Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/

Appalachian

STATE UNIVERSITY.
BOONE, NORTH CAROLINA

Southeastern Geology: Volume 13, No. 4
December 1971

Edited by: S. Duncan Heron, Jr.

Abstract

Academic journal published quarterly by the Department of Geology, Duke University.

Heron, Jr., S. (1971). Southeastern Geology, Vol. 13 No. 4, December 1971. Permission to re-print granted by
Duncan Heron via Steve Hageman, Professor of Geology, Dept. of Geological & Environmental Sciences,
Appalachian State University.



OUTHEASTERN
 EOLOGY

)

LISHED AT DUKE UNIVERSITY DURHAM, NORTH CAROLINA

'lOL.13 NO.4 DECEMBER, 1971



SOUTHEASTERN GEOLOGY
PUBLISHED QUARTERLY
A-T
DUKE UNIVERSITY

Editor in Chief:

S. Duncan Heron, Jr. Editors:

Wm. J. Furbish
George W. Lynts
Ronald D. Perkins
Orrin H. Pilkey

This journal welcomes original papers on all phases of
geophysics, and geochemistry as related to the Southeast. T
manuscripts to S. DUNCAN HERON, JR., BOX 6665, COLLE 3
TION, DURHAM, NORTH CAROLINA. Please observe the follo

(1) Type the manuscript with double space lines and
duplicate.

(2) Cite references and prepare bibliographic lists
ance with the method found within the pages of thi

(3) Submit line drawings and complex tables as finishe

(4) Make certain that all photographs are sharp, clear
good contrast.

(5) Stratigraphic terminology should abide by the Cod
graphic Nomenclature (AAPG, v. 45, 1961).

Proofs will not be sent authors unless a request to th
accompanies the manuscript, ]

Reprints must be ordered prior to publication.
available upon request.

o e sk sk ok

Subscriptions to Southeastern Geology are $5.00 p
Inquiries should be addressed to WM. J. FURBISH, BUSII
CIRCULATION MANAGER, BOX 6665, COLLEGE STATION, L
NORTH CAROLINA. Make check payable to Southeastern



SOUTHEASTERN GEOLOGY
Table of Contents
Vol. 13, No. 4

1971

Post-Yorktown Ercsional Surface,
Pamlico River and Sound, North
Carolina
Charles W, Welby .

Cartilaginous Fishes of the Trinity
Group and Related Rocks (Lower
Cretaceous) of North Central
Texas
John T. Thurmond .

Fortran Program for Missing Data

Factor-Vector Analysis (IBM-360-75):

W:ith Text Example
George W, Lynts
Neal L. Paris. . .

Eryopsid Remains from the Conemaugh
Group, Braxton County, West Virginia
James L., Murphy .

Distribution of K, MG, SR, FE, MN
and ZN, in Crassostrea Virginica
Shells

Herbert L. Windom
Ralph G. Smith
Frank Bousquet . .

199

207

229

265

275



POST-YORKTOWN EROSIONAL SURFACE, PAMLICO

RIVER AND SOUND, NORTH CAROLINA

By

Charles W. Welby
Department of Geosciences
North Carolina State University at Raleigh
Raleigh, North Carolina

ABSTRACT

Results of a High Resolution Boomer survey in the Pamlico
River and in Pamlico Sound show that the Pamlico and Pungo Rivers
follow depressions eroded into the Yorktown Formation during post-
Miocene time, Pleistocene sediments provide the fill for the channels.
Paleotopography appears to have influenced the ultimate locaticn of
some of the present-day shoal areas, and it is speculated that the posi-
tions of Ocracoke Island and Ocracoke Inlet may be related to the con-
figuration of the erosion surface etched into the Yorktown beds. The
convex-to-the-sea form of the Outer Banks north of Cape Hatteras may
be related to the presence of an erosional high extending eastward from
the Pungo River,

INTRODUC TION

Outcrops of the Late Miocene Yorktown Formation are scatter-
ed over a large area of the Atlantic Coastal Plain in northeastern North
Carolina. East of the main outcrop belt (Stuckey, 1958) wells and pits
encounter the formation at varying depths beneath the present land sur-
face, and, in general, the exact configuration of the contact between
the Yorktown and the overlying deposits is not known. Results from a
High Resolution Boomer study of the Pamlico River-Pamlico Sound
area of North Carolina (Figure 1) permit descriptionof the erosion sur-
face developed on the Yorktown beds and a discussion of the influence
of post-Miocene, and presumably pre-Pleistocene erosion, on post-
Miocene sedimentation and on the present geomorphology. The boun-
daries of the area surveyed are indicated by the limits to the contours
of Figure 2.

In 1967 and 1969 High Resolution Boomer surveys utilizing equip-
ment owned by Edgerton, Germerhausen, and Greer were made in the
Pamlico River and in Pamlico Sound. A total of approximately 700
line-miles of continuous profiles were obtained. Well logs from
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Figure 1. Pamlico River and Sound area.

published sources (Kimery, 1965) as well as information supplied
Texas Gulf Sulphur Company, F. M. C. Corporation, and Dresser Mi
erals were utilized in identifying the reflector that marks the top of )
Yorktown Formation in the region., Traverses were run to wells dri
ed in the Pamlico and Pungo Rivers and close inshore near wells dr
ed on land, The top of the Yorktown Formation is a good reflec
throughout the area studied, and little difficulty was found in tracin
away from the well control. Near the eastern edge of the area the de
to the top of the Yorktown caused the reflectionto be weak although i
still recognizable at depths of 150 to 180 feet.
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goil Conservation Service assisted by drilling five power auger holes in
the Swan Quarter-Pungo River area.

Students who have assisted in data acquisition and record inter-

retation include Lewis Brown, John Watson, Bobby Wilson, and John

Sherrill.
The assistance and contributions of all are gratefully acknow-

ledged.

DISCUSSION

The map of Figure 2 shows the present-day configuration of the
contact between the Yorktown Formation and the overlying sediments.
Relief on the surface varies from locality to locality but is greater adja-
cent to the Pungo River and east of its mouth than in the area to the
west. Relief averages between 40 and 50 feet where erosion has cut
relatively deeply into the Yorktown beds, Elsewhere relief is less,

Particularly noteworthy are the relatively narrow channels cut
into the Yorktown along the Pungo River and in the Swan Quarter area
and the general restriction of the Pamlico River to an area channeled
into the Yorktown beds. The local steepening of the gradient near the
junction of the Pamlico River with the Pungo River suggests that the
Pungo River may have been the dominant stream at the time the surface
was being eroded. Although no Boomer traverses were run eastward
from Belhaven in the Pungo River, sparse well control suggests that
this part of the river follows a weli-defined erosional depression.

Well log data supplied by J. Hird of Texas Gulf Sulphur Com-
pany (personal communication, 1969), by J. Sampair of the North Caro-
lina Division of Mineral Resources (personal communication, 1970), to-
gether with information from five power auger holes drilled east of the
Pungo River by R, B. Daniels and E. Gamble of the Soil Conservation
Service show that the top of the Yorktown rises abruptly near the edge
of the Pungo River and Pamlico Sound. It appears that the major in-
dentations on the north shore of Pamlico Sound are related to stream
valleys carved into the Yorktown beds. These channel-ways were ap-
parently drainage paths from the higher areas north of Pamlico Sound
into the Pamlico River-Pungo River complex., The axis of the complex
lies near the north shore of Pamlico Sound.

Two major shoal areas in the western part of Pamlico Sound,
Brant Island Shoal and Middle Ground, are situated geographically over
and near local highs on the top of the Yorktown. Study of the Boomer
records indicates that these irregularities influenced post-Yorktown
sedimentation, West of Ocracoke Island a local, northeast-trending
high approximately parallels the island.

In the Pamlico Sound area, the bulk of the post-Yorktown geo-
logic column appears to be Pleistocene in age. It is believed that the
erosion of the Yorktown occurred during Pliocene and Pleistocene time.
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The exact dating of the period of erosion requires more information
bout the age of the sediments lying directly upon the erosion surface
the Swan Quarter area and beneath Pamlico Sound. i

The lowest post- Yorktown sediments of the Brant Island Sp
area pinchout against the high, Where individual reflecting horig.
can be traced across Brant Island Shoal, intervalsbetween twohorize
usually thin beneath the shoals. Alsothe horizons are slightly
in the vicinity of the shoals than they are to the north., The reflect:
horizon marking the base of the present shoals, both Brant Island Sh.
and Middle Ground, is slightly higher beneath the present shoals th
adjacent areas,

The picture in the Middle Ground area is less clear, Howewy
the individual intervals between reflecting horizons appear to thin
they cross beneath Middle Ground, and the depressions on the Yo
surface, shown in Figure 2, appear as low areas on various locaz
flecting horizons as well as on reflecting horizons that extend awa.y’
the Middle Ground area. :

Although the present configurations of Brant Island Shoal ;

shoals. In general, the effects of the irregularities at the top of
Yorktown decrease upward in the section. ;

Well data supplied by J. Sampair (personal commumcahon,
for two wells, one approximately four miles southwest of Pam

Pamlico Sound, The influence of the topographic irregularities on
erosion surface at Middle Ground and Brant Island Shoal appears ¢l
ly as changes in rates of thickening, reflected in the spacing of the
tours on the isopach map across Brant Island Shoal and at the wes!
end of Middle Ground, Along a line from near the center of Bran
land Shoal to a point about two miles west of the west end of }
Ground the lower approximately one-quarter of the post-Yorktow
tion pinches out against the eroded Yorktown beds. Data pres
available do not permit determination of whether or not the pi.
extends northwestward beyond the latitudc¢ of Middle Ground.
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East of Brant Island Shoal and Middle Ground the post-Yorktown
sediments form a gradually thickening wedge both beneath the water-
covered areas and beneath the adjacent land surfaces. The greater
thicknesses lie beneath Pamlico Sound.

Fossils obtained from auger holes near Swan Quarter and along
the eastern edge of the Pungo River indicate that the bulk of the post-
vorktown sediments lying beneath the present-day land surface in this
area was deposited in an open marine environment. Richards (1966)
describes a collection of Pleistocene fossils from near Swan Quarter
and states that he believes they represent an open marine environment.
He assigns a Sangamon age to them.

The High Resolution Boomer records from near the mouth of the
pamlico River, from the Pungo River, and from the Swan Quarter area
show individual post-Yorktown reflecting horizons from well beneath
the present bottom rising toward present-day land areas (Brown and
Wwelby, 1970; Welby, 1971). At Swan Quarter reflecting horizons can
be correlated directly with lithologic changes in the auger hole (Welby,
1971). As the present shore is approached from midstream, one finds
a general thinning of the intervals between reflecting horizons.

C ONC LUSIONS

Erosion in the Pliocene-Pleistocene interval prior to deposition
of the post-Yorktown sediments cut stream channels and irregular de-
pressions into the upper part of the Yorktown Formation. The present-
day Pamlico and Pungo Rivers flow over low areas originally eroded
into the Yorktown Formation. The stream channels have subsequently
been only partially filled. East of Brant Island Shoal and Middle Ground,
the channels are not well defined, although it is speculated that the
Pungo River-Pamlico River complex may have drained eastward onto
the present-day continental shelf area near the west end of Ocracocke
Island. Irregularities of the erosion surface at Brant Island Shoal and
Middle Ground have influenced post-Yorktown deposition.

The high area east of the Pungo River and north of Pamlico
Sound formed a relatively shoal area when the sea covered this part of
the Coastal Plain during the Pleistocene., Sediment was deposited
simultaneously in the channeled areas and on the shoals, but thicker se-
quences developed in the topographically lower areas,

The history of the area since erosion of the Yorktown beds has
been one dominated by filling of the low areas, Although sea level may
have dropped considerably during late Pleistocene time, the Pamlico
River and Pungo River channels were not completely scoured out. Part
of the fill can be correlated with beds containing marine fossils found
beneath the present-day land surface (Welby, 1971). This relationship
indicates that at least part of the fill beneath the present-day water
bodies accumulated when the shoreline lay west of the area.
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The current geomorphology of the region reflects the contpg
exercised by the results of the erosional episode occurring between ¢
Miocene and the deposition of the sediments filling the low areas;
fact is especially true of the location of the Pamlico River and the Py,
go River and some of the indentations extending northward from Pamis:.
Sound.

Some interesting speculation arises as a result of the geophysig
work and associated investigations. The top of the Yorktown is tgq
graphically higher north of Pamlico Sound than beneath the Sound, T
relationship appears to extend eastward. Examination of the regi
geomorphology shows that the seaward convexity of the Outer Bap
barrier islands north of Cape Hatteras occurs opposite the seaward e
tension of this relative high on the Yorktown beds., Further geophyg
work and drilling will be required to prove or disprove the idea, buf
is tentatively concluded that the convexity is related to the presenc
of the high at the top of the Yorktown beds, A structural cause n
underlie the presence of the high.

The reversal of the erosional surface slope west of Brant Isl;
Shoal suggests the possibility of faulting in this particular area,
sharp bend in the Pungo River near Belhaven may also reflect a stry
tural feature, for the bend originated during the erosional interval p:
ceding deposition of the post-Miocene sediments. ,

That the topography of the surface carved into the Yorktownb
is reflected upward through the post-Yorktown sediments was sugge st
in the discussion of the Brant Island Shoal and Middle Ground are
The thinning of the post-Yorktown sediments as they rise from bene
the Sound onto the land area in the vicinity of Swan Quarter also
cords the effects of the Pliccene-Pleistocene erosion. Speculation si
gests that the locations of Ocracoke Inlet and Ocracoke Island are
lated to the paleotopography developed on the Yorktown beds, A h
area reflected up through the Pleistocene sediments could be a fa
in formation of the island, and a topographically low area would f
location of rivers or tidal channels in it, The contour patterns on i
the top of the Yorktown and the post- Yorktown isopach maps lend a
credence to this idea.
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CARTILAGINOUS FISHES OF THE TRINITY GROUP AND
RELATED ROCKS (LOWER CRETACEOUS) OF

NORTH CENTRAL TEXAS

By

John T. Thurmonds*
Shuler Museum of Paleontology
Southern Methodist University

ABSTRACT

Bulk washing of over 20 sites in the Trinity Group (? Aptian-
Albian) has produced varied fish faunas, including many specimens of
sharks, rays and sawfishes. These are here described and figured in
nine taxa, including three new species (Hybodus butleri, Lonchidion
anitae, and Hypolophus? mcnultyi) and one new subspecies (Onchopristis
dunklei praecursor). The faunas include the latest varied assemktlage
of hybodont sharks, the earliest hypolophid rays and the earliest saw-
fishes.

INTRODUC TION

In the course of an intensive search for Albian mammal remains
from the Trinity Group of North Central Texas (Patterson, 1951, 1955,
1956; Slaughter, 1965, 1968a, 1968b, 1969; Zangerl and Denison, 1950),
the Shuler Museum of Paleontology has collected extensive ichthyofaunas
from over 30 sites (Figure 1), More than 20 of these yielded remains
of cartilaginous fishes, mostly in the form of isolated teeth., This re-
port describes and illustrates much of this material,

The Trinity Group comprises three formations (Figure 2): the
Travis Peak Formation (including the Twin Mountains Formation and
lower part of the Antlers Formation of Fisher and Rodda, 1966 and
1967), the Glen Rose Formation and the Paluxy Formation, This study
will also cover material from the Walnut Formation, the basal unit of
the overlying Fredericksburg Group.

The Travis Peak Formation is a clastic unit, consisting of
gravels, sands, siltstones and clays. It is normally considered to be a
transgressive unit marking the onset of Trinity deposition. The age is

*Present Address: Department of Geology, Birmingham-Southern Col-
lege, Birmingham, Alabama.
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debatable: the upper part appears to be earliest Albian while many
authors have considered the rest of the unit to be Aptian (Hendricks,
1967).

The Glen Rose Limestone, a predominately carbonate unit,
marks the climax of the Trinity transgression and the beginning of the
regressive phase. The Paluxy Formation is a complex clastic unit,
comprising both the regressive phase of the Trinity and the beginnings
of the Fredericksburg transgression. The boundary between the Trinity
and Fredericksburg depositional phases is marked by a disconformity
that appears both in the stratigraphy (Rodgers, in Hendricks, 1967) and
in the fossil records.
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LOCALITIES

The sites from which fossil sharks, rays and sawfishes were re-
covered will be listed by stratigraphic inte rval, and located by county
and by latitude and longitude to the greatest practical precision. Lo-
cation of all known vertebrate fossil sites in the Trinity Group is shown
in Figure 1. In most cases, these data will be sufficient to allow these
sites to be found in the field. More precise locality data will be on file
at the Shuler Museum of Paleontology, Southern Methodist University.
All specimens here described are in the collections of the Shuler Museum,
and all catalog numbers refer to that collection.

Travis Peak Formation
Garner local fauna Parker Co.
32050'49'" N., 97957'38" W,

Hybodus butleri sp. nov. (62190)

Lamna sp. aff. L. sulcata (Geinitz) (62230)

Hypolophus? mcnultyi sp. nov. (62211)

Onchopristis sp. (62199)

Paluxy Church local fauna Hood Co.
32016'25" N., 97954'22" W.
Hybodus sp. aff. H. parvidens Woodward (62193-5)
Hypolophus ? mcnultyi sp. nov. (62243)
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Glen Rose Limestone
Boyd local fauna Wise Co.
33005'09'" N., 97°31'l2" W,

Hybodus sp.
Hypolophus ? mcnultyi sp. nov. (62226)

Paluxy Formation
Lower Paluxy Bosque Co, 5';
Reed Ranch local fauna ‘
31957'06" N., 97°53'22" W.
Lamna sp. aff. L. sulcata (Geinitz) (62231)
Hypolophus ? mcnultyi sp. nov. (62218)

Garvin Church local fauna Wise Co.
33004'59" N,, 97°38'09" W.

Hybodus sp.
Hypolophus? mcnultyi sp. nov. (62213)

Middle Paluxy
Butler Farm local fauna Wise Co.
33°16'38'" N., 97037'30" W,
Hybodus butleri sp. nov. (62087, 62150-62186)
Lonchidion anitae sp. nov. (62144-62149)

Lewis local fauna Wise Co.

33008'13" N,, 97°34'02" W, '
Hybodus butleri sp. nov. (SMUSMP uncat. )
Hypolophus ? mcnultyi sp. nov. (SMUSMP uncat, )

Walnut Creek A local fauna Wise Co. j

33009'13'" N., 97°34'17" W, b
Hybodus butleri sp. nov. (62189)
Hypolophus ? mcnultyi sp. nov. (62215)

Keeter local fauna Wise Co.

33°02'03" N., 97°936'04'" W. :
Lamna sp. aff. L. sulcata (Geinitz) (SMUSMP uncat. )
Hypolophus ? mcnultyi sp. nov. (62220)

Springtown local fauna Parker Cc

32056'49" N., 97041'22' W. |
Hybodus sp. aff. H. parvidens Woodward (62197)
H. sp. cf. H, brevicostatus Patterson (62198)

Lamna sp. aff. L. sulcata (Geinitz) (62229, 62237)
Hypolophus ? mcnultyi sp. nov. (62208-62210)
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weatherford local fauna Parker Co.
32047'17" N, 97056'14" W,

szodus sp.

Hypolophus ? mcnultyi sp. nov. (62214)

Heflin local fauna Brown Co.
31052'32" N., 98054'55" W,

szodus sp.

Hypolophus? mcnultyi sp. nov. (62224)

pleasant Valley local fauna Brown Co.
31955'23" N., 98955'07" W.

Lamna sp. aff. L. sulcata (Geinitz) (62234)

Hypolophus ? mcnultyi sp. nov. (62225)

Upper Paluxy
Greenwood local fauna Montague Co.
33929'49" N., 97°35'04" W.

Hybodus butleri sp. nov.(62188)

Kings Creek local fauna Montague Co.
33934'00" N., 97030'50" W.

Hybodus butleri sp. nov. (62197)

Hypolophus ? mcnultyi sp. nov. (62216)

Decatur West local fauna Wise Co.
33°14'14" N., 97°36'04" W,

Hybodus sp. cf. H. brevicostatus Patterson (62238)

? Lamna sp. =

Hypolophus ? mcnultyi sp. nov. (62219)

Paluxy Formation (undifferentiated)
Gerber local fauna Wise Co.
32959'52" N., 97°40'46" W.

Hypolophus'? mcnultyi sp. nov. (62221)

Granbury local fauna Hood Co.
32021'37" N., 97959'40'" W,

Hybodus sp. aff. H. parvidens Woodward (62196)

Lamna sp. aff. L. sulcata (Geinitz) 62232)

Glass local fauna Somervell Co.
N side of road cut on U. S. 67, 100 ft. E of bridge over Ice Branch
Hypolophus ? mcnultyi sp. nov. (62212)
Onchopristis dunklei praecursor ssp. nov. (62203)
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Blanket local fauna Brown Co,
31047'34" N,, 98°949'39" W,
Lamna sp. aff. L. sulcata (Geinitz) SMUSMP uncat, )
Hypolophus? mcnultyi sp. nov. (62228)

Routh A local fauna Brown Co.
31952'07" N., 98°51'42" W,
Hypolophus ? mcnultyi sp. nov. (62222)

Routh B local fauna Brown Co,
31952'07" N., 98°51'33" W, r
Hybodus butleri? sp. nov. (62191)
Lamna sp. aff. L. sulcata (Geinitz) (62235)
Hypolophus ? mcnultyi sp. nov. (62223)

Walnut Formation \
Brazos Point local fauna Bosque C,
97034'52" N,, 32009'03" W, vl
Hybodus sp.
Lamna sp. cf. L. arcuata Woodward (62227)
L. sp. aff. L. sulcata (Geinitz) (62234, 62236)
Hypolophus ? mcnultyi sp. nov. (62217) ‘
Onchopristis dunklei praecursor ssp. nov. (62200-62202)

SYSTEMATIC PALEONTOLOGY

C LASS CHONDRICHTHYES

ORDER SE LACHII
Family HYBODONTIDAE
Genus Hybodus Agassiz

Hybodus Agassiz, 1837, iii, 41.
numerous synonyms. See Woodward (1916, p. 3)and Ro:

p. 349).

Type species: Hybodus reticulatus Agassiz, by subsv
signation (Woodward, 1916, p. 4). ;
Diagnosis: See Woodward (1916, p. 4) and Patterson { j
Hybodus butleri sp. nov.

(Figures 3-6)

Holotype: Complete tooth, 62150, Butler Farm local |
Referred material: From the type locality: 62151-62

with roots; 62180-62183, cephalic spines; 62184 and 62186, ¢
spines; 62187, several hundred fragmentary teeth., From G
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Figure 3. Hybodus butleri sp. nov., holotype,
SMUSMP 62150, anterior tooth. A. Lingual
view; B, labial; C. occlusal; D. lateral.

Scale in mm.

Figure 4, Hybodus butleri sp, nov., labial views of
paratypes from Butler Farm local fauna (all
SMUSMP specimens). A. 62171; B, 62172; C.
62175; D. 62159; E. 62153, Scale in mm,
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Figure 6. Hybodus butleri gp
nov., referred dorsal spine

Figure 5. Hybodus butleri SMUSMP 62184, lateral ar
sp. nov., referred cepha- posterior views. Scale ir
lic spine, SMUSMP 62180, mm,
Scale in mm,

local fauna: 62188, teeth. From Walnut Creek A local fauna: 62
teeth, From Garner local fauna: 62190, two teeth., From Routh B I
cal fauna: 62191, questionably referred tooth fragments. From .
Creek local fauna: 62192, teeth,

Diagnosis: Anterior teeth with strong, nearly erect cent:
cusp, no lateral cusps. Lateral teeth with progressively weaker 3
more inclined central cusp, no or very weak lateral cusps, and a rud
mentary labial process (usually little more than an enlarged ridg
Striae on anterior teeth vertical, reaching about halfway up main cu
Striae on lateral teeth may reach tip of main cusp, and 1 or 2 str
may bifurcate near base of main cusp. Root normal hybodont, lox
than crown except on extreme lateral teeth. Cephalic spines with‘
fid base, irregular ridges on proximal part of exserted portion,
anterior and posterior carinae. Exserted portion strongly curved,
very attenuated tip, subterminal barb. Dorsal fin spines with two
ly distingnishable rows of posterior subtriangular denticles, 3-5 m
striae on exserted portion with variably developed minor striae.,
fers from other known species of Hybodus in its weak or absent ac
sory cusps. L

Discussion: The closest known relatives of this species a
be found among the hybodonts of the Wealdendescribed by C. Pa
(1966). Anterior teeth in many ways resemble those of the whole ¢
plex of Hybodus basanus, H. ensis and H. parvidens except for d i
ences in the striae and the lack of la.teral cusps. In particula

by the presence of a labial proces—s, the comparatively coarse
tion and the basal bifurcation of some striae.

The material from Butler Farm indicates that some of the s
referred by Patterson (1966) to Lonchidion may belong to some Hy
possibly H, parvidens. In particular, a cephalic spine (BMN.
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47207, Patterson, 1966, fig. 26C) appears identical to Butler Farm
specimens. Patterson tentatively restored this spine as comparatively
plunt and lacking a subterminal barb, a conclusion that cannot be justi-
fied by his figures. The tips of complete Butler Farm spines (62180,

Figure 5; 62181) are much more attenuated, and show a subterminal
parb placed considerablybeyond the broken end of Patterson's specimen.
The base is trifid (62182) with the lateral wings much less expanded
than in the spines correctly referred by Patterson to Lonchidion. The
only difference between the Butler Farm spines and BMNH P. 47207
may be the presence in 62180 and 62182 of an anterior carina on the ex-
serted portion. This is not mentioned by Patterson (1966) for the Bri-
tish material, The posterior carina on cephalic spines of H. butleri
ends at the barb, and is not found proximal to that point.

The dorsal fin spines referred to Lonchidion by Patterson (1966)
are also very similar to the spines (Figure 6) here referred to Hybodus
pbutleri, and perhaps also should be referred to Hybodus.

— Age, Distribution, and Ecology: Hybodus butleri is thus far

known only from the Travis Peak (? Aptian- Albian) and Paluxy (lower

Albian) Formations in north-central Texas. In general, this species
seems to have been restricted to fresh and brackish waters, and is re-
placed by Hybodus sp. aff. H. parvidens in open marine conditions and
to some extent in brackish conditions., At Routh B, however, much
worn teeth that are here doubtfully referred to H, butleri are associat-
ed with galeoids, indicating open marine conditions, These specimens
cannot be referred to this species with certainty, and their worn con-
dition (in contrast to the excellent preservation of other specimensfrom
Routh B) suggests that they may have been transported for some dis-
tance prior to deposition.

Name: For Mr., Lee Butler, the owner of Butler Farm, for his
extensive and generous cooperation over many years,

Hybodus sp. aff. H. parvidens Woodward
(Figure 7)

Hybodus parvidens Woodward, 1916, p. 12, pl. 2, f. 8-14,

Hybodus parvidens, Patterson, 1966, p. 296-300.

Referred material: From Paluxy Church local fauna: 62193,
teeth; 62194-5, dorsal fin spines, From Granbury local fauna: 62196,
teeth, From Springtown local fauna, 62197, teeth,

Discussion: The teeth here referred differ from those of Hybo-
dus butleri sp. nov. in the presence of well-developed lateral cusps and
more widely spaced striae, The lingual face of the main cusp may be
almost smooth, lacking striae, These characters are similar to those
which distinguish H. butleri from H. parvidens, The presence of a

weak labial process on some teeth also suggests affinities to H. par-
videns,

Associated fin spines are again very similar to those of H. but-
leri, but show more inclined and recuved denticles,
Age, Distribution, and Ecology: H. parvidens ranges, in
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Figure 7. Hybodus sp. aff. H. par-
videns Woodward, tooth, SMUSMP
62193, Paluxy Church local fauna.
Labial and lingual views. Scale is
5 mm.

Figure 8. Hybodus sp. cf. H. bre-
vicostatus Patterson. Tooth,
SMUSMP 62198, Springtown local
fauna., A. occlusal views; B, lin-
gual view. Scale is 5 mm.

England, from the Middle Purbeck to the Weald Clay (Patterson, 1966),
while the Trinity specimens are considerably later (Albian), In the

Trinity, this form seems to have been fully marine, as galeoids are

almost invariably present in the associated fauna. However, the fauna

which yield H, sp. aff. H. parvidens also show brackish affinities,

dicating that this shark mayhave beenan inhabitant of nearshore waters

Hybodus sp. cf. H. brevicostatus Patterson

(Flgure 8) |

Hybodus brevicostatus Patterson, 1966, p. 300-309; fig. 10-13

pl. 3, fig. 1-3; pl. 2. 1

Referred material: Tooth fragment, 62198, Springtown local

fauna; worn tooth crown, 62238, Decatur West Iocal fauna. ‘

Discussion: These fragmentary remains represent a hybodon

which cannot be referred to either of the above species, 62238 is :

complete, though badly abraded, crown., The cusps are very indistinci
but there are five prominent labial processes, Striae cannot be

tinguished on the worn surface. 62198 consists of about a third of
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Figure 9. Lonchidion anitae sp. nov., holotype, SMUSMP
62144, tooth, Butler Farm local fauna. A, lingual;
B. labial; C. occlusal; D, lateral views. Scaleis
1 mm. i K

tooth, with two indistinct lateral cusps with strong corresponding labial
processes, Strong striae radiate from the cusp apices and from the
crestal carina of the crown. This pattern of striation and the presence
of multiple labial processes suggest that this shark is closely related
to H. brevicostatus Patterson, although the latter has much more pro-
minent cusps,

This formis the largest of the Trinity hybodonts, as 62198 would
be nearly 1.5 cm in transverse diameter if complete, This is similar
to the size of H. brevicostatus, Because this form is exceedingly rare,
no attempt will be made to discuss its ecology.

Genus Lonchidion Estes

Lonchidion Estes, 1964, p. 7.

Type species: Lomnchidion selachos Estes,

Diagnosis: See Estes (1964) and Patterson (1966)

Lonchidion anitae sp. nov.
(Figure 9)

Holotype: Tooth with root, SMUSMP 62144, Butler Farm local

fauna.

Referred material: Five isolated crowns without roots, 62145-
62149, Butler Farm local fauna,

Diagnosis: A minute Lonchidion closely resembling L. selachos
and L, breve breve Patterson, but differing from both inthe greater
constriction of the crown base and stronger development of accessory
cusps, Lacks ridges on lingual face of crown found in L. breve breve,
but not in 1, selachos. i

Discussion: This is the third report of teeth of the genus Lon-
chidion. The Butler Farm specimens seem to represent a form close
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to the ancestry of the Lance L. selachos, and perhaps descended from f, ]
the Wealden L. breve breve. An index of root constriction can be used
to separate L. anitae from L. breve breve (and from L. selachos, which
has even less constricted roots than the latter). “This index is: I=
(Dp/De) X 100, where Dp is the maximum diameter at the base of the b
enamel of the crown, and D¢ is the maximum diameter of the crown,

Average value of this index for L. anitae is 66, while Patter-
son's figured specimens (as measured from the figures) (1966) average
69. This latter value is smaller than a more realistic figure, as two
of Patterson's specimens are very anterior teeth with highly constrict-
ed roots, and most of his specimens are too worn to preserve a sl1gh1§
expansion of the enamel below the greatest constriction of the crown,
The value of L. breve breve can be more realistically estimated at 75,
probably larg:r.

Lonchidion anitae is the smallest species of Lonchidion yet re-
ported, unless Lonchidion rhizon Patterson actually pertains to that
genus, a dubious hypothesis (Estes, personal communication). Rather,
those specimens may pertain to a primitive skate., The holotype of h
anitae has a maximum diameter of 1.0l mm, and the largest tooth
62149) measures 1, 65 mm.

None of the cephalic or dorsal fin spines from Butler Farm seem
referrable to Lonchidion (see discussion above). '

Age, Distribution, and Ecology: Known only from the middle
Paluxy Formation at Butler Farm. Lonchidion is generally agreed tc
have been restricted to fresh water. i,

Name: For Miss Anita Freefield (now Anita Thurmond), with-
out whom this study would not have been completed.

Family LAMNIDAE
Genus Lamna Cuvier

Lamna Cuvier, 1817, ii, 126. (fide Woodward, 1894).
J.amna sp. cf. L. arcuata Woodward
(Figure 10)

Lamna arcuata Woodward, 1894, p. 198; pl. vi, fig. 10.

Lamna arcuata, Woodward, 1910, p. 208; pl. xliv, fig. 8-9.

Referred Material: Two teeth, 62227, Brazos Point local faun

Discussion: These teeth are very similar to those figured t
Woodward (1902-12, pl. xliv, fig. 8-9). Both faces of the crown a:
smooth, lacking any striations. Normal lamnids, represented by tl
form, seem to have been late arrivals in Texas; they are represent
only at Brazos Point, the latest fauna here considered. Through
Trinity time, the dominant galeoid in Texas was Lamna sp. aff
sulcata (Geinitz).

Lamna sp. aff. L. sulcata (Geinitz)
(Figure 11)
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A
e el
Figure 10. Lamna sp. cf. L. arcuata Wood-
ward, SMUSMP 62227, Brazos Point local

fauna. A. labial; B. lateral; C. lingual

views, Scale is 5 mm.

I

Tooth, SMUSMP

Figure 11, ILamna sp. aff. L. sulcata (Geinitz).
62229, Springtown local fauna: A. labial; B. lateral;
C. lingual views., D. doubtfully referred ? symphyseal

tooth, SMUSMP 62236, Brazos Point local fauna, la-
Scales in mm.,

bial view,

Otodus sulcatus Geinitz, 1843, Charakt. Schicht. und Petrifakt,
sachs, -bohm. Kreidegeb., Nachtr., 5, pl. iv, fig. 2 [fide

Woodward, 19107.
Otodus divaricatus Leidy, 1873, p. 305, pl. xviii, fig, 26-28.
Williston, 1900, p. 248; pl. xxiv, fig. 1-1b,

Lamna sulcata,
Woodward, 1910, p. 209; pl. xliv, fig, 12-13.
Referred material: Teeth of normal type: 62229, Springtown
local fauna; 62230, Garner local fauna; 62231, Reed Ranch local fauna;

62232, Granbury local fauna; 62233, Pleasant Valley local fauna; 62234,
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Brazos Point local fauna; 62235, Routh B local fauna. Doubtfully
ferred ? symphyseals: 62236, Brazos Point local fauna, 62237,
town local fauna., b
Diagnosis: A galeoid with two prominent cutting edges ¢
acute main cusp; one or more pairs of accessory cusps; very st
flutings on both main and accessory cusps, particularly promine
labial face; main cusp with slight flexure in lateral view, somet;
sigmoidal, Doubtfully referred ?symphyseal teeth with flutings
of crown only, three pairs of accessory cusps. Roots of normal 1
deeply bifurcate, with strong lingual shelf.
Discussion: The teeth referred here apparently repr
very primitive lamnid, possibly near the ancestry of typical L, sul
The flutings are much stronger than those of L. sulcata as—figu
Woodward (1902-12), particularly on the lateral cusps, and reach p
further up the crown, almost to the tip of the main cusp in some in
duals., Also, the flutings are equally coarse across the crown,
than being finer on the lateral cusps. A few individuals show an
tional accessory cusp that is very weak, and this cusp may be woz
on other specimens. The accessory cusps are generally blunt ;
pearance, but this results from wear, either in life or during depos
Well -preserved teeth often have acutely pointed accessory cusps recy
toward the main cusp.
Certain teeth (62236, 62237) from Brazos Point and Sprin
(Figure 11) have flutings at the base of the crown and three pairs
curved accessory cusps. These teeth may represent another
very rare in the Trinity Group, but are here doubtfully consider
symphyseals of Lamna sp. aff, L. sulcata. .
Age, Distribution, and Egology: This form ranges from ¢
Aptian to early middle Albian in Texas, being found throughout
Trinity Group in rocks deposited in open marine conditions.

ORDER BATOIDEA
Family HYPOLOPHIDAE
Genus ?Hypolophus Muller and Henle

Hypolophus ? mcnultyi sp. nov,

(Figure 12)

"hypolophid teeth'' McNulty, 1964,
Holotype: SMUSMP 62208, tooth, Springtown local fauna.
Referred material: 62209, several hundred teeth, Sprin
local fauna; 62210, six thin sections of teeth, Springtown local :
62211, teeth, Garner local fauna; 62212, tooth, Glass local fauna; |
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Figure 12, Hypolophus? mcnultyi sp. nov., teeth, Springtown

local fauna., A-D, holotype, SMUSMP 62208, ?anterior,
lateral, occlu—sa—l, and basal views of a tooth of distort-
ed hexagonal type. E-M, two teeth from 62209: E-H,
tooth of symmetrical—h;c-agonal type, occlusal, basal,

?anterior, and lateral views; J-M, tooth of rhombic
type, occlusal, basal, ?anterior, “and lateral views.

Scale in mm,

teeth, Garvin Church local fauna; 62214, teeth, Weatherford localfauna;
62215, teeth, Walnut Creek A local fauna; 62216, tooth, Kings Creek
local favna; 62217, teeth, Brazos Point local fauna; 62218 teeth, Reed
Ranch local fauna; 62219 tooth, Decatur West local fauna; 62220, tooth,
Keeter local fauna; 62221, teeth, Gerber local fauna; 62222, teeth,
Routh A local fauna; 62223, teeth, Routh B local fauna; 62224, teeth,
Heflin local fauna; 62225 teeth, Pleasant Valley local fauna; 62226,
teeth, Boyd local fauna; 62228, teeth, Blanket local fauna, Also speci-
mens referred by McNulty (1964).

Diagnosis: Hexagonal or rhombic teeth with biparted root; no
central cavity., Root slightly smaller than crown, not offset in hexagon-
al teeth but offset in rhombic specimens. Crown almost entirely of
orthodentine, with osteodentine in root only; no pulp cavity., See also
McNulty (1964),

Discussion: These teeth from the Trinity Group and basal Wal-
nut Formation are identical to those described by McNulty (1964) from
the upper Woodbine Formation (late Cenomanian) of Tarrant County,
Texas, The largest sample is from the Springtown local fauna (middle
Paluxy Fm. ) and shows more individual variation than the Woodbine
specimens. This can be attributed to the larger sample.

In general, rhombic teeth are smaller than hexagonal or distorted
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hexagonal teeth, and have proporticnally taller roots that are offs
anteriorly. In H. sephan (Recent), rhombic teeth are located nea
jaw symphyses. Lateral to the symphyses are distorted hexagonal te
succeeded by symmetrical hexagons, then by more distorted hexa,g
H.? mcnultyi may have had a similar pattern, as distorted
are the most abundant teeth, j
Layering of orthodentine is apparent in some thin sections (n
ticularly 62110-3). This suggests a possible mechanism by which ¢
species may have altered its unique histology tothat of other Hypolop
species. The outermost layer of orthodentine corresponds well wi
thin pallial dentine shown in McNulty's (1964) figure of the histolg
H. sylvestris White, If this outermost layer is laid down first i
formation of the tooth, deposition of osteodentine similar to that o
root could commence immediately, giving H. sylvestris histology,
external morphology of H.? mcnultyi is apparently identical to
H. sylvestris, despite their different histologies.
Myledaphus bipartitus Cope (see Estes, 1964), can be fitted j
this concept of the Hypolophidae as a specialized descendant of a 1
age that retained the histology of Hypolophus? mcnultyi. i
It has been suggested by Slaughter (oral communication) that
teeth described here might be oral teeth of Onchopristic dunklei McN
and Slaughter (1962). This hypothesis is tempting for two reas
First, the temporal ranges of the two forms are identical, both r
ing from the Travis Peak Formation to the Woodbine Sandstone,
cond, sites which yield O. dunklei invariably yield H.? mcnul
converse is not always true, but could be explained in terms of di
tial preservation). However, the abundance of the two forms
correlated. The Springtown local fauna yielded hundreds of teeth
mcnultyi and many other specimens in a generally excellent sta
preservation (including some very delicate specimens), but no 1
teeth of O. dunklei. On the other hand, the Glass local fauna pr
a very well-preserved rostral tooth of O. dunklei, but only a
tooth of H. ? mcnultyi. Perhaps oral teeth of O. dunklei are to 0
to be recovered by normal screens,
Age, Distribution, and Ecology: Known only from the C
ceous of north-central Texas, ranging from the Travis Peak Forn
(?late Aptian) to the Woodbine Formation (late Cenomanian), '
species is nearly ubiquitous in the Trinity Group faunas, as lo
there is any suggestion of marine affinities. Pycnodonts are .
invariably associated, but in a few cases H.? mcnultyi is _
marine form present. It is lacking from str1ctly terrestrial :
such as Greenwood and Butler Farm, Apparently H,? mcnulty
habited both offshore marine and brackish bay waters.
Name: For Dr, Charles McNulty, Department of Geolog

species,
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Figure 13, Onchopristis sp.,
rostral tooth, SMUSMP
62199, Garner localfauna,
Scale in mm.

Family PRISTIDAE
Genus Onchopristis Stromer

Onchopristis Stromer, 1917, p. 5.
Type species: Onchopristis numidus (Haug).
Diagnosis: Rostral teeth enamelled nearly to base, with at
least a terminal barb., Base saddle-like,
Onchopristis sp.
(Figure 13)
Referred material: Rostral tooth, SMUSMP 62199, Garner local

fauna.

Discussion: This tooth consists of a nearly complete crown,
without base. It is unusual for ganopristine teeth to break at this point,
as the weakest point on the tooth is some distance distal to the base.
However, the tooth may be immature, as unerupted rostral teeth of
Sclerorhynchus may be baseless (Slaughter and Springer, 1968). The
radial histology of the crown is visible at the broken end, and precludes
referral of the tooth to either of the bony fishes Eurypholis (Enchodon-
tidae) or Trichiurus (Trichiuridae), which have oral teeth of similar
morphology (McNulty, oral communication). This tooth shows a single
terminal barb on a curved shaft, much like those of O. numidus, and
unlike O, dunklei (see McNulty and Slaughter, 1962 and Slaughter and
Steiner, 1968). However, it resembles the latter in its lack of strong
parallel ridges on the crown, a character of O. numidus. Anterior and
posterior carinae are present,

While a single specimen is insufficient to allow definite state-
ments, the age and morphology of this form suggest that it might be
close to the common ancestry of both previously described species of
Onchopristis, Itis also the oldest known sawfish.

Onchopristis dunklei praecursor ssp, nov.
(Figure 14)
Onchopristis cf. dunklei, Slaughter and Steiner, 1968, p. 233,
fig. 3J [non O. dunklei McNulty and Slaughter, 1962]

Holotype: SMUSMP 62200, rostral tooth, Brazos Point local

fauna,

Referred material: All rostral teeth, From Brazos Point local
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Figure 14, Onchopristis dunklei

praecursor ssp. nov., holo-
type, SMUSMP 62200, rostral
tooth, Brazos Point local
fauna, dorsal and anterior

views. Scale in mm,.

Steiner, 1968, fig. 2J). From Glass local fauna, 62203,

Diagnosis: Barb distance index (Slaughter and Steiner, 1¢
90 or more., Probably only two barbs on complete tooth, widely sepa
ed.

and Steiner (1968) confirms their hypothesis that this representsa f
distinct in time and morphology from typical O. dunklei, As the
form is closely related to typical Cenomanian material, and tran
al forms occur in the PawPaw Formation (Slaughter and Steiner, 1
this seems best expressed as of subspecific rank, ]

The holotype is a rostral tooth complete except for the pre
ed terminal barb. There is enough of the shaft distal to the pro:
barb to show that the two barbs were widely separated, The prox
barb is large and prominent. In PawPaw material of transitional
the most proximal barb is small, suggesting that it is a new addi
and that the second barb is the homologue of the proximal ba
dunklei praecursor. :

Barb distance indices (Slaughter and Steiner, 1968) for the
specimens of this subspecies are somewhat lower than those rep
by Slaughter and Steiner (1968) for "Paluxy' specimens of
dunklei, The holotype has an index of 94 and 62201 gives avalue @
Previously published values are 160, 143, and 129. However;'
specimens appear to represent more posterior rostral teeth thai
holotype.

The possibility exists that material described here as
phus ? mcnultyi sp. nov. represents oral teeth of Onchopris
above for discussion of this hypothesis.

Aie, Distribution, and Ecologz Known only from |
Albian (Paluxy and Walnut t Formation) of Bosque and Somervell
ties, Texas, Transitional forms to O. dunklei dunklei occur

224



middle Albian (PawPaw Formation) of north-central Texas. There ap-
pears to be an unknown ecologic control on the distribution of this ferm,
as it appears in only two of the four extensive open marine faunas of the
paluxy and Walnut, but the subspecies is found only in association with
galeoids.

CONC LUSIONS

The specimens reported here constitute an important connecting
link between the well-known faunas of the Wealden (Woodward, 1916-
1919, Patterson, 1966) and the Lance (Estes, 1964),

Resemblances to the Wealden faunas are particularly striking
among the hybodonts, All four Trinity hybodonts find their closest
known relatives in the Wealden material described by Patterson (1966).
This may be partly due to the previous position of the Wealden faunas
2s the only well-known freshwater-brackish-marine assemblage of these
primitive sharks, The very limited hybodont fauna of the ILance
(Lonchidion selachos only) does not show such striking parallels, but
its sole species appears very close to the Trinity Lonchidion anitae.
The hybodonts described here at present are the latest known varied
assemblage of this group, predating their total restriction in Cencmanian
and later times to very specialized niches.

The present state of knowledge of Trinity galeoids does notper-
mit detailed examination of their relations to other faunas. The pri-
mitive character of Lamna sp. aff. L. sulcata suggests that it may be
near the ancestry of that group, despite its comparatively late date.
The late appearance of Lamna sp. cf, L. arcuata presages the expan-
sion of normal lamnids in the later Cretaceous of North America, with
the attendant reduction of the role of the 1., sulcata group.

Hypolophus ? mcnultyi at pre sent is the earliest representative
of an extant lineage, providing a potential morphological ancestor of the
modest radiation of this group in the later Cretaceous.

The single tooth of Onchopristis sp. is the earliest known saw-
fish, Its position in relation to later species of Onchopristis has been
discussed above. The possible lineage Onchopristis sp. -Onchopristis
dunklei praecursor-Onchopristis dunklei dunklei appears to summarize
the North American history of this genus.

The fishes described here are often useful in the reconstruction
of past environments, and have been used in a study of the paleoecology
of the Trinity Group (in preparation). In general, the use of bulk wash-
ing techniques provides an approach to the ever-present problem of
biostratigraphy and paleoecology of generallyunfossiliferous continental/
marine complex rock units.
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ABSTRACT

A computer program is presented for the factor-vector analysis
of a data matrix in which some of the elements of the matrix may be
missing., The missing elements are identified and the row or column
removed from the matrix only when the missing element enters intothe
computational procedure. A text example utilizing ecological data, in
which some of the environmental observations are missing, is included
to illustrate the use of the program. This test example illustrates the
analysis and modeling of the physical part of the ecosystem in the ma-
rine environment (Buttonwood Sound, Florida Bay).

INTRODUC TION

The electronic computer is becoming almost as familiar a tool
of the geologist as is his hand lens or geologic hammer, Rather than
being an extension of his senses or giving him a mechanical advantage,
the computer is an extension of his brain. The brain is itself a remark-
able '"computer'in that it can store bits of information, logically mani-
pulate this information and visualize this informationin terms of mean-
ingful patterns., The brain does have the limitations of operating at
relatively low speeds and being able to manipulate and visualize Eucli-
dian space in few dimensions. The electronic computer operates at re-
latively high speeds and has less severe dimensional restrictions. The
electronic computer therefore permits the manipulation of much longer
Problems and relatively large matrices.
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In many areas of geology, the geologistaccumulates large mag;
es of information. This information may be recorded on various typ

simple, meaningful patterns in these data matrices.
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BACKGROUND OF PROGRAM
Factor analysis finds its origin in the concept of latent factg

mulated by Spearman (1904). Thurstone (1931, 1947) extended th
model to include many common factors, The reader may obtain adc
tional background on factor analysis by referring to Cattell (1952),
man (1960) or Lawley and Maxwell (1963),
Factor analysis is a linear mathematical model in which

ponse variates are resolved into a small number of significant co
ponent factors. Imbrie (1963) augmented factor analysis with vect
analysis in which the component factors are given in terms of act
variables or samples (reference vectors) judged to be significant in
spectrum of variance being studied. See Imbrie (1963) and Manson :
Imbrie (1964) for a discussion of vector analysis. The objectiy
factor-vector analysis is to account for a large amount of the prob
total variance in terms of a simple causal scheme, Multivariate re
tionships among variables, R-mode, and between cases, Q-mode, n
be analyzed using factor-vector analysis. The application of fact
vector analysis to geologic problemsis discussed by Imbrie (1963, 1¢
Manson and Imbrie (1964) and Gould (1967). 8
DUVAP (Duke University Vector Analysis Program)is a mo

cation of COVAP (Manson and Imbrie, 1964)that permits the use of
matrices containing missing data. The advantages and disadvants
of DUVAP over COVAP are:
1) There may be missing data in the data matrix of DUVAP

2) There is no plot subroutine for the varimax factor matr
DUVAP, L
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MISSING DATA IN DATA MATRIX

In the accumulation of any large number of observations, which
are to be organized into data matrices, from time to time certain ob-
servations will be missed, These missing data may result from either
observational or mechanical errors. Missing observations in the data
matrix will affect the method of analysis (Cochran and Cox, 1957).

There are two ways in which missing observations in a data
matrix may be treated, First, one may '"estimate' the missing values
to complete the data matrix (see discussions given in Cochran and Cox,
1957, or Steel and Torrie, 1960). This method is essentially a com-
putational technique that enables the completion of the data matrix to
permit relatively simple computations. Substitution of ''estimates' in
the data matrix in no way recovers the lost information (Cochran and
Cox, 1957).

Secondly, removal of a row or column from the data matrix
prior to computation also completes the data matrix allowing relatively
simple analysis, But this may have the disadvantage of losing a vari-
able or case from the analysis. This disadvantage may be avoided by
removing the row or column from the matrix only when the missing ob-
servation enters into the computational procedure. In statistical analy-
sis, this reduces the degrees of freedom of the row and column in which
the missing data occurs, DUVAP uses the latter technique in handling
missing data.

The missing observations in the data matrix of DUVAP are
identified, Every computation in which missing data is involved is
multiplied by zero removing it from the row or column, while all com-
putations involving real data are multiplied by one, thereby retaining it.
In a similar manner the number of variables or cases (N) in either the
column or row are adjusted for each computation. This simple arith-
metric operation removes the missing datafrom the row or column only
when it enters into the computational procedure.

ECOLOGIC EXAMPLE

Lynts (1966) published environmental data measured at 19 sta-
tions located in Buttonwood Sound, Florida Bay (Figure 1), Four sets
of environmental data (August 14th, 17th, 20th, 1962, and February
9th, 1963) were given, but only one of these sets, February 9th, 1963,
contained missing data, The environmental parameters measured at
each station were: 1) depth, 2) temperature, 3) salinity, 4) pH, 5)Eh
and 6) sediment size of the sediment-water interface.

The February 9th, 1963, environmental observations illustrates
both types of errors mentioned above., Measurements of Eh were not
recorded for stations 1-3, while the pH-Eh meter was not working at
station 13, Stations 5 and 14 were not included in the analysis because
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Figure 1. Buttonwood Sound, Florida Bay, illustrating station lo
cation and distribution of individual environmental
parameters measured February 9th, 1963,
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of loss of other information in the ecological survey,

A R-mode analysis was made of the linear multivariate relation-
ships among environmental variables (Tables 2-9).

1) Table 4 shows that seven reference vectors account for 100,1
percent of the total variance contained in the data matrix. The first
reference vector accounts for 34, 6 percent of the variance, the second
for 24.5 percent and each of the succeeding five vectors a correspond-
ingly smaller percentage.

2) Inspection of V Matrix (Table 7) values along the diagonal,
indicated that the seven reference vectors were highly independent. The
absolute values along the diagonal (-0.9472, 0.8238, 0.9692, 0. 97217,
0.9510, -0.9663, 0.9323) all approach one, thereby indicating an in-
dependence between vectors. A lack of independence (interchangability
of vectors) would have been indicated by any of these values approach-
ing zero.

3) Tables 8 and 9 indicate that these seven reference vectors
were: 1) clay, 2) temperature, 3)pH, 4)depth, 5) Eh, 6) silt and 7)
salinity. Only sand was indicated as being strongly related, inver sely,
to silt (Table 9). This strong inverse relationship in sediment was ex-
pected because percentages of sand, silt and clay form a closed number
system (Chayes, 1960). No other strong linear relationships were in-
dicated in this multivariate scheme.

A Q-mode analysis investigated the linear multivariate relation-
ships between cases (Tables 10-17),

1) Table 12 indicated that three reference vectors accounted
for 100. 7 percent of the total information (Manson and Imbrie, 1964) in
the data matrix. It can be seen that the first reference vector account-
ed for the vast majority of this total information, 90.5 percent, and
that the second accounted for 6. 7 percent.

2) Inspection of the last iterated V Matrix (Table 15) indicates
that the reference vectors are highly independent.

3) Two stations, 8 and 11, were identified as having the most
divergent environmental composition and used as reference vectors
(Tables 16 and 17). Inspection of either of these reference vectors in-
dicates that they are essentially the inverse of one another, e, g., row
one of Table 16 indicates that station 1 is resolved into contributions
from the two reference vectors (stations 9 and 11) in the proportion
0.659:0. 441,

Interpretation of the factor-vector analysis was first directed to
results of the R-mode analysis. This tells us of the large degree of
independence between the measured environmental parameters, withthe
exception of sediment size which has a strong relationship built in as
the result of the closed number system. Even though some of the para-
meters, i.e., pH and Eh, have theoretical dynamic relationships, these
relationships were not indicated in the data from Buttonwood Sound
(Lynts, 1966).




VECTOR |

Y

NAUTICAL MILES
o
ClL=02

+ = Reference
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Figure 2. Factor-vector model of physical part of the
ecosystem on February 9th, 1963,

The ecologic implications of the (J-mode analysis may be in
preted in two ways., First, in terms of the actual compositio;i g
reference stations. The primary difference between stations
was in redox potential. Station 8 had an Eh of -140 mv, while
11 had an Eh of -10 mv. Secondly, sediment size at station 8 w
than at station 11, even though both were classified as sand-silt-cl
Shepard's (1954) nomenclature. The other environmental param
were quite similar, 1

Secondly, the proportional contribution of each reference ve
for each station (Table 16) was contoured. Since the second re
vector was essentially the inverse of the first, only the factor
map of the first reference vector is illustrated in Figure 2. Th
represents column one of Table 16,

A factor-vector map of this nature is an attempt to in
available environmental information and to display systematic p
of geographic variations in the physical part of the ecosystem
1971). Comparison of the model of the physical part of the eco
(Figure 2) with the distribution of individual environmental para
(Figure 1) results in some interesting observations. There are
discernable relationships between the two sets of maps. First, J
fluence of sediment size adjacent to Key Largo on the model is
observed. Second, the influence of salinity and Eh are much les
vious, but still can be seen. One thing that is brought out quite vi
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in the factor-vector model is the importance of currents on the physical
art of the ecosystem, especiallythe exchange of water between Florida
Bay to the northwest and Buttonwood Sound (Figure 2). The importance
of currents is emphasized even though currents were not one of the mea-
sured environmental parameters. Factor-vector maps should be used
in conjunction with other kinds of maps displaying specific information
pecause the former maps may express phenomena not readily discern-
able in the latter maps.

MACHINE OUTPUT FOR ECOLOGIC EXAMPLE

Table 1 is a print out of the card setup used as input in the analy-
sis of the Buttonwood Sound environmental data. The program was set
to perform both a R- and Q-mode analysis of the data, extracting seven
reference vectors in the R-mode and two reference vectors in the Q-
mode (see operating instructions below). Missing pH observations were
identified by 99 and Eh observations by 99999 in the data matrix.
Tables 2-17 are the machine output,

Tables 2-9 are output of R-mode analysis.

Table 2 gives the code numbers, code names and statistics
(mean, standard deviation, skewness and kurtosis) computed for eight
environmental parameters.

Table 3 is a correlation matrix, Entries represent product mo-
ment correlations computed for each pair of environmental parameters.

Table 4 tabulates positive eigenvalues, Indicates percentage of
total variance on eight environmental parameters retained as succes-
sively more end members were used. Seven reference vectors retain
100. 1 percent of total variance.

Table 5 is the principal components factor matrix. See Harman
(1960) for a discussicn of the principal components factor matrix,

Table 6 is the varimax matrix, Illustrates for each parameter
its proportional composition in terms of seven theoretical, mutually
orthogonal vectors. Theoretical orthogonal vectors selected to fit data
best in a least-squares sense.

Table 7 representsintermediate output recording the search and
identification of seven most extreme vectors in varimax configuration.
Absolute values along the diagonal approaching one identify independent
vectors,

Table 8 is the oblique projection matrix in which rows record
Proportional relationships in terms of the seven reference vectors.
:ode number and name of each parameter given in order of code num-

er,

Table 9 gives the reordered oblique projection matrix. Adja-
cent vectors are grouped in the table. Code name and number of each
reference vector (parameter) printed at top of table,

Tables 10-17 are output of Q-mode analysis.
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TABLE 1

BSD RQ 8 17 1 71 OR Q0 10 0 20
R AND Q MCDE TESTS GF DUVAP FROGRAM CN BUTTONWOOD SOUND, FLORIDA BAY, FE
BRUARY 9TH, 1963 DATA.
DEPTH TEMPEFSALINIPH EE SANL SILT CLAY
(8F5.1)

99 999 <¢99 9999999 939 999 999

12 200 3¢6 7899999 250 220 430

23 195 400 7999999 740 110 150

24 200 4c8 7859999 7¢O 120 180

15 195 393 79-1000 440 290 270

27 202 400 77-1300 350 400 250

27 203 393  80-1400 340 440 220

Z4 205 393 80-1400 180 350 470

26 205 393 80 —700 410 380 210

26 207 u4ce 77 -50C 4C0 390 210

26 210 393 78 —100 290 470 240

15 209 386  70-1000 180 420 400

20 207 3€6 9999999 440 330 170

Z4 209 366  78-1000 260 <S40 200

18 211 393 79-1000 450 350 200

15 212 393 80 -900 410 47C 120

26 213 379  78-1100 410 4C0 190

26 220 2386 76 -300 520 280 200

1 2 3 4 6 7 8 9 10 1 12 13

15 1€ 17 18 19

FPINISH

TABLE 2

R AND ¢ MCDE TESTS OF DUVIE ERCGRAM ON BUTTONWOOD SOUNE, FLORIDA EAY, FEBRUARY 9TH, 1963 DATA.

VARIABLE
NO. NAME MEAN ST DEV SKEW
1 DEPTH 2.224 0.506 -0.975
2 TEMPER 20.606 0.653 0.061
3 SALINI 39.271 0.786 0.562
4 PH 7.794 0.243 —2.u82%%
5 EH -90.C00 40.208 0.718
6 SAND 39,824 15.473 0.788
7 SILT 36.C00 11.325 -1.022
€ CLAL 26,176 9.876 1.392¢
SE — SKEW * €.55¢C * SIGNIFICANT AT
SE - KNR10SIS # 1.063 ** SIGNIFICANT AT .01
TABLE 3

R AND ¢ MODE TESTS OF DUVAP FROGRAM CN BUTTONWOOL SOUND, FLORIDA BAY, FEBRUARY 9TH, 1963

MATRIX TO BE FACTCRED

VARIAELE T
NG. NAME 1 2 3 4 5 6 7

1 DEPTH 1.000

2 TEMPER 0.19: 1.¢00

3 SALINT 0.221  -0.UEE 1.000

4 P 0.195  -0.26C 1,191 1.000

5 EH 0.138 0.475 0.093  -0.169 1.000

6 SAND 0.189 -0.242 C.u54 0.253 0341 1.000 1

7 SILT 0.0%3 0.488  -C.438  -0.076  —0.054  -0.771 1.000

8 CLAY -0.358  -0.181 €.210  -0.315  -0.340 -0.683 0.061 1.0
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Tabie 4

p Q MODE TESTS OF DUVAP ERCGRAM ON BUTTORWOOD SOUNC, FLCRIDA EAY, FEBRUARY 9TH, 1963 DATA.

g A¥
TAELE CF ECSITIVE EIGENVALUES
PEBCENT OF CONNUNALITY OVER

BC. EIGENVALUE ALL | 8) FACTORS 7 ROTATED FACTOBS
1 2.765 .6 34.6 38,5 34,5
2 1.960 28.5 59.1 28.5 59.C
3 1.247 15.6 7.6 15.6 T8.€
8 C.E17 10.2 88.9 10.2 85. ¢
5 0.557 7.0 91.8 7.0 91.7
6 0.451 5.6 97.5 5.6 97.4
7 0.210 2.6 100.1 2.6 100.0

1RECE OF CRIGINAL NATRIX 8.000
CCPPUNALITY OVER 8 FACTORS ¢ 8.000
7 FACTORS # 8.007

Table 5

E TESTS OP DUVAP FROGRAN CN BUTTONWOOL SOUNL, FLORIDA EAY, FEBRUARY 9TH, Y63 DATA.

g AND Q RCD
UNFOTATEC  FACTOR AATFIX

FACTCF NUMEER 1 2 3
suM SQUABES CCWN COLOMNE 2.765 1.960 1.247 c.817 0.557 0.451 0.210

VARIAELE COMMUNALITY
NC. NAFE 7 EACTIORS

1 DEPTH 1.0C0 C.307 0.469 0.u480 0.563 -0.338 0.130 -0.090
2 TEMEEF 1.000 -0.421 0.829 -0.083 -0.0u8 -0.053 0.094 0.339
3 SALINI 1.000 0.701 -0.210 -0.000 0.494 0.014 -0.134 0. 180
4 PH 1.000 C.u423 -0.093 0.717 -0.360 0.217 0.345 0.050
S BH 1.000 0.227 0.712 -0.473 0.037 0.329 0.266 -0.193
6 SANL 1.004 0.931 0. 145 -0.21C -0.2C6 -0.169 -0.060 -0.006
7 SILT 1.002 -0.733 0.357 0.427 0.043 0.291 -0.231 —0. 12%
& CLAY 1.001 -G.607 -0.587 -0.214 0.282 0.007 0.403 0.025

Table 6

® ARD ¢ MCDE TESTS OF DUVAP FROGRAA OGN BUTTONNOOD SOUND, PLORIDA EAY, FEBRUARY 91H, 1963 DATA.

FOTATED FACTOR MATBHIX )
n S 6 7

BACTOER NUMEER 1 2 3
SUM SQUABES DCWR COLUMNS 1.343 0.827 1.027 1.028 1.089 1.653 1.039
VARIAELE  CCEMUNALITY.
NC. NAPEF 7 FACTORS
1 DEPIH 1.000 0.159 0.085 0.090 0.973 0.051 -0.013 0.103
2 TERFEF 1.000 C. 100 0.828 -0, 148 0.133 0.322 -0.295 -0.285
3 SALINI 1.000 €.106 = -0.195 0.075 " 0.121 0.051 0.282 0.932
4 pH 1.000 0.163 -0.098 0.969 0.091 -0.097 0.085 0.069
' S Em 1.000 0.177 0.208 .=0.101 0.051 . 0.951 0.085 0.050
€ SANL 1.004 G.584 ~ -0.108 0.118 © 0.079 0.205 0.787 0.173
7 sILt 1.002 €.005 0.174 -0.007 0.047 -0.003 -0.966  -0.188
A CLAY 1.001 ~C.N7 -0.099 -0.,166 ~ -0.174 -0.157 -0.080 °  =-0.072

Table 10 gives code numbers, code nanties and statistics (mean;
sum of squares, square root of sum of squares, skewnessand kurtosis)

computed for seventeen stations.
Table 11 is the cosine 8 matrix. Entries represent cosine of
angles between vectors for each pair of stations. Cosine 8 is the
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TABLE 7

R AND ¢ MCDF TESTS OF DUVAP PRCGRAM CN BUTTONWOOD SOUND, FLORIDA EAY, FEBRUARY 9TH, 1963 .

VvV MATRIX
NAME INDEX 8 2 4 1 5 7 3
CLAY € -0.9472 -0.0995 -0.1660 =-0.1744 =-0.1569 -0.0803 -0.0724
TEMPER z C.CS%96 0.8238 -0.1483 0.1333 0.3221 -0.2945 -0.2851
PH 4 0.1633 -0.C975 0.9692 0.0913 -0.0969 0.0455 0.0690
CEETH 1 0.1587 0. (846 0.0901 0.9727 0.0505 =-0.0132 0.1030
EH 5 0.1774 0.2043 -0.1006 0.0509 0.9510 0.C847 0.0504
SILT il 0.0053 0.1742 -0.0073 0.0466 -0.0031 -0.9663 -0.1880
SALINI 3 0.1659 -0.19¢3 0.0752 0.1214 0.0510 0.2419 0.9323

INVERSE OF V MATRIX

-1.1719 -0.1539 -0.2188 -0.1561 =-0.1508 0.1C40 -0.0755
0.1149 1.€970 0.1932 -0.2258 -0.5158 —0.4162 0.4520
0.2CH4 0.1338 1.1090 -0.0880 0.1079 -0.0C06 =-0.0212
C.1395 -0.1401 -0.CR7C 1.1001 0.0113 -0.0252 -0.1528
0.,2029 -0.23290 0.1204 0.0147 1.2153 0.1633 -0.1282

-0.0030 0.2178 0.0257 0.0469 —0.0688 —1.14€6 -0.1686

0.1119 0.:221C -0.C0"60 =0.1787 -0.1498 0.1935 1.2483

TABLE 8

R AND Q MCDE TESTS OF DUVAP PROGRAM ON BUTTONWOOL SOUNL, FLORIDA BAY, FEBRUARY 91H,
CELIQUE PROJECTICN ERCGRAM

OBLIQUE AXES

NAME INCEX 8 2 4 1 5 7 3
DEPTH 1 0.000 0.000 0.000 1.000 0.000 0.000 0.c00
TEMEER 2 0.000 1.000 0.000 0.000 0.000 0.000 0.000
SALINI 3 0.000 0.000 0.000 0.000 0.000 0.000 1.000
BH . 4 0.C00 0.000 1.000 0.000 0.000 0.000 0.000
EH 5 0.000 0.000 0.000 0.000 1.000 0.000C 0.000
SAND 6 -0.602 -0.1C6 0.015 0.017 0.154 -0.687 -0.043
SILT 7 0.000 ¢.000 0.000 0.000 0.000 1.000 0.000
CLAY 8 1.000 c.coo 0.000 0.000 0.000 0.000 0.000
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Table 9

g AND Q HODE TESTS OF DUVAP ERCGRAM OF BUTTONWOOD SOUND, FLCRICA EAY, FEBRUARY 91TH, 1963 DATA.

BABE

INDEX
CLAY 8
gENPER 2
17 .
peptd 1
11 5
SILT 7
SANE 6
SALINI 3

R AND O MODE TESIS OF

CASF
NO. WAME
1 1
2 2
3 3
L} L]
H 6
[ 7
7 8
8 9
9 w
10 "
n 12
17 3
13 15
" 16
15 ”
16 1€
” 19
SE — SKEN L

SE ~ KURTOSIS ¢

CLAY TEEPER
8 2
1.000 6.000
c.coc 1.000
c.o000 c.coc
0.000 0.Go0
c.000 0.000
c.coc 0.co0
-0.602 -0. 106

c.000 0.co0

DOUVAP FBCGRAM OK BUTTONWOOL SOUND,

RECRDEEED OBLICUE PROJECTICN MATRIX

PH DEPTH EB
8 1 5
£.000 0.000 0.000
c.c00 0.000 0.000
1.000 0.000 0.000
0.000 1.000 0.000
c.000 0.000 1.000
0.000 0.000 0.000
0.015 0.017 0.154
0.00¢ 0.000 0.000
Table 10

son sQ

5450. 280
7€69.950
7499.260
15495.500
22524, 620
25203.870
25392.500
10501.500
8221.180
5779.090
15666.020
5670.210
15985.370
15705.350
18198.180
17699.700
6826.4880

SQ RT SUM SQ

73.826
88,713
86.598
128,881
149,749
158,757
159.350
102.877
90.671
76.020
125,168
75.301
126.833
125.321
119.139
133.080
82.623

SILT SALINT
7 3
0.000 0.000
oc.oc¢ 0.00c¢C
0.000 0.00¢
0.000 0.000
C.000 0.000
1.0c0 0.00¢C
-0.687 -0.043
c.o00C 1.000

FLORIDA EAY, FEBRUARY 9TH, 1963 DATA.

KURTOSIS

-1.189
2.380
1.7%0
5.788¢¢
6. 568
6.688%
6,896
8.551%¢
3.080%

=0.761
5.556%%

-1.184
5.387%+
5.652¢¢
8.797%+
6.023%%
1.183

* SIGNIFICANT AT .05 LEVEL
*% SIGNIFICANT AT .01 LEVEL

Coetticient of proportional similarity; ranging from zerofor a pair lack-
ing anything in common to unity for a pair with identical proportional
composition.

Table 12 is a table of positive eigenvalues.

Vectors retain 100. 7 percent of total information.
Table 13 is the principal components factors matrix (Harman,

1960).

Table 14 gives the varimax matrix,

Three reference

Similar to Table 6, but il-

lustrates proportional composition of each station in terms of two
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R IND C MCDE TESTS OF DUVAP PROGRAM

CASE
NO. NANE 1 2
1 1 1.00C
2 2 0.740 1.600
El 3 0.4 0.€59
u 4 0.943 0.912
5 6 0.955 0.829
6 7 C.9uC 0.8308
7 8 G.994 0.661
L 9 C.930 0.€7%
9 10 0.932 0.€65
10 " C.9u6 0.759
" 12 0.5€6 0.660
12 13 6.902 0.tRE
CASE
NO. NANME 1 2
1 15 t.c12 0.705
14 16 0.916 0.505
15 17 J.F76 0.635
16 1€ 0.919 0.667
” 19 C.8h8 0.951

R AND Q MCDF TESTS OF DUVAP ERCGRAN

CASE
NO.  NAME 13 14
13 15 1.000
1 16 €.577 1.€00
15 17 0.987 c.990
16 18 0.586 .57
A 19 0,793 0. 847

R AND Q MCDE TESTS OF DUVAF PROGEAM CN BUTTONWOOL SOUND, FLORIDA BAY, FEBRUARY 9TH, 196

TAELE CF FOSITIVE EIGENVALUES

NO. EIGENVALUE ALL ( 17) FACTORS 2 ROTATED FACTORS
15.392 9C.5 90.5 93.1 93.1

; 1.138 6.7 97.2 6.9 100.0

3 0.594 3.5 100.7

u 0.194 1.1

S 0.100 0.6

6 0.010 C.1

7 0.C02 Cc.0

8 0.0C0 0.0

9 0.0C0 C.0

10 0.C00 0.0

1 0.000 0.0

12 c.CCO C.0

13 0.000 c.0

TRACE OF CRIGINAL MATERIX 17.000

COFFUNALITY OVER 17 FACTORS # 17.000

TABLE 11

ON BUTTONWOOD SOUND, FLORICA BAY, FEBRUARY 9TH, 1963 DATA.
MATRIX TO BE FACTORED

3 4 5 6 7 L 9 10 "

1.c00

C.930 1.000

0.852 0.987 1.000

€.830 0.980 0.999 1.000

0.699 0.962 0.983 0.981 1.000

C.R93 0.979 0.954 0.904 0.912 1.000

0.884 0.9313 0.891 €.877 0.802 0.986 1.000

0.784 0.666 0.602 0.582 0.55€ 0.799 0.885 1.000

0.696 0.967 0.978 0.973 0.987 0.950 0.908 0.680 1.000

€.901 0.982 0.987 0.987 0.860 0.998 0.997 0.970 0.892
3 L) 5 6 7 L] 9 10 AR}

0.730 0,968 €.983 0.982 0.959 0.969 0.928 0.707 0.981

€.921 0.957 c.988 C.983 0.952 0.98a 0.941 0.681 0.962

0.850 0.979 0.974 0.97M 0.927 0.988 0.957 0.733 0.953

0,384 0.993 0.995 0.993 0.963 0.975 0.925 0.655 0.970

C.962 0. 841 0.759 0.737 0.69¢C 0.916 0.959 0.899 0.766

CN BUTTON®OOD SOUND, FLORIDA BAY, FEBRUARY 9TH, 1963 DATA.

MATRIX TO BE FACTORED

15 16 17
1.000
€.290 1.000
0.457 0.812 1.000

TABLE 12

PERCENT OF COMMUNALITY OVER

2 FACIORS # 16.530
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R AND Q MODE TESTS OF DUVAP PRCGRAM CN BUTTONWOOL SOUNC, FLORIDA BAY, FEBRUARY 9TH, 1963 DATA.

UNFOTATEL

FACTOR NUMEER

SUM SQUARES DGWN COLUMKSE

NO.

LEUTUE WN =

CASE
NAME

R AND C MCDE

SUM

NO.

e
SO LVWDNUONEWN o

-
)

- b
NouUe w

SQUARES

CASE
NAME

b s b
MWL SOOI S WN =

COMMUNALITY
2 FACTIORS

C.924
C.899
€.920
0.995
1.001
C.998
1.000
0.988
0.967
0.EE5
0.983
1.033
0.977
0.996
0.973
0.996
0.935

TFSTS OF DUVAP PRCGRAM CN BUTTONWOOD SOUND,

FACTOR NUMEER
DCWN COLUMNE

COMMUNALITY
2 FACTORS

0.92u
C.899
€.920
0.995
1.001
€.998
1.000
0.988
C.967
C.E€5
0.583
1.033
€.577
0.996
0.$73
0.9596
€.995

15.392

0.961
C.880
€. 900
€.993
£.976
C.967
C.928
C.994
C.971
C.794
€.950
1.00€
€.963
C.99u4
0.983
C.988
C.90u

ROTATEL

1
<549

C.753
C.u50
C.u80
0.822
0.892
€.903
0.952
c.75¢C
0.646
C.286
C.911
0.681
0.882
0.818
C.807
0.851
C.u424

TABLE 13

FACTOR MATRIX

2
1.138

-0.024
0.3<3
0.331

-0.092

-0.223

-0.251

-0.373
0.021
0.156
0.505

-0.283
0.144

-0.223

-0.085

-0.081

-0.143
0.u22

TABLE 14

FACTOR MATRIX

2
6.981

0.597
0.835
0.831
0.565
0.454
0.426
0.307
0.652
0.742
0.896
0.391
0.755
0.4u6
0.571
0.567
0.522
0.903
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Table 15

R AND C MCDE TESTS OF DUVAP ERCGEAM ON BUTTONWOOD SOUND, FLORIDA BAY, FEBRUARY 9TH, 1963 DaTa,

¥V BATRIX

NAME IRCEX 7 17
8 7 0.9517 0.3074
19 M 0.4239 €.5032

INVERSE OF V BEATRIX

1.2384 -C.4214
-0.5812 1.3c5¢
ITERATICN CYCLE 1. HIGHEST LOADING IN C MATRIX IS 0.089 IN EXCESS OF 1.000

R ARD C BCDF TESTS OF DUV2?P FRCGRAM OK BUTTONNOOL SOUND, FLORIDA EAY, FEBRUARY 9TH, 1963

¥ MATRIX

BARE IRCE) 7 10
L] 7 .9517 C.3074
n A\ 0.2¢€€4 C. 8362

IFVERSE OF V RATRIX

1.1716 -0.4018
-C.37u4 1.2442

theoretical end members,
Table 15 is similar to Table 7, but illustrates iterative sear
and identification of two most extreme vectors invarimax configurati
Table 16 is the same as Table 8, but reference vectors here

present cases.
Table 17 is the same as Table 9, but reference vectors here

present cases.
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Table 16

R AND ¢ MCDE TESTS OF DUVAP EROGRAM ON BUTTONWOOD SOUND, FLORIDA BAY, FEBRUARY 97TH, 1963 DATA.
CELICUFE PRNJECTICN PRCGRAM

OBLIQUE AXES

NAME INDEX 7 10
1 1 0.659 0.441
2 2 0.215 0.85€
3 3 0.281 0.9841
) u 0.7¢52 0.373
6 5 0.876 0.206
7 5 €.899 0.168
8 W 1.0C0 C.000
9 8 0.6135 0.511

10 9 0.479 0. €64
1 10 0.0C0 1.000C
12 1M 0.921 0.121
13 12 0.515 0.666
15 13 C.€67 Cc.200
16 14 C.745 0.383
17 15 0.733 0.1382
18 16 0.801 0.308
19 17 0.159 0.954

PROGRAM DESCRIPTION AND OPERATING INSTRUC TIONS

In the R-mode DUVAP will process up to 112 variables observed
on any number of cases up to 112. In the Q-mode, it will process up to
112 cases each characterized by up to 112 variables. Up to 10 factors
can be extracted. A listing of DUVAP is given in Appendix I and aflow
chart in Figure 3. DUVAP utilizes up to 300K of an IBM 360 System,
Model 75 computer. Standard deviations are computed with the (N-1)
formula.

Program Options

Data matrix format option. There are two ways in which the
data matrix may be punched on the cards. First, in the standard data
matrix format variables characterizing each case are punched across
one card, or set of cards; each card field representing one variable.
Second, in the transpose data matrix cases corresponding to each vari-
able are punched across one card, or set of cards; each card field
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Table 17

—

R AED Q RODE TESTS OF DUVAP PROGRAM ON BUTTONWOOD SOUND, FLORIDA BAY, PERBUARY 9TH, 1963 pava,
RECRCEBED CBLIQUE PROJECTICE BATRIX: 1 J

BANE 8 "
. IBDEN- 7 10 p

8 7 1.c00 €.Cco !

12 »n 0.921 0.121
7 6 0.899 0.168
6 = 0.876 0.206
15 13 0.867 €.200
13 16 0.801 0. 308
4 s 0.752 0.373 ‘
16 14 6.745 0.1383 A
715 0.733 0.1382 )
11 0.659 0.441 “
w 9 8 0.635 0.511 g
1 10 0.00¢ 1.C00 Y
19 17 0.159 0.954 i
2 2 0.215 0.€5¢
33 0.251 0.841
[ 13 12 0.51% 0.€66
\ 10 9 0.479 0.664

representing one case. The following rules must be noted:

1) The standard data matrix format must be used in a R-mode
analysis., i
2) Either data matrix format may be used in aQ-mode analysis,

3) The standard data matrix format must be used if both a R- b,
and Q-mode analysis is desired on one deck of data cards, I

'~ Modal sequence option. There are four operating sequences
possible on one machine pass. Options 1-3 use input in the standard \
data matrix format, while option 4 uses input in the transpose data '
matrix option. T :

- 1) The R sequence option performs only a R-mode analysis.

2) The§ sequence option performs only a Q-mode analysis.

Input must be in the standard data matrix. e i

3) The RQ sequence option performs both a R- and Q-mode
analysis from the same deck of data cards. ";.

4) The QQ sequence option performs a Q-mode analysis. Input
must be in the transpose data matrix format, - .

Transformation options. There are three ways in which raw
data may be transformed. i
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!

READ
CONTROL
AND DATA

CARDS

TRANSPOSE DATA

RANSFOR
DATA

YES

SUMMARY
STATISTICS
CORRELATION
COEFFICIENT

EIGENVALUES:
PRINCIPLE
COMPONENT

OBLIOUE
PROJECTION
CONTROL

V MATRIX
OBLIQUE AXES

PUNCH
OPTION

CALL EXIT

Figure 3. Flow chart of DUVAP program.
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1) Two logarithmic transformation functions are available when

the program is operating under the R or QQ modal sequence options:
loge (x + K)

2) An exponential transformation of the form _)EK may be used in
any modal sequence.

3) Operating in only the Q-mode sequence, each variable may
be transformed to the percentage of the observed range of the variable,
Each variable is searched for its maximum and minimum value. The
minimum value is subtracted from each observation and the resultdivid-
ed by the maximum diminished value. This option may be used when
variables in the raw data matrix are not recorded on a uniform scale,
or when it is desirable to give.each variable equal weight in determin-
ing the composition of each case.

Oblique projection and reorder option. Under this option DUVAP
finds the m most extreme vectors in the varimax matrix and resolves each
vector into oblique reference vectors. The oblique vector matrix is al-
so reordered by rows so that vectors listed in adjacent portions of the
reordered vector matrix generally lie close together in m-space. The
reordering algorithm for the n x m matrix has the follow1ng steps: 1)
Form m submatrices each with m columns Si1, SZ’ S3, evees Sy SO
that all rows of S1 have their highest absolute value in column 1, all
rows of Sp have their highest absalute value in column 2, etc. 2) Re-
order the rows of S] by the algebraic rank of elements in column 1, etc,
(Manson and Imbrie, 1964).

Punch option. This option calls for the varimax and oblique
matrices to be punched out. Make a liberal card estimate.

Communality option. There is a large literature on the best
means of estimating communality,; Manson and Imbrie (1964) believe
the most meaningful results are achieved by placing ones in the dia-
gonal of the matrix to be factored, correlation matrix in R-mode analy-
sis and cosine 6 matrix in Q-mode analysis, (i.e., estimating each
communality as one) and extracting as many factors as judged to be
significant. An alternative option, which is also commonly used, is
provided that places the largest row r or cos 0 in the diagonal.

Dimension control options. Even though the ultimate criterion
for judging the significance of factors is empirical rather than statisti-
cal, it is necessary to begin factor analysis with some a priori proce-
dure for estimating the numbers of factors to extract. DUVAP provides
three optional procedures. The matrix to be factored is printed out
only under option 1 in order to save space. g
1) Preselection option. Under this option, the investigator selects in
advance the number of factors to rotate. Any number from 1-10 may
be selected for this value (m). Itis then entered in the appropriate
columns (26-27 and/or 69-70) of the control card, If the cummulative
value of the m positive eigenvalues does not exceed unity, m factors
will be extracted. When the cummulative eigenvalues exceed u unity the
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value of m is diminished by one, the eigenvalues recalculated until a
value of m is found that satisfies the cummulative criterion. The same
cummulative eigenvalue criterion is also applied to the dimension con-
trol options described below.

CAUTION: When the maximum number specified for rotation is greater
than the number of variables, an eigenvalue equal to zero may be given
2s an extra eigenvalue. This will cause a column of zeros to be factor-
ed out and rotated. This will result in the first variable being used as
the high variable for this column. If the first variable is the highest
for any other column, two identical rows will appear in the vector mat-
rix, When the vector matrix is inverted, this will result in an over-
flow because the argument is over the fixed point range in fixfloat.
Thus to be safe: When specifying a maximum rotation greater than the
mumber of variables use at least a one percent option minimum (z) (see
discussion of this option below). In other words, punch 100 in columns
45-47 of the control card.

2) Minimum value option. This option permits the investigator to
select m, the maximum number of dimensions that might be of possible
b1gmf1ca,nce, and z, the minimum absolute value desired in any column
of the rotated varimax factor matrix, For example, if z is chosen as
0.223 it as sures that no factor will be retained that does not contribute
at least z (5 percent) to one item in the data matrix,

3) Trial series option. This option allows the investigator to select
m, the maximum number of factors to be rotated, and w, the total num-
ber of factor-vector analyses to be performed in a series with m, m-1,
m-2,...factors,

- Multiple problem processing option. This permits any number
of problems, each with separate control cards and data decks, to be
run on one machine pass.

Operating Instructions

The following cards are submitted in order immediately follow-
ing the JOB CARD and PROGRAM DECK. The symbol b below signifies
a blank, -

(1) Control Card

Col. 1-6 Problem name (alphanumeric characters).
7-9  Number of variables.
10-15 Number of cases.
17 Communality option.
1 Program puts one in diagonal,
3 Program puts largest row r, or largest
cosine §, in diagonal.
26-27 The value of m. In the R and RQ sequence op-
tions, the number of factors to rotate for R-
mode analysis; in the QQ sequence option the

number of factors to rotate for Q-mode analysis.
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29

35
36

39

42

44

45-47

50

51-56
57-62
63-65

Maximum number possible to rotate is 10,
Number of variable format cards (any number
from 1-8).

0 (zero)

R-mode control.

R For R-mode analysis (inR or RQ sequence

options)

b To suppress R-mode analysis leave blank

(Q and QQ sequence options).
Q-mode control.

Q For Q-mode analysis (in Q, RQ or QQ

sequence options).

b To suppressQ-mode analysis leave blank

(R sequence option).
Oblique projection control.

0 Suppress oblique projection option,

1 Oblique projection and reorder option,
Punch control,

0 Suppress punch option.

1 Varimax and oblique matrices written on

logical tape number 2 for card punch,
Dimension control options. Values) of m
punched in columns 26-27 and/or 69-70 repre-
sent maximum number of factors to rotate.

b Preselection option. Values of m punched
in columns 26-27 and 69-70 determine
number of factors to be rotated.

Minimum value option. Punch desired
three-digit value of z without decimal point,
e.g., for z =0,223 punch 223
-w Trial series option. Punch minus sign
followed by desired integer value of w,
right justified. For series of four a.na.Ty-
ses punch b-4
Percent range data transformation option.
0 Option suppressed.
1 Data transformed to percent range in Q
sequence only,
Nonlinear data transformations. Punch value
of K with decimal point to call desired option.
For example, 0.5 in columns 66-68 will cause
program to take square root for every value in
a R-mode sequence. For no transformations
leave columns 51-68 blank,
loge (x + K); R and QQ sequences only,
log;o (x + K); R and QQ sequences only.
xK for Q-mode sequence.

IN
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i
66-68 EK for R-mode sequence. 1““\
69-70 The value of m, In the Q, RQ and QQ sequence \‘ J
options, the number of factors to rotate for Q- I
mode analysis. In the QQ sequence option only, ‘
the same value is punched in columns 26-27. ‘
Ieave blank for R sequence option.
I

12 Data matrix format option.
0 Standard data matrix format (R, Q and RQ
sequences). \
quence),

1 Transpose data matrix format (QQ se-
(2) Page Heading Cards (2 cards)
Information punched_in columns 1-72 of the first and col-
umns 1-54 of the second of these cards is printed on the
top line of each page of output. Use blank cards if no title
is desired.
(3) Name Card(s) il
Code names in order (12A6 format code) are specified for |
each variable in the R or RQ sequence options. In the Q
or QQ sequence options code names of cases are specified,
Twelve items are described per card., The number of
cards required is equal to the integral value of [(N - 1)/
12] + 1, where N is the number of variables or cases.
Use blank cards if no code names are desired.
(4) Variable Format Code Card(s)
Format in whichdata card s were punchedisde scribed us-
ing the number of cards given in column 29 of the Control
Card., Data must be read under a F format code. The X
format code may be used for spacing. Field of each vari- “

able format card consists of columns 1-72. M
(5) Card(s) Identifying Missing Data ‘
Numbers that are to be used to identify missing data in

data matrix are punched in format given in (4).
Any number not occurring in data matrix may be used to
identify missing data. Numbers identifying missing data
must be given for each variable, even if there is no data
missing from variable field. Total number of cards need-
ed is equal to number of cards used topunch all variables, w ‘
in standard data matrix format, or cases, in transpose | ‘
data matrix format. For example, in punching in a stan-
dard data matrix format of 12F6.2, 15 variables would H‘
require two cards. Card(s) must be included even if data ‘
matrix contains no missing data.

(6) Data Deck H |

(7) Name Card(s) M‘

\

Code names in order (12A6 format code) are specified for ‘
each case in the RQ sequence option. Twelve items are |
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described per card. The number of cards required ig
equal to the integral value of [(N - 1) /12]+1, where N is
the number of cases. Omit these cards if R, Q or Q&se-
quence options are used,

(8) Multiple Problem Processing
Repeat cards (1) through (7) to process more than one pro-
blem on one machine pass.

(9) Finish Card
End of job card. Punch FINISH in columns 1-6.
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ERYOPSID REMAINS FROM THE CONEMAUGH GROUP,

BRAXTON COUNTY, WEST VIRGINIA

By

James L. Murphy
Case Western Reserve University
Cleveland, Ohio

ABSTRACT

Well-preserved skull, pectoral girdle, limb and vertebral ele-
ments of an Eryops specimen have been found in a roadcut near Sutton,
Braxton County, West Virginia. The amphibian remains occurred in a
green siltstone of unquestionable mid-Conemaugh age. Taxonomic dif-
ficulties involving the genus Glaukerpeton Romer and speciation within
the genus Eryops are briefly discussed.

INTRODUCTION

The amphibian specimen described in this paper was discovered
by the author in July, 1969, in a roadcut between one and 1.1 mile
southeast of the southern end of the Elk River bridge at Sutton, Braxton
County, West Virginia. Hennen (1917) published a stratigraphic section
measured along this highway (now U. S. Route 19) by R. M. Gawthorp.
Numerous changes in the path of the highway, uncertainties regarding
the aneroid elevations cited in Hennen's description of the section, a
strong down section dip component, vagueness of the upper limit of the
described section and lack of key or marker beds of distinctive lithology
have made reinterpretation of this section difficult, A second visit to
the region was made in May, 1971, to confirm the stratigraphic occur-
rence of the fossil.

STRATIGRAPHIC OCCURRENCE

The 545 foot sequence measured by Gawthorp consists primarily
of sandstone, siltstone and variegated shale and clay. The only coal in
the section (Brush Creek coal, elevation 950') is no longer exposed.
The "Ewing Limestone'' can still be seen in the ditch on the west side of
the road, a few feet below the 1200 foot contour. Hennen's identifica-
tion of this limestone with the Ewing Limestone Member is suspect,
however, and the nodular limestone probably represents the Rock
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Riffle Run Limestone Member associated with the Harlem underclay,
Heunen's '""Pittsburgh red shale' occurring 15 feet below this freshwater
limestone probably represents the Round Knob Shale Member (Pitts-
burgh redbeds of some authors), In any case, the Round Knob Shale
Member lies above the Ewing Limestone Member and not below it,

The only bed higher in the section that can be deemed of any
stratigraphic value is a thin, impure freshwater limestone referred to
the Elk Lick Limestone Member by Hennen. If this identification is
correct, then the overlying redbeds (30 feet in thickness), ''massive
sandstone'" (10 feet in thickness) and ''greenish-gray shale' (5 feet in
thickness) represent respectively the Morgantown Redbed and Morgan-
town Sandstone Members. These units are well exposed in the lower
part of the extensive roadcut at the top of the hill, elevation of the Elk
Lick ILimestone Member being approximately 1280 feet.

The amphibian remains were found within one to two feet of the
top of the '"massive sandstone' unit, elevation approximately 1340 feet
on the east side of the highway, four to five feet above the pavement,
Accepting the correlations and elevations of Hennen and Gawthorp, this
unit is the Morgantown Sandstone Member of the mid portion of the
Conemaugh Group.

Although a few fragmentary eryopsid remains have been des-
cribed previously from strata of the Conemaugh Group (Case, 1908;
Romer, 1952), referrable to either Eryops or Glaukerpeton, the pre-
sent specimen is better preserved than previously described material;
it is, in fact, the finest eryopsid specimen yet discovered in rocks of
this age in the Appalachian Basin.

PRELIMINARY DESCRIPTION
Preparation

Only a small portion of the left side of the skull roof and right
mandible were exposed in the siltstone matrix., The specimen was
carefully prepared, largely with a White air abrasive unit, by Mr.
Peter Hoover, Cleveland Natural Science Museum. Additional elements
were discovered during the course of the preparation work and these
are also noted below.

Skull
(Plate 1, figures 1-3)
The skull roof was badly crushed and considerably distorted,
particularly on the right side, making accurate measurements impos-

sible (Plate 1, figure 2), Maximum length of the skull is estimated at
200 mm from muzzle to the tip of the left quadrate. Interorbital width,
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the parameter least distorted by crushing, is 45 mm., The specimen is
thus considerably smaller than even the holotype of Eryops avinoffi
(Romer) and much smaller than E. megacephalus (Cope), E. willistoni
(Moodie) and E. grandis (Ma.rsh)_. The entire skull roof is ornamented
by a fine reticulation or pitting. There are about 60-70 pits per square
inch, as counted on the right postfrontal at mid orbit.

The left nostril lies about 20 mm from the tip of the muzzle.
The distance between the nostril and the orbit (left side)is approximate-
ly 77 mm.

The median parietal foramen is obscured by crushing and over-
riding of the left postparietal. Individual bones of the dermal roof are
not always easily delineated, due to the crushed nature of the skull,
faintness of the sutures, and difficulty of distinguishing post-mortem
breaks from sutures, In some instancesthe specimen has broken along
sutures, though not to such a degree as to indicate that this is neces-
sarily a consequence of immaturity in the individual. The sutures, in
so far as they can be discerned, do not differ materially from the pat-
tern described by Sawin (1941) for E. megacephalus.

Unfortunately, the area occupied by the interfrontal is not ex-
posed. The right anterior portion of the skull, including the right pre-
maxillary and nasal, appear to have been shoved posteriorly so thatthe
right nasal completely overlaps the interfrontal. The interparietal and
interfrontal suture can be traced easily enough anteriorly to the point
where it is overlapped by the dislocated right nasal. In photographs and
even upon cursory examination of the specimen, it appears that the
median suture continues anteriorly, uninterrupted by an interfrontal
element. Close inspection, however, suggests that the right nasal has
been pushed some 15 to20 mm posteriorlyand anundetermined distance
sinistrally, This dislocation is thought to be sufficient to cover the
interfrontal, Even so, belief in the presence of an interfrontal in this
specimen is necessarily somewhat subjective, based as it is upon the
hypothetical restoration of various dermal elements to their original
positions, It can be argued that the right nasal only slightly overlaps
the left nasal, that a median internasal suture continues anteriorly and
an interfrontal element is absent, Although the nasofrontal marginis
readily discerned, there does not seem to be a pronounced indentation
that would provide space for the interfrontal; on the other hand, the
lateral margin of the nasal is not nearly so straight as that indicated
for "Glaukerpeton' avinoffi Romer, in which the interfrontal is pre-
sumed to be absent., Removal of the right nasal may be necessary to
settle this important point concerning the West Virginia specimen.

Posterior elements of the cranial roof are poorly preserved and
incomplete in some instances. The right temporal cannot be satis-
factorily located, and the right quadratojugal is badly crushed, shoved
dorsally and anteriorly, severely damaging the right squamosal. The
right postorbital is almost entirely isolated, having been shoved into
the orbit, and there is a wide gap between the right postorbital and the
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right postfrontal. The postparietal of the right side and the posterior
part of the parietals have not been identified and are apparently entire-
ly, or in large part, missing.

Ventrally, most of the bones of the palate are well preserved.
(Plate 1, figure 3) The brain case, though dislocated, is intact, with
the right stapes nearly in place. The anterior extension of the para-
spenoid and the sphenethmoid are badly crushed, and the sutural sur-
faces adjacent to the pterygoid are entirely exposed.

The posterior part of the brain case is broken away from the
rest of the brain case, and only the lower part of the exoccipitals, and
the basioccipital and the foramen magnum can be readily seen. The
dorsal part of the exoccipitals and the otic are missing. The fenestra
ovalis is present on either side of the ventral surface of the otic, butno
trace of the Nvii foramen can be seen anterior to the fenestrae. Nx
and Nxii foramina are visible on the left exoccipital, but the rest of that
element has been broken away posteriorly.

Anteriorly the sphenethmoid region and the anterior part of the
parasphenoid are badly crushed, exposing the vomeronasal nerve canal
or first cranial nerve canal. The preorbital flare and anterior end of
the sphenethmoid region are poorly preserved.

The prevomerine tooth craters and posterolateral elevations
are well displayed though disoriented by crushing. An unusual feature
is the presence of a double ectopterygoid tooth and pit on the right side.
The left ectopterygoid crater is developed normally.

The premaxillaries are not well exposed ventrally, although
their common suture can be seen along the margin of the left premaxil-
lary. The number of premaxillary teeth and tooth pits cannot be count-
ed precisely; it is estimated, on the left side, at 12, but may have been
13, as in E. megacephalus.

Maxillary teeth are estimated at 37 on the right and left sides,
with about two-thirds of the pits filled., Teeth are largest in the
'canine! region of the anterior part of the maxillary, some of these at-
taining the size of the larger of the premaxillary teeth. Posteriorly,
the maxillary teeth decrease rather gradually in size.

The right pterygoid has been crushed posteriorly into the ad-
ductor fenestra. The left adductor fenestra is well preserved, but the
right is crushed and obscured by the right mandible.

PLATE 1 - Eryops cf. E. avinoffi (Romer) from the Morgantown
Sandstone Member, near Sutton, Braxton County, West Virginia.
Cleveland Museum of Natural History, no. 11025,

1. Left lateral view of skull, X 0, 4,

2. Dorsal view of skull, X 0, 4.

3. Ventral view of skull, with left mandible removed, X 0. 4.
4, Right clavicle, X 0.9.
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Mandibles
(Plate 1, figure 3; Plate 2, figures 1, 2)

The right mandible is preserved nearly in its natural position,
though forced upward under the maxilla (Plate 1, figure 3). Though it
is virtually complete, none of the teeth are exposed., The left mandible
has been fcolded over under the skull, its base lying along the inner
margin of the right pterygoid, cutting across the prevomerine lateral
ridge, and jutting out beneath the maxillary-premaxillary suture. The
anterior 45-50 mm of the left mandible is missing,.

Both mandibles differ only in minor respects from those of E.
megacephalus, as described and illustrated by Sawin (1941). There are
the obvious differences of smaller size and finer surface ornamentation.
Also, the mandibular foramen occurs relatively more posteriorly on
the present specimen, posterior to the angular posterior extension of
the precoronoid, In E. megacephalus the foramen occurs beneath the
precoronoid extension, well anterior to the acutely pointed posterior
extremity; at least such is the case with the specimen described by
Sawin (1941). Size and position of the mental foramen, dental foramen
and inframecklian fossa agree with those of E. megacephalus.

Coroncid sutures are difficultto recognize because of the battery
of fine coronoid denticles, a feature noted by Romer in the holotype of
E. avinoffi and by Langston (1953) in E. grandis,

Pectoral Girdle and Limb Elements
(Plate 1, figure 4; Plate 2, figures 3, 4, 6, 7)

The right humerus (Plate 2, figures 3, 4) is complete, while
the distal half of the left humerus is also preserved. When compared
with the humeri of E, megacephalus, a number of differences are ob-
servable, Perhaps the most conspicuous is the less oblique trend of
the supinator process in the Conemaugh specimen., In posterior view,
this process extends only slightly above the ectepicondylar process;
the ectepicondylar notch is thus confined to a rather narrow groove best
seen in a view of the outer side of the humerus, The latissimi dorsi
process and the deltoid crest are somewhat less developed than typical
of E. megacephalus though the former has been damaged and is still
paEially covered, making observation difficult, The articulatory sur-
face for the radius is quite pronounced in the Conemaugh specimen,
distinctly bulbous in side view (Plate 2, figure 3)., The entepicondylar
process does not extend downward much beyond the ectepicondylar pro-
cess and the radial articulatory surface, making the lower part of the
humerus decidely more transverse than in E. megacephalus, As a
consequence of the development of the radial a_rticulatory surface, the
lower outline of the humerus, in anterior and posterior views, is
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distinctly convex rather than concave as in E. megacephaius. On the
posterior side, the articulatory surface for the ulna is confined to a
stuall patch on the periphery of the distal edge of the humerus.

Neither Cope's (1888) illustrations of the humerus of E. mega-
cephalus nor Moodie's (1910) drawing of the humerus of E. “willistoni
permit detailed comparison. A fragmentary, poorly preserved humerus
of E. grandis is noted by Langston (1953) but is too poorly preserved
for comparison. Miner's (1925) study of the pectoral girdle of E,
megacephalus has been relied upon heavily both here and in the follow-
ing description.

The right scapulocoracoid (Plate 2, figure 6, 7) is very well
preserved in the West Virginia specimen, similar innearly all respects
to that of E. megacephalus and E. grandis, except for the much small-
er size, Itis also relatively shorter than illustrated scapulocoracoids
of those two species. No trace of the cleithrum has been recognized in
the collection from Sutton. The rightclavicle is present (Plate 1, figure
4), slightly crushed ventrally, so that the ventrolateral angulation is
nearly 90°. The rather coarse sculpture of the exterior surface is well
shown,

A considerable quantity of isolated rib and vertebral elements
are in the collection from Sutton. Neither the axis nor atlas has been
recognized, and most of the vertebrae appear to represent the cervical
and perhaps part of the dorsal section of the spinal column. There are
about seven relatively complete neural arches (Plate 2, figure 5) and
five readily identifiable intercentra. Numerous small fragments may
represent pieces of pleurocentra, though some of these fragments are
definitely pieces of neural arch. None of the vertebral elements were
found articulated.

TAXONOMIC ASSIGNMENT

The Sutton specimen is so well preserved and relatively com-
plete that all but two previously described rhachitome genera are im-
rnediately removed from consideration. In so far as discernible, this
Conemaugh specimen agrees in every particular with the well known
Permian genus Eryops Cope. As discussed above, there is some

" PLATE 2 - Eryops cf, E. avinoffi (Romer) from the Morgantown
Sa.ndstoga?;nber,—near Sutton, Braxton County, West Virginia,
Cleveland Museum of Natural History, no. 11025,

1, ?. Mesial and lateral view of left mandible, X 0. 5.

3, 4. OQutcr and anterior views of the right humerus, X 0. 8.

5. Posterior view of cervical neural arch, X 1, 1,

¢ 7. Inner ard outer lateral views of right scapulocoracoid,
X 0.7,
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question about the nature of the bones of the skull, specifically the pre-
sence of an interfrontal element, Uncertainty on this point is especial-
ly critical for, while all known Eryops specimens possess an inter-
frontal, Romer (1952) has erected the genus Glaukerpeton, distinguish-
ed from Eryops primarily by its smaller size, finer ornamentation and
the absence of an interfrontal. The holotype of Glaukerpeton, G.

avinoffi, is a fragmeniary skull from a stratigraphic position some-

where in the Pittsburgh Limestone Member, at the very topof the Cone-
maugh Group, found within the city of Pittsburgh. A variety of small,

isolated bones from the Round Knob Shale Member at Pitcairn, Pennsyl-
vania, originally referred to Eryops by Case (1908) were transferred
to Glaukerpeton by Romer. This latter material comes from strata
slightly lower stratigraphically than the Sutton occurrence. Romer

surmised from the dearth of unquestionable Eryops material in the

Conemaugh Group that the genus does notoccur inrocks as old as Cone-
maugh, This appears to have been his major reason in referring much
of the Conemaugh eryopsid mate rial to his new genus, Itis regrettable

that only the holotype of Glaukerpeton shows the most diagnostic feature
of the genus-- the lack of an interfrontal-- and even this has been
seriously questioned. Vaughan (1958) has clearly shown that the small
size and fine reticulation cited by Romer in his diagnosis of Glaukerpeton
are of doubtful value at the generic level. Vaughan also restores the

Glaukerpeton skull fragments in such a manner that an interfrontal
seems to be present, He places Glaukerpeton in synonymy with Eryops

and concludes that Eryops does indeed occur in the Conemaugh Group.

In light of the uncertainty regarding the presence or absence of
an interfrontal element in the Sutton specimen, there must remain some
question about the generic identity of the specimen, just as there must
remain a modicum of uncertainty about the synonymy of Glaukerpeton
with Eryops. Nonetheless, the close degree in which the Sutton rhachi-
tome matches the many known features of Eryops preponderates so
greatly over the possibility that it differs from Eryops ina single
character (absence of the interfrontal) that the most suitable assignment
of the Sutton amphibian is to Eryops. In view of the fact that this one
distinguishing character is not certainly known to exist in even the
genoholotype of Glaukerpeton, this assignment seems to be the best
solution for the present.

Romer may well be correct in his belief that there is a Cone-
maugh rhachitome identical with Eryops in every respect except the
presence of an interfrontal; it is even possible that both genera occur
in the Conemaugh. Such parallelism is pe rhaps not unkrown, but it
would be very difficult to prove on the basis of only two or three speci-
mens. The very rarity of relatively well preserved eryopsid remains
in the Conemaugh Group of the Appalachian Basin makes it inadvisable
to erect new taxa on the basis of unique specimens which differ from
previously de scribed material in only a single character, especially
when the presence or absence of even that one character is in doubt.
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At the species level, assignment of the Sutton specimen is less
difficult. The small size of the individual and perhaps the relative pro-
portions of the scapulocoracoid and the humerus suggest that the speci-
men is immature; but it is remarkable that of the half dozen or so
Eryops specimens thus far recovered from the upper Pennsylvanian
and Dunkard strata of the Appalachian Basin all are considerably below
the average size of Eryops megacephalus. It is difficult to believe that
all of these are immature specimens, and itis much more probable
that a distinct species is represented, one characterized in part by a
considerably smaller size and finer ornamentation.

In view of the stratigraphic and geographic proximity of the
Sutton occurrence to the holotype of Eryops avinoffi, the two may well
be conspecific. The poorly preserved nature of the holotype of E,
avinoffi precludes the removal of all doubt on this point, as it has also
injected a certain element of doubt at the generic level. Nevertheless,
assignment or comparison to E. avinoffi seems the best course in this
preliminary study of the Sutton amphibian.

Eryops avinoffi, as interpreted here, differs from other des-
cribed species of Eryops by virtue of its small size and finer surface
ornamentation. The sole exception is E. grandis, which Langston (1953)
gives reason to believe is distinctly smaller than typical E. megacepha-
lus. Other minor characteristics noted by Langston include a ''dense
shagreen' of coronoid denticles, quite like that of E. avinoffi; a man-
dible relatively more slender than that of E. megaczphalus; a thinner,
less robust scapulocoracoid. The Sutton specimen herein compared to
E. avinoffi differs from E. grandis in being even smaller-- only one-
half to two-thirds as large-- with a mandible more like that of E. mega-
cephalus in proportions, and a scapulocoracoid that is stouter, wider,
than that of either of the other two species.

As Langston notes, evaluations of such criteria will not be pos-
sible until a thorough restudy of all known Eryops material is under-
taken. But for the present there is no reason to believe that E. grandis
and E. avinoffi are conspecific. -

C ONC LUSIONS

Preliminary study of a rhachitomous amphibian from the Cone-
maugh Group near Sutton, Braxton County, West Virginia, suggests
that the specimen represents Eryops avinoffi (Romer). The specimen
is the best preserved example of Eryops known from the Appalachian
Basin, but a critical taxonomic character-- the presence or absence of
an interfrontal-- remains uncertain,

It is believed, following Vaughan (1958), that the genus Glauker-
peton Romer is a junior synonym of Eryops. The Sutton specimen thus
confirms the presence of Eryops in rocks as old as mid-Conemaugh in
age.
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DISTRIBU TION OF K, MG, SR, FE, MN AND ZN IN

CRASSOSTREA VIRGINICA SHELLS
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ABSTRACT

Concentrations of K, Mg, Sr, Fe, Mn and Zn in a population of
oyster shells (Crassostrea virginica) collected from a variety of en-
vironments along the Georgia coast are normally (K, Mg, Sr) or log-
normally (Fe, Mn, Zn) distributed. Natural variations in metal con-
centrations appear to be large enough to obscure any environmentally
influenced variations that might exist.

INTRODUCTION

Studies of trace metals in the calcareous exoskeletons of marine
organisms have been directed at establishing the relationship between
trace metal concentrations, tempe rature, salinity, and the concentra-
tions of the given metal in the environment. These relationships have
also been tested to determine their usefulness in paleoecological studies.
Some have indicated a possible correlation between environmental fac-
tors and the concentration of some trace metals (Gordon, et al,, 1970;
Rucker and Valentine, 1961; Pilkey and Goodell, 1963). Others have
shown that changes in trace metal concentrations occur during diagene-
sis or weathering, therefore limiting their paleoecological applicability
(Pilkey and Goodell, 1964; Ragland, 1969). Regardless of the difficul-
ties in applying these observations to paleoecology, itis still of con-
tinued interest to establish if environmental conditions influence other
trace metal concentrations in the shells of other organisms. This in-
formation may be useful in establishing if any recent changes in an or-
ganisms's environment have occurred due to natural or man-made
causes.

In the following discussion the following assumptions can be
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Figure 1. Location of sam-
ple stations.

applied. If the concentration of a given trace metal in the calcareous
tissues of individuals of a given species does not reflect environmental
conditions from place to place then its natural distribution in a popula-
tion of individuals from a range of environments should follow some
normal pattern, If, on the other hand, the metal is concentrated inres-
ponse to environmental variables, its distributions in a population from
a wide range of environments will not follow a normal pattern but will
vary with a given parameter, Using this approach the concentrations of
several trace metals in oysters, Crassostrea virginica (Gmelin), were
studied to see if any were related to environmental variables. Forty-
eight individual shells of Crassostrea virginica from ten stations along
the coast of Georgia (Figure 1) were analyzed for the concentrations of
potas:ium, magnesium, strontium, iron, manganese and zinc, These
data were used to establish the distribution of these metals in the popu-
iation to determine if the distribution patterns were normal or log nor-
mal, as expected (Ting and Vega, 1969), or whether irregularities re-
:uit from response to the environment. The only environmental para-
meter considered to be significantly different at samples locations is
salinity since the seasonal range in temperature at these locations will
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Figure 2. Salinity range for sam-
ple locations based on month-
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sonal communication).

be very similar., The range of salinities found at each location is shown
in Figure 2. These are based on monthly measurements over the past
four years (R. Reimond, personal communication).
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METHODS

The shells were thoroughly cleaned of organic matter and detri-
tus and crushed so that only the interior of the shell was sampled. Ap-
proximately 0.5 g of each shell was digested in concentrated hydro-
chloric acid and brough to 10 ml volume using double distilled water.
Standard solutions were made by digesting reagent grade calcium car-
bonate in a like manner and spiking the re sulting solutions with known
amounts of metals. Both the samples and standards were analyzed by
atomic absorption spectrophotometry cn the undiluted solution for zinc,
and on diluted aliquots for potassium, magnesium, strontium, man-
ganese and iron. Precision in the analyses for magnesium, strontium,
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and manganese based on ten replicates were approximately +5% of the
stated values. Precision for potassium and iron analyses was between
+5% and +10% and zinc +10% of the stated values. Normal distributions
are assumed when mean and median do not differ by more than 5% or
approximately the standard error in the analyses,

RESULTS AND CONC LUSIONS

In intertidal areas suchas those where the oysters were collect-
ed for this study (Figure 1), it is difficultto establish the mean salinity,
The range of salinities occurring in a given area can be estimated how-
ever, and then be used as an indicator of salinity differences between
areas. The range in salinities of the ten stations studied showed fairly
large differences. For example, stations 3 and 7 at the mouths of the
Altamaha and Ogeechee Rivers respectively are generally expected to
have lower salinities than stations 4, 5 and 6 which in turn are expected
to have lower salinities than the remaining stations. Even though there
are differences in salinity, the mean concentrations of the six metals
studied were found to be similar in the three sets of sample stations
(Table 1). Only Mn at Station 1 appears to be significantly higher than
at those stations. Iron, manganese and zinc are log normally distri-
buted while potassium, magnesium and strontium are normally distri-
buted (Figure 3). No pertubationsin the distribution patterns caused by
environmental effects are apparent, The mean values of each set of
samples also indicate no significant environmental effects. As shown
in Figure 3, if a given sample has a trace metal concentration an order
of magnitude greater than another samples, it is difficult to identify
what part of this difference, if any, can be attributed to environmental
conditions. The distribution patterns of the metals observed are pro-
bably natural and would be observed no matter what the salinities of the
individual stations were,

CONC LUSIONS

Data on the Recent calcareous shells of oysters indicates that
the trace metal concentrations of a number of individuals collected
throughout a wide range cf environments follow an expected normal or
log normal distribution. The normal range in trace metal concentra-
tions in a given population of shells may mask salinity or temperature
relationships that might influence individual organisms unless small
changes in these parameters result in very large changes in the uptake
of a given metal. For the six metals studied, the environmental effect
is not large enough to be identified,
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