the integer value of d = 1 or 2 that results in the smallest 

residual sum of squares. 

The results for all five sample periods are shown in Table 7. In examining the table, note that for 

all periods except 1970:1–1979:2, the prob-values of Hansen's (1997) threshold test are all 

strongly supportive of threshold behavior. Consider the estimates for the 1979:4–2005:4 sample 

period: 



 (14) 

 

where d = 1 and τ^ = 5.517. 

 

 

 

In the threshold model, both the intercept terms and the slope coefficients determine the degree 

of feedback between πt and it. For any given value of it − 1, as πt − 1 begins to exceed the 

threshold value of 5.517, it increases by (6.023 + 0.088) + (0.588 − 0.196)πt + (1.356 − 0.232) 

yt. For all values of πt and yt in the data set, the increase in it is sufficient to ensure that it − πt is 

much greater when πt − 1 ≥ 5.517 than when πt − 1 < 5.517. Also notice that there is far more 

interest rate smoothing when inflation is below the threshold than when it is above the threshold. 

Overall, the point estimates of the coefficients suggest that the Fed is far more policy active in 

the high inflation regime than in the low inflation regime. 

 



3.3. Estimates with stationary instruments 

Although these results are interesting, the properties of the parameter estimates based on the 

usual OLS estimation are unknown because the estimated coefficients do not have a standard 

normal distribution and it is not clear whether the regression equations are spurious. We begin 

by testing for cointegration using the instruments I1t(it − 1 − it − m), I2t(it − 1 − it − m), I1t(πt − 1 − πt − m), 

and I2t(πt − 1 − πt − m) for the variables I1tit − 1, I2tit − 1, I1tπt − 1, and I2tπt − 1, respectively.15 As a result, 

the distributions of α1, β1, α2, and β2 are multivariate normal. The assumption that the inflation 

rate is weakly exogenous means that I1tΔπt and I2tΔπt can be included as additional stationary 

covariates in the testing regression. 

In the ADL version of the test, if we can reject the restriction that α11 = β11 = 0, it follows that the 

interest rate and inflation rate are cointegrated. In the ADL2 version of the test, if we reject the 

null hypothesis that all four values of α11 = β11 = α12 = β12 = 0, we can conclude that the interest 

rate and inflation rate are cointegrated.16 In the form presented above, the residuals of the two 

ADL equations had serial correlation; we corrected this problem by using lagged values of the 

dependent variables.17 The estimates for the four sample periods exhibiting threshold behavior 

are shown in Table 8. 

 

 

 

Consider the estimated single equation ADL threshold cointegration test of the nonlinear Taylor 

rule for the 1979:4–2005:4 time period with I1tΔπt and I2tΔπt: 

 (15) 



 

The coefficients of I1tit − 1 and I2tit − 1 are both negative and the t-statistics indicate that both are 

significantly different from zero using a one-sided test. As shown in the right side of Table 8, the 

test for the joint restriction that both coefficients equal zero has a prob-value of 0.002 and the 

test for α11 = β11 = α12 = β12 = 0 also has a prob-value of 0.001. As such there is strong evidence 

of a threshold cointegrating relationship with the inflation rate acting as a weakly exogenous 

variable. Notice that the response is quite similar across the two regimes. Table 8 also reports 

the IV estimates for the other sample periods (with and without I1tΔπt and I2tΔπt). Although most 

of the results are similar to those of Eq. (15), it is interesting that, for the 1983:1–2005:4 period, 

the left-hand-side of Table 8 indicates that we cannot reject the null of no cointegration using 

either the ADL or ADL2 form of the test. This result seems problematic since cointegration is 

found to hold over all of the other periods in the sample. However, when we include I1tΔπt and 

I2tΔπt in the testing equation, the null hypothesis of no cointegration is rejected using either test. 

Overall, in every sample period we find more rapid adjustment to the equilibrium predicted by 

the Taylor rule, and a greater policy response to counteract rising inflation, when inflation is 

above a threshold rate than below this rate. 

 

3.3.1. Other threshold functions 

We were earlier concerned that the Taylor rule estimates are spurious for the 1983:1–2005:4 

period even though the rule seems to work for the surrounding 1979:4–2005:4 and 1987:4–

2005:4 periods. At the risk of over-fitting the data, we experimented with several other possible 

threshold functions. Overall, no single threshold variable worked as well as the inflation rate. 

However, a simple modification of Taylor's original specification, such that the threshold is a 

weighted average of πt − d and yt − d, yielded interesting results for the 1983:1–2005:4 period. 

Consider the following threshold function: 

 

The idea is that the regime change depends on a threshold variable that is a combination of the 

inflation rate and output gap. Taylor's original specification suggested a weight of 0.5. However, 

experimentation with values of w equal to 0, 0.25. 0.5, and 0.75 indicated that the value 

w = 0.75 resulted in the best fit (as measured by the log of the determinant of the variance 

covariance matrix). Consider: 

 (16) 



 

where: τ = wπt − 1 + (1 − w)yt − 1 = 2.37. 

Notice that the point estimates of the lagged interest rate terms are both negative and the joint 

hypothesis that they are jointly equal to zero is rejected at the 0.004 significance level. 

Moreover, the coefficient on I1tπt − 1 is 0.676 and has a t-statistic of 2.24 whereas the coefficient 

on I2tπt − 1 is negative, but not statistically different from zero. The joint hypothesis that the two 

coefficients are jointly equal to zero has a prob-value of 0.077. It is important to note that the 

point estimates on the output gap coefficients are both positive and individually significant. As 

such, we conclude that the Federal Reserve also utilized the output gap as a threshold variable 

during at least part of the 1983:1–2005:4 period. Notice that the full response of the Fed's 

reaction to changes in yt − 1 depends on the slope coefficients for I1tyt − 1 and I2tyt − 1and on the 

intercepts since changes in yt − 1 can induce the system to cross the threshold value of 2.72. The 

key point is that the Taylor rule did hold during this latter if the threshold is viewed as time 

varying. 

 

4. CONCLUSION 

In this paper, we seek to fill an important gap in the literature by developing new threshold 

cointegration tests with stationary instrumental variables. An important advantage of our testing 

procedure is that the test statistics are asymptotically standard (normal or chi-square) and free 

of the nuisance parameter problems found in other threshold cointegration tests. We use these 

tests to estimate and test the validity of a nonlinear Taylor rule. While previous studies have 

estimated nonlinear Taylor rules, no previous studies have tested for nonlinear cointegration, 

due perhaps to the difficulty of successfully handling the nuisance parameter problem. In 

contrast to previous tests for threshold cointegration, our testing procedure permits standard 

inference, even in the presence of stationary covariates. Monte Carlo experiments indicated that 

our tests have reasonably good size and the power can be substantial when stationary 

covariates are included. Following the development of our testing methodology, we applied our 

test to examine several versions of the Taylor rule using U.S. quarterly real-time data from 1970 

to 2005. In our nonlinear models, the behavior of the monetary authority is hypothesized to 

depend on whether inflation is higher or lower than a threshold rate. In contrast to the linear 

case, our test results find significant evidence of cointegration in the nonlinear models. The 

estimated coefficients indicate that the Federal Reserve will increase the federal funds interest 

rate strongly when inflation exceeds a threshold. In contrast, we find substantial policy inertia 

when inflation is below the threshold. Comparing our sample periods, we find that the Federal 

Reserve was least aggressive to counteract inflation during the 1970s and most aggressive in 

the Greenspan era. Finally, we find that a threshold variable combining both inflation and the 

output gap can better explain monetary policy during the Greenspan era. 



Appendix A 

Proof of Theorem 1 

. See appendix of Enders et al. (2009). The result in Theorem 1 is an extension of the results in 

Enders et al. (2009). However, note that w˜ is defined differently here, where w˜t = (

w˜1tI1t, w˜1tI2t, w˜2tI1t, w˜2tI2t)′ are the instruments for z˜. 

Proof of Theorem 2 

. We assume that the threshold parameter is unknown. First, we examine the case where 

Condition 1 holds such that ϕ = γ. In such cases, any regime change is confined to the 

cointegrating terms and a threshold parameter τ is not identified under the null of no 

cointegration. In this case, the distribution of the Wald and t-statistics will be nonstandard and 

not chi-square. For the asymptotic distribution of the Wald statistic, we define a continuous 

residual process RP,Q(r) on r ∈ [0,1] for a continuous time regression P(r) = α′Q(r) + RP,Q(r) as 

RP,Q(r)=P(r)−∫Q(r)P(r)dr′∫Q(r)Q(r′)dr−1Q(r),RP,Qr=Pr−∫Q(r)P(r)dr′∫Q(r)Q(r)′dr−1Q(r), 

and the functional 

 (A.1) 

Ψ(R1,R2,Δ)=tr[(R′1R2Δ−1/2)′(R′1R1)
−1(R′1R2Δ−1/2)].Ψ(R1,R2,Δ)=tr[(R′1R2Δ−1/2)′(R′1R1)−1(R′1R

2Δ−1/2)]. 

Then, following Hansen and Seo, 2002 and Seo, 2006, SupWald can have the distribution 

(A.2) 

 

where R1 = Rw,q(r) with w = (wm + 1, …, wT)′ and q = (qm + 1, …, qT)′, R2 = RΔy,q(r) with Δy = (Δym + 1, 

…, ΔyT)′, and Δ = Σ^ is obtained from regression (7). The SupWald takes the bounded value 

of Wald( τ^) in Eq. (11) over the range on (c1, c2) ∈ (0, 1) and ci = F( τ^), i = 1, 2, is the 

empirical percentile of τ^ obtained from the data, regardless of whether the threshold variable 

is I(1) or I(0). The critical values of the bounded tests in Eq. (A.2) are provided in Table 1. 

Second, the more relevant case is the one where Condition 1 does not hold (ϕ ≠ γ). In this case, 

we have a partial stability model where a subset of the parameters will differ in two regimes. The 

threshold parameter is then identified from the differences in these parameters over different 

regimes. Finally, it is obvious that the Wald and t-statistics using a consistently estimated τ^ 

will have the same asymptotic distributions as using a known threshold parameter value as 

T → ∞. 

 

 



NOTES 

4. Note that Eqs. (2a) and (2b) differ from the usual threshold models, since they include one or 

more stationary right hand variables, st. In our analysis of the Taylor rule, we find that the output 

gap is stationary and we want to incorporate this information in our tests. Including stationary 

covariates in OLS-based cointegration tests is cumbersome, since the test statistics will critically 

depend on the nuisance parameter ρ2 describing the long-run correlation between ut and νt, 

where νt = ζ′st + ut; see Zivot, 2000 and Li, 2006. This outcome is the same in nature as when 

adding stationary covariates to unit root tests, as initially suggested in Hansen (1995). 

5. As noted, dt includes lagged differenced terms to correct for any serial correlation in u1t. 

6. It is well known from Hansen (1995) that including stationary covariates makes the usual 

OLS-based tests dependent on a nuisance parameter. 

7. A similar result was suggested by Shin and Lee (2003) for Cauchy IV unit root tests in 

asymmetric models. 

8. Seo (2006) suggests a test for threshold cointegration using the ECM specification. In his 

test, only α and β in Eq. (7) are subject to change in different regimes, while the restriction ϕ = γ 

is already imposed. In such cases, τ cannot be identified under the null of no cointegration. The 

test in Seo (2006) is based on OLS estimation. 

9. A similar approach was suggested by Shin and Lee (2003) in threshold unit root tests. 

10. These supreme tests using order statistics depend on the sample size T as well as the 

endpoints. The critical values of SupWald shown in Table 1 are based on the sample size 

T = 1000 obtained using 100,000 replications. Critical values using other sample sizes can be 

obtained from the authors upon request. 

11. The above situation is similar to that found in unit root tests allowing for structural change 

when the break point is unknown. The difference |ϕ − γ| virtually corresponds to the coefficient 

on the dummy variable allowing for structural change in unit root tests. When the break location 

is known or consistently estimated, the usual exogenous break unit root tests are invariant to 

this coefficient. However, the situation is different in the OLS endogenous unit root tests as they 

will critically depend on the break coefficient. In contrast to the exogenous test of Perron (1989), 

the OLS endogenous unit root tests assume no break under the null and tend to diverge as the 

magnitude of a break increases (Nunes et al., 1997 and Lee and Strazicich, 2001). Perron 

(2006) notes that these endogenous break unit root tests are invalid when the break coefficient 

is a nuisance parameter; see also Byrne and Perman (2007). 

12. In the baseline case without a nuisance parameter problem, the OLS-based threshold 

cointegration tests can be more powerful than the corresponding IV tests. However, while some 

OLS-based tests lose power when the signal–noise ratio increases, the power of the IV tests 

increases. Moreover, when stationary covariates are included, the IV based tests gain power 

without affecting the asymptotic null distribution. In our empirical tests, the null of no 

cointegration is most often rejected. 



13. Hence, a positive value of yt means that real-time output exceeds the level of ‘potential’ 

output. 

14. In our tables, we exclude the 1970:1–1979:2 sample period since it was found to be 

stationary over this period. 

15. For each time period, we begin by using the values of d and τ shown in Table 7. Given the 

value of d = 1 or 2, we selected m as follows. Holding the threshold value constant, we 

performed IV estimation using values of m = 4, …, 10 and selected the value of m resulting in 

the smallest residual variance. Using this value of m, we re-estimated the threshold value τ. We 

then choose the value of d that results in the smallest residual sum of squares using the optimal 

values of m and τ. As such, the values of d, m and τ are jointly determined. 

16. In order to save space, we do not report results treating the output gap as an I(1) process. 

When we experimented by including I1t(yt − 1 − yt − m) and I2t(yt − 1 − yt − m) as stationary 

instruments, the results were almost identical to those reported in the paper. In this case, 

instrumenting a possibly stationary variable had little effect on the results. 

17. For brevity, we do not report the stationary dynamics in the tables or in the text. 
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