Southeastern Geology: Volume 13, No. 1
May 1971

Edited by: S. Duncan Heron, Jr.

Abstract

Academic journal published quarterly by the Department of Geology, Duke University.

Heron, Jr., S. (1971). Southeastern Geology, Vol. 13 No. 1, May 1971. Permission to re-print granted by Duncan Heron via Steve Hageman, Professor of Geology, Dept. of Geological & Environmental Sciences, Appalachian State University.
SOUTHEASTERN GEOLOGY
PUBLISHED QUARTERLY
AT
DUKE UNIVERSITY

Editor in Chief: S. Duncan Heron, Jr.

Editors: Wm. J. Furbish
 George W. Lynts
 Ronald D. Perkins
 Orrin H. Pilkey

Managing Editor: James W. Clarke

This journal welcomes original papers on all phases of geology, geophysics, and geochemistry as related to the Southeast. Transmit manuscripts to S. DUNCAN HERON, JR., BOX 6665, COLLEGE STATION, DURHAM, NORTH CAROLINA. Please observe the following:

(1) Type the manuscript with double space lines and submit in duplicate.
(2) Cite references and prepare bibliographic lists in accordance with the method found within the pages of this journal.
(3) Submit line drawings and complex tables as finished copy.
(4) Make certain that all photographs are sharp, clear, and of good contrast.

Proofs will not be sent authors unless a request to this effect accompanies the manuscript.

Reprints must be ordered prior to publication. Prices are available upon request.

* * * * * * *

Subscriptions to Southeastern Geology are $5.00 per volume. Inquiries should be addressed to WM. J. FURBISH, BUSINESS AND CIRCULATION MANAGER, BOX 6665, COLLEGE STATION, DURHAM NORTH CAROLINA. Make check payable to Southeastern Geology.
SOUTHEASTERN GEOLOGY

Table of Contents

Vol. 13, No.1

1971

1. Differential Erosion of Carbonate-Rock Terranes

 H. E. LeGrand
 V. T. Stringfield 1

2. Lithology of Rocks Dredged from the Blake Plateau

 Richard M. Pratt 19

3. The Offset Course of the St. Johns River, Florida

 William A. Pirkle 39
DIFFERENTIAL EROSION OF CARBONATE-ROCK TERRANES*

By

H. E. LeGrand
United States Geological Survey
Raleigh, North Carolina

and

V. T. Stringfield
United States Geological Survey
Washington, D. C.

ABSTRACT

Relief in carbonate-rock terranes may be local and small as expressed by many shallow sinkholes, or large as expressed by poljes and escarpments. In addition to relief within the karst terrane, there is commonly significant relief between a belt of carbonate rocks and an adjacent belt of noncarbonate rocks. Cuesta topography generally occurs where the adjacent rocks are slightly inclined; in some humid regions carbonate rocks lie under an insoluble caprock and crop out near the base of escarpments, but cases are numerous where carbonate rocks themselves cap the cuestas. Carbonate rock valleys between sandstone ridges are common in some humid regions, but ridge-forming carbonates between shale valleys are also common.

Differential erosion results from a combination of physical and chemical processes. There are prerequisites for both physical and solutional erosion. Rock must be decomposed or disintegrated before it can be physically removed; a permeable soil cover is necessary for effective solution of carbonate rocks.

Erosion in carbonate terranes is favorable under moderate rather than under extreme conditions of cover, purity of the carbonate rock, topographic relief, and precipitation. Denuded carbonate rocks are much more resistant to physical and chemical erosion than are carbonate rocks with a moderately thin soil and vegetal cover; where the soil and rock cover is very thick, physical erosion of the covered bed is impossible and chemical erosion may be retarded because of retarded water circulation. Further analysis indicates that some of these extremes are in turn related to extremes in cover. Pure carbonate rocks yield no insoluble residue to form a cover; also, intense precipitation tends to strip off a thin cover and to keep the rock denuded; also, if the

*Publication authorized by the Director, U. S. Geological Survey.
carbonate rocks are relatively impermeable, water cannot easily penetrate the rock to encourage soil development. Thus, the degree of cover on a carbonate terrane is an important key to differential erosion and to much of the topographic relief.

INTRODUCTION

The principle of differential erosion is universally accepted. It focuses attention on more resistant rocks standing out higher in topographic relief than do less resistant rocks. The mental image one gets from this principle is so apparently clear that elaboration is seldom pursued; in fact, in most areal geologic reports one sentence commonly covers the point that a particular formation is more resistant than the adjacent formation. Carbonate rocks commonly are either less or more resistant to erosion than nearby rocks of other kinds. That they seldom respond to erosive forces in the same way as these other rocks invites a study of the factors that produce the observed differences. It is the purpose of this paper to evaluate the large topographic features of carbonate formations and to emphasize the factors that are involved in differential erosion where carbonate formations occur. An understanding of the development of the broader or larger topographic forms of carbonate rocks allows one to make better inferences of subsurface hydrologic conditions than would otherwise be the case.

Acknowledgments

The authors are indebted to our colleagues, especially to C. L. McGuinness and George H. Davis of the U. S. Geological Survey, for critical discussions and advice in the preparation of this paper. Watson Monroe, William A. White, and W. D. Thornbury kindly reviewed the manuscript and offered helpful suggestions. Miss Beulah Hilliard and John Teel, U. S. Geological Survey, were especially helpful in the final preparation of the manuscript.

EXAMPLES OF CARBONATE-ROCK TOPOGRAPHY

A wide range of topographic conditions occur on carbonate terranes. The term "karst topography" has been applied to carbonate-rock areas where sinkholes abound and streamless valleys are common. Even karst forms differ from place to place, some of these differences having led to the concept of a karst cycle (Grund, 1914, p. 621-640) in which a distinct sequence of topographic forms has been recognized. Youthful forms appear early and consist of sinks, which increase in number and are progressively enlarged. Drainage, which originally was surface runoff, is diverted underground. The youthful forms
gradually give way to mature forms, such as relatively large dry valleys. Solution valleys are the result of the coalescence of sinks, the sapping action of springs, or a combination of the two. Drainage is still largely underground. In the old-age stage the ridges have been reduced, and the general level of the land surface then approaches that of a plain.

It should not be implied that carbonate areas pass distinctively and in an orderly manner through the various stages of development. Rather than placing emphasis on stages of development of karst forms, it is sufficient here only to call attention to the variety of forms that are commonplace. In addition to topographic forms of carbonate rocks, consideration is given here to the contrasting topographic relief that almost everywhere has developed where carbonate rocks are adjacent to noncarbonate rocks. In many places carbonate rocks are topographically lower than adjacent noncarbonate rocks, but in many other places they are higher.

The following categories of topography that have developed on carbonate rocks are common and serve to show the great range in conditions. Figure 1 shows a view of each category.

1. Undulating plain with sinks - rolling topography consisting of sinks and intervening convex slopes - (examples, (a) Blue Grass Region of Kentucky, where local topographic relief is subdued and (b) the Cockpit Country of Jamaica, where local topographic relief is appreciable (not illustrated in Figure 1).)

2. Denuded homoclinal plain with sinks - dip of limestone and land surface coinciding to make a homoclinal coastward slope with scattered sinks, some of which have vertical walls - (examples, Nullarbor Plain of South Australia (Jennings, 1963) and north coast of Yucatan, Mexico).

3. Poljes - flat alluvial valleys bordered by relatively steep, bare limestone ridges, the valleys ranging from one-half mile to several miles in width and being somewhat elongated - (examples, valleys of southwestern Yugoslavia--some of which are many miles in length--and Nassau Valley, Jamaica).

4. Haystack or mogote plain - a nearly flat plain underlain by limestone and veneered with alluvium or residual soil on which conical limestone hills (mogotes) rise as much as 300 feet above the plain - (examples, parts of the north-coast limestone of Puerto Rico (Monroe, 1966) and parts of North Vietnam and south China).

5. Carbonate valley between noncarbonate hills - valley formed on carbonate rocks lying between ridges composed of more resistant sandstones and shales - (examples, Shenandoah Valley of Virginia, and the Sequatchie Valley of Tennessee and Alabama). These generally are breached anticlines or other structures where carbonate rocks are exposed after erosion of the overlying less soluble beds.

6. Noncarbonate lowland between carbonate ridges - valleys formed on shale or other noncarbonate rocks lying between denuded
carbonate ridges - (examples, Sierra Madre near Monterey, Mexico (Lesser-Jones, 1967) and Silla Gibara area of east Cuba).

7. Escarpment and low-lying limestone plain - nearly flat plain underlain by carbonate rocks, mantled by thin soils, and bordered by a subdued escarpment and an upland plain capped by less soluble rocks - (examples, Nashville Basin-Highland Rim area of Tennessee, Dougherty Plain-Tifton Upland of south Georgia, Salem Plateau-Springfield Plateau of Missouri, and the Dripping Springs-Chester escarpment of Kentucky and Indiana).

8. Escarpment and higher plateau capped by carbonate rocks - cuesta on which carbonate rocks are more resistant than are the underlying rocks - (examples, Niagara limestone of Wisconsin, London Chalk of southeast England, and several cuestas in the Western Desert of Egypt).
PHYSICAL AND SOLUTIONAL EROSION

An exhaustive description of physical and solutional erosion of rocks is unnecessary for the purpose of this discussion, but it is necessary to state briefly some basic principles that have been accepted almost universally. The principles have real significance when placed in the context of the most favorable and least favorable conditions for erosion. In this context the differential erosion that characterizes carbonate terranes can be viewed to advantage.

Physical Erosion

Basic requirements for the full progression of physical erosion of interior regions are: the decomposition of rock into detritus, the movement of the detritus on slopes into the river bed, and the erosion of the river bed itself. General uplift of the land to provide interstream and stream slopes and ample precipitation to activate the drainage are requirements implied within this progression.

Elaboration of these basic requirements for physical erosion has led to different concepts of erosional development of landforms. Davis (1909, p. 350-380) pointed out that land features developed by stages, the ultimate development being maturely dissected peneplains unless the cycle were renewed. Hack's concept of dynamic equilibrium stresses the tendency for all elements of the topography to adjust to differential erosion so that they are downwasting at about the same rate (1960, p. 85). Both of these concepts have merit, but a discussion of them is avoided here so that only concise accepted principles may form the framework for the aspects of differential erosion to be discussed later.

Facts that are basic to an understanding of differential erosion include: (1) exposure of rocks above sea level to circulating water and air, and (2) different rates of erosion of a stream channel and adjacent interstream areas either now or at some early stage of erosion. If a perennial stream has a steep gradient and is incised in easily erodible rocks the stream is likely to be lowered at a faster rate than the adjoining hill slopes; this is especially true where the slopes are denuded and do not decompose to form detritus to be moved down slope. On the other hand, if a stream has a low gradient and is not aggressively lowering its channel the adjoining hill slopes may be lowered at a faster rate, especially if both weathering and rainwash are active on the interstream areas. Parts of many streams adjust their courses to coincide with easily erodible rocks or with other weaknesses such as joints and faults. This is a common form of differential erosion. On broad interstream areas differential erosion is also manifested by more resistant rock standing topographically higher than less resistant rocks. Rocks not easily fractured and not covered with soil and other detritus tend to be resistant.
Regardless of the prior causes for soil to be removed from resistant rocks that stand above less resistant rocks, the absence of soil per se commonly tends to perpetuate the resistance to erosion. As noted by many workers, this condition results partly from the moisture-shedding tendency of bare rock which in turn retards weathering and soil-forming processes. Wahrhaftig (1965, p. 1165) reports the more rapid weathering and erosion of granite in Southern Sierra Nevada, California, where covered with disintegrated weathered material than where the granite is bare. The relative purity of many carbonate rocks results in thin residual soils that are easily removed by physical erosion; yet, where the soils are removed new carbonate rock soils are not easily regenerated, and bare rock tends to be perpetuated.

Solitional Erosion

Favorable conditions for solitional erosion are: soluble rocks (such as carbonates), openings in the rocks that allow circulation of water, positioning of the rocks at or near land surface where water can enter the rocks and where it can discharge from them, and a permeable soil cover that yields water rich in carbon dioxide and undersaturated with respect to calcium carbonate. Unless all these conditions are favorable, solitional erosion may be slight. For example, carbonate rocks that have no soil and that are elevated above valleys erode slowly where fractured and very slowly where unfractured (Monroe, 1966, p. 7) (Stringfield and LeGrand, 1969, p. 374). Also, where carbonate rocks, even highly permeable, are buried deeply so that water cannot easily discharge from them the solitional erosion is negligible. Relatively pure carbonate rocks tend to produce very little residual soil, and where the soil cover is stripped away by physical erosion a reduction in solitional erosion occurs (Stringfield and LeGrand, 1969, p. 374). Thus, pure carbonate rocks may be no more favorable for solitional erosion than impure carbonates and under some conditions are less favorable.

A soil and vegetal cover is an important requirement for solitional erosion for the following reasons. A moderately permeable soil cover retards runoff and promotes slow and prolonged infiltration of water into the network of openings in the rock. The aerated soil zone results in increased carbon dioxide content of the soil water that is undersaturated with respect to calcium carbonate. In some organic-rich soils there is an input of carbonic acid into the soil water. The soil waters can aggressively attack and dissolve the underlying carbonate rocks to a much greater degree than can rainwater that has not had a chance to pick up carbon dioxide.

Solubility of different kinds of carbonate rocks is a complex physical and chemical problem that should be studied under natural conditions as well as in the laboratory. In separate investigations of the solubility of dolomites, Hem (1959) and Zogovic (1966, p. 39)
concluded that the ratio of solubilities of limestone and dolomite is very variable, depending on the composition and texture of the two kinds of rocks and the natural conditions for solution.

Some factors affecting the permeability and solubility of rocks are developed prior to exposure to subaerial erosion; these include texture, amount of soluble materials, and stratigraphic relations. Other factors coming into play after the carbonate rocks are exposed to erosion may have overriding effects that make the difference in solubility between limestones and dolomites insignificant in most cases; these factors center on the extent to which the soluble rocks lie in an active ground-water circulation system.

COMBINATIONS OF DIFFERENTIAL EROSION IN CARBONATE-ROCK TERRANES

Differential erosion is conventionally considered in terms of local differences in physical erosion, especially where relatively insoluble rocks are concerned. Local differences in solutional erosion are distinctive in carbonate terranes where karst topography occurs. In many carbonate terranes, solutional erosion is dominant; in many others, it is a complement to physical erosion. The complementary relation between physical and solutional erosion is not everywhere easy to observe or understand, but an appreciation of the importance of each in specific areas may result in a better understanding of hydrologic and other subsurface conditions. Conditions may be favorable or unfavorable for physical erosion, and favorable or unfavorable for solution. These four combinations of conditions lead to differences in the erosional response of a particular terrane. Within each of the four combinations of erosional conditions the ratio of physical to solutional erosion is relative.

Differential erosion implies that a certain topographic site stands higher than an adjacent site. The scale may range from micro to macro—from the bottom of a small sink to its rim and from a large valley in shale to the bordering limestone mountain. Some topographic conditions may now be analyzed as to differential erosion.

Where carbonate rocks with joints and other openings are mantled by a cover of soil through which water from frequent precipitation passes and where perennial streams are closely spaced, it is reasonable to expect both physical and solutional erosion to be active. Such conditions are likely to be quickly passing stages, displaying topography corresponding to early youthful forms. However, as water moves preferentially through the largest fractures and other openings toward a zone of discharge it enlarges the openings through solutional erosion. Thus, water can move downward more quickly, and the water table progressively lowers itself in the terrane. As sinks develop from removal
of soluble near-surface carbonates, the open drainage essential for physical erosion tends to disappear, and solutional erosion becomes predominant (1 and 2 of Figure 1).

Where soils are absent but where fractures in outcropping carbonate rocks allow water to infiltrate readily, solutional erosion may not be great but is still predominant over physical erosion. Examples are denuded carbonate plains, mogotes, and carbonate ridges. The solutional erosion in this case (2, 3, and 4, of Figure 1) may occur at a slower rate than in soil-covered carbonates. Solutional erosion is predominant over physical erosion but also quite slow where flat-lying and soil-covered and relatively impermeable carbonate rocks occur. In this case sinks may be absent and solutional erosion occurs slowly as water moves slowly along the contact of the soil and underlying bedrock. Such conditions occur in the chalk of the Selma Group of Alabama and Mississippi. This condition has been observed also on relatively soluble gabbros of North Carolina, South Carolina, and Virginia (LeGrand, 1952).

Solitional erosion is most pronounced in karst regions. Other factors being equal, the most favorable condition for solution erosion that initiates karstification requires some type of less soluble soil cover or geologic formation on the surface of the carbonate rocks. In general, there is evidence of two types of geologic cover in karst regions. One consists chiefly of unconsolidated deposits, such as the blanket sands of northern Puerto Rico (Briggs, 1966) and insoluble residue of the carbonate rocks. The other type of cover is a geologic formation that contains less soluble consolidated beds, which forms solution escarpments. An example of this type of geologic cover is the Hawthorn Formation of Miocene age that was deposited on a thick sequence of Tertiary carbonate rocks in the Southeastern States. Karstification of a large region of carbonate rocks in Florida and Georgia was initiated as the Hawthorn Formation was removed chiefly by retreat of escarpments. Another well-known example of this type of cover consists of Mississippian and Pennsylvanian formations in karst regions of Tennessee, Kentucky, Indiana, and the Ozark region of Missouri.

Sandstone formations as a cover on carbonate terranes form some of the most pronounced cuestas or escarpments of karst regions, although less pronounced escarpments are formed within the carbonate rocks after they are exposed to solutional erosion.

Although some semblance of escarpments may develop with the unconsolidated type of cover, the initiation of karstification may begin over the entire carbonate region as surface streams crossing the region cut through the blanket to the underlying carbonate rock. This starts the ground-water circulation, the water percolating downward into joints in the carbonate rocks in the interstream areas. The water forms a zone of saturation in which all joints and openings are filled with water to a certain level which represents the water table. Lateral
movement along vertical joints, bedding-plane joints, and other openings to the surface stream or other outlets begins the development of solution openings that result in sinks. Where the cover is removed locally from the carbonate rocks after karstification begins, the carbonate rocks commonly become casehardened and resistant to erosion. This may result in resistant carbonate ridges or ramps along streams as described by Monroe (1967).

Also, as the sinkholes develop, the cover in the areas between sinks may be removed, permitting casehardening of the carbonate rocks at the surface. These casehardened or indurated surfaces where water can run off quickly are more resistant to erosion than the intervening sinkholes where solution was initiated under a soil cover. This differential erosion is the beginning of the hills in karst areas, known by different names such as mogotes, towers, cones, needles, and hums. The thickness of the soil cover probably also determines the shapes of the hills. Where the entire area of the surface of the hill is casehardened, the hill has the shape of a tower. Where the cover is thin and only the center of the original surface of the hill is casehardened, the hill is cone shaped or needle shaped.

Sinks in carbonate terranes have many shapes and sizes. The coalescence of sinks to form long dry valleys, or uvalas, continues to represent the dominance of solutional erosion over physical erosion. Larger valleys that are flat, soil-covered, and bordered by bare carbonate hills are called poljes (3 of Figure 1). It is not important to this discussion to debate whether poljes were initiated by graben faulting or by differential erosion. Examples of poljes initiated by grabens in Yugoslavia (Lobeck, 1939, p. 133) and Jamaica have been noted (Zans, 1951, p. 267), but the fact remains that differential solutional erosion is one of the predominant causes of their topographic form in full development (Birot, 1954, p. 176). Where bare carbonate mountains border a polje, the mountains are not prone to active physical erosion and only slightly more so to solutional erosion even where precipitation is great and even where infiltration through rock fractures is good; in contrast, solutional activity is likely to be great beneath the polje itself.

Having the same relation as regards erosive resistance to the denuded ridges bordering poljes are the conical denuded hills rising above a nearly flat floor in parts of Cuba, Puerto Rico, and North Vietnam (4 of Figure 1). These hills, referred to as mogotes, haystacks, and pepino hills, are high-rising remnants of limestone, now made resistant by their ability to shed water both externally and internally; there is very little carbon dioxide in the water to dissolve the limestone of the hills, and there is very little soil to remove. The plain at the base of the mogotes has developed by some combination of base-leveling conditions that have retarded erosion below the plain and have retarded the lowering of the water table beneath the plain.

Differential erosion is especially common where carbonate
rocks occur in broad belts adjacent to noncarbonate rocks. A classic example in which carbonate rocks are poorly resistant is the Ridge and Valley Province of the southeastern Appalachian region. In this region carbonate rocks are common in the valleys along the strike of the folds whereas the intervening ridges and mountains are commonly sandstones (5 of Figure 1). In this case the differences in topography result from a combination of differential physical and solutional erosion. The sandstones are not subject to much solutional erosion and they do not weather readily to form soil necessary for physical erosion to be strong. The carbonate rocks are entrenched by perennial streams that carry away the detritus from weathering of impure carbonates and of shales that are commonly present. The streams also represent discharge zones for circulating ground water in the carbonates, thereby aiding solutional erosion. In this setting both physical and solutional erosion are favorable in the valley carbonates. The importance of such a stream is demonstrated in the Sequatchie Valley of East Tennessee where the Sequatchie River, flowing southwestward into the Tennessee River, is entrenched a length of 75 miles into Paleozoic limestone and continues to remove detritus and dissolved mineral matter from the valley (Milici, 1967).

Valley and ridge topography in folded regions consists of ridge-forming carbonates and valley-forming shales in many cases (6 of Figure 1). In such cases the carbonates may be so nearly pure that soil does not form or earlier soil may have been stripped away as fast as it could form, thereby reducing further physical erosion. Once denuded of soil, solutional erosion is also lessened, chiefly because of limited contact with water high in carbon dioxide; the rocks thus become more resistant than the shales of the valleys. Resistant carbonate ridges are especially common in semiarid regions, but they are not uncommon in humid regions.

CARBONATE ROCKS IN CUESTAS

Cuestas are common where gently dipping resistant and nonresistant formations alternate. Because carbonate rocks are so readily accentuated by differential erosion, they are common in the rock sequences forming cuestas (7 and 8 of Figure 1). Excluding escarpments caused by faulting and considering only cuesta-type topography formed by erosion, one can cite three requirements for their development:

1. Sufficient regional uplift for topographic relief to develop
2. Gently tilted beds or, less commonly, certain broad structures with steep dips such as some breached anticlines
3. Alternating resistant and nonresistant formations

In contrast to the nonresistant carbonate rocks that underlie cap rocks of some escarpments are carbonate rocks of similar lithology that form resistant cap rocks of other escarpments. This contrast in differential
erosion of similar carbonate rocks invites an explanation. Where carbonate rocks lie in the cuesta sequence they may lie beneath a few feet to as much as several tens of feet of sandstone or other resistant cap rock, the carbonate rocks cropping out on the escarpment face.

Where carbonate rocks are nonresistant and do not cap the escarpment they may extend outward to make the surface of the lower lying plain, as is the case of the Nashville Basin in Tennessee and the Pennroyal Plain of Kentucky (Figure 2). While the overlying insoluble formation has been subjected only to physical erosion, the subjacent carbonate rocks of the lowland plain have been subjected to both physical and solutinal erosion. The favorable condition of a soil cover for solutinal erosion, if not provided by the insoluble residue of the carbonate rocks may be provided by the down-slumping overlying insoluble rocks that once overlay the carbonates on the lowland plain. A typical example is the mixture of insoluble residue of Tertiary limestone and clays of the overlying Hawthorn Formation in the Dougherty Plain of southwest Georgia; the Dougherty Plain represents the low solution plain lying below a dissected escarpment and the higher-lying Tifton Upland where the Hawthorn Formation is intact (Figure 3). If soil is stripped from the lowland plain and if permeability of the low-lying carbonate rocks is poor, as in the Nashville Basin, physical erosion is slight and solutinal erosion may be confined to a relatively shallow zone paralleling the rock surface. A soil-covered lowland plain, such as the Dougherty Plain along the Flint River in Georgia (Herrick and LeGrand, 1964), would encourage solutinal erosion along the top of bedrock as long as ground water can discharge into a nearby stream. The tendency for surface streams to go underground in karst areas and to be widely spaced results in relatively slow movement of detritus except near the perennial streams. Thus physical erosion is relatively slight. Differential solutinal erosion is predominant in the escarpment region. The retreat of escarpments is slow, especially if perennial
streams are sparse and if the overlying caprock is as much as a few hundred feet thick.

Examples of carbonate rocks capping cuestas are common where the rocks have been arched upward and have been eroded. Erosion on the structural dome of the Black Hills in South Dakota has resulted in a limestone formation being more resistant than underlying granites and metamorphic rocks; a prominent limestone cuesta forms an ellipse around a central mass of generally lower-lying Precambrian crystalline rocks (Darton, 1901). The Niagara limestone and dolomite of Silurian age forms a broad arcuate escarpment extending from New York into the Northern Peninsula of Michigan and downward into Wisconsin; throughout much of its outcrop area it stands appreciably higher at the escarpment top than do other rocks in the sedimentary sequence. Although glacial erosion has modified the topography of the Niagaracuesta, this topography was initiated by a combination of differential physical and solutional erosion. It is interesting to note that the degree of hardness of carbonate rocks is not necessarily a factor in resistance to erosion. For example, the London Chalk of southeast England is not ordinarily a hard rock, but it makes prominent escarpments. Trueman (1938, p. 61) described the geography of the region and emphasized that owing to its porosity and scarcity of surface streams, the Chalk "escapes most of the effects of river erosion and its surface is not lowered to anything like the same extent as the clays which lie along its borders: the Chalk thus stands out in ridges as surely as if it were a
harder rock. In the Western Desert of Egypt both Cretaceous and Eocene limestones have extensive limestone escarpments, the limestones exposed on the escarpments having been more resistant to erosion than adjacent shales. Several major reentrants into the escarpments are topographically low enough for oases to form. It is thought that escarpments in Egypt formed earlier when the climate was more humid than at present.

Two or more belts of cuestas may occur where the stratigraphic sequence is represented by two or more relatively insoluble formations separated by more carbonate formations and where the region has been uplifted (Stringfield and LeGrand, 1969, p. 358). One example is the Ozark Plateau Province of Missouri where Mississippian limestones of the Springfield Plateau lie below the Boston Mountain Escarpment capped by resistant Pennsylvanian sandstone; the Springfield Plateau lies above the Eureka Springs Escarpment, capped by resistant cherty limestone and the lower lying (stratigraphically) Salem Plateau, on which older Paleozoic limestones occur (Thornbury, 1965, p. 267-270). Another example is in central Tennessee where the Nashville Basin extends eastward and higher topographically and stratigraphically to the Eastern Highland Rim Plateau, east of which is the higher Cumberland Plateau; the escarpments between them are badly dissected, and limestone is widespread on the Nashville Basin and Highland Rim.

Earlier workers in the Ozark Plateau (Bretz, 1965) and in the central Tennessee area (Hayes, 1899) considered three distinctive periods of uplift and three cycles of erosion to account for the step-like plains in these regions. The delicate balances and imbalances of physical and solutional erosion are adequate to explain these conditions without the requirement of several erosional cycles (Stringfield and LeGrand, 1969). This latter view is in accord with studies by Strahler (1944) in the Kaibab Plateau of Arizona, by Meisler (1963) in the folded Paleozoic carbonate rock terrane of Pennsylvania, and by Hack (1966) in the Highland Rim region of Tennessee.

Two base levels of solutional erosion appear to be necessary for the development of two carbonate plains of different elevations separated by a less soluble formation at an escarpment. A perennial stream is or has been the base level for the lower lying carbonate plain, and the less soluble formation near the top of the escarpment is the base level of the upper carbonate plain. On the lower carbonate rocks, the resultant of physical and solutional erosion has been greater than that on the less soluble rocks of the escarpment; the sandstones or other rocks composing the escarpment are less prone to solution erosion, of course, and they are not likely to be physically eroded to a great extent because no perennial streams occur near the foot of the escarpment to take away rock materials. Erosion on the upper and lower carbonate rocks is concurrent but not necessarily even as to intensity or state of development. As the base level of the upper carbonate formation is the underlying less soluble formation and not the same base
level as the lower carbonate formations, two periods of uplift to account for the two plains is unnecessary.

Under the requirements of cuesta development mentioned earlier, any bed on which cover is removed and is not easily regenerated is likely to be the cap rock of an escarpment. Without the cover, the exposed part of the bed is resistant to both physical and solutional erosion in relation to adjacent rocks in the sedimentary sequence where some cover is present. The difference between poorly resistant and strongly resistant carbonate rocks can be understood if the significance of a cover is recognized. The same bed may be resistant to erosion at one place and nonresistant at another place, depending on cover and relative resistance of adjacent beds. Reconstruction of the erosional history of a scarp-forming bed of carbonate rock shows a breaching of the sequence of beds up dip and at a higher topographic position at an earlier time. The uppermost and earliest breaching of the scarp-forming bed was almost surely made where cover was present and the bed was locally weak. Structures on which earliest breaching occurred are commonly (1) an anticlinal arch or (2) a simple belted coastal plain. In both cases the earlier cover could be composed either of insoluble residue from the carbonate rocks or from overlying sedimentary material.

SUMMARY AND CONCLUSIONS

A contrast in topographic relief is characteristic of carbonate rocks. The relief may be local and small as expressed by many shallow sinkholes or large as expressed by poljes. In addition to relief within a karst terrane, significant relief commonly occurs where a belt of carbonate rocks is adjacent to a belt of noncarbonate rocks. Cuesta topography occurs where the adjacent rocks are only slightly inclined; carbonate rocks lie under an insoluble caprock and crop out near the base of escarpments in some humid regions, but carbonate rocks are the more resistant cappings of many cuestas. Folded rocks show long carbonate valleys between sandstone ridges in some humid regions, but ridge-forming carbonates between shale valleys are also common.

Differential erosion results from a combination of physical and chemical processes. Each component needs to be considered in relation to other components. Physical erosion may be considered in terms of decomposition of rocks into detritus, the movement of detritus on slopes and into the river bed, and the erosion of the river bed. The chemical or solutional erosion may be considered in terms of factors favorable for rock to dissolve and for the dissolved material to be carried away. "Preparation for erosion" is a prerequisite for both physical and solutional erosion. Decomposition or disintegration of rock is essential for physical erosion, and a permeable soil cover to allow slow infiltration of water containing carbon dioxide aids solutional erosion;
without a soil cover very little carbon dioxide (that is necessary for solution) is generated.

Consideration of soil cover leads to the following significant principle. Erosion in carbonate-rock terranes is favorable under moderate rather than under extreme conditions of cover, purity of the carbonate rock, topographic relief, and precipitation. For example, denuded carbonate rocks are much more resistant to physical and chemical erosion than are carbonate rocks with a moderately thin soil cover; where the soil cover is very thick, physical erosion of the covered bed is impossible and chemical erosion is retarded because of retarded water circulation. The extreme limits of the conditions of purity of carbonate rocks, relief, and precipitation, which tend to be unfavorable for erosion, are related to extremes in cover. For example, pure carbonates yield no insoluble residue to form a cover; also, intense precipitation tends to strip off a thin cover and to keep the rock denuded, especially on steep slopes. Thus, the degree of cover on a carbonate terrane is an important key to differential erosion and to much of the topographic relief. After physical erosion of most of a thick cover such as resistant and insoluble Pennsylvanian formations on the Nashville Dome and the Ozark uplift that have almost exposed underlying carbonates, chemical erosion becomes important; in such a case, lowering of the surface of the carbonates is more rapid than that of the resistant beds forming the escarpment. There is a tendency for denuded upland rocks to stay denuded, and there is a tendency for small amounts of soil to move into adjacent low areas to aid solution there. This combination of tendencies causes topographic relief to increase until the low areas have reached a karst base level.

REFERENCES CITED

Figure 1. Location map showing the general location of the Blake Plateau and the position of bottom samples and bottom photographs used in the study.

Laboratory for the success of the dredging. All members of the various scientific parties participated in the observational phase of the work. Thomas Stetson was chief scientist on Cruise Atlantis-266 in June and July of 1961. The writer was chief scientist or principal investigator on all Gosnold and Eastward cruises referred to in the study.

Financial support for the Atlantis was through the Navy's Bureau of Ships Contract NOBSR-72521, and the Gosnold was supported by Office of Naval Research Contract ONR-2196(00) with Woods Hole. The cooperative program with Duke University Marine Laboratory, and use of the R/V Eastward on Cruises E-9-69 and E-36-69 is supported through the National Science Foundation Grant GB-8189. General support of laboratory work was through the joint Woods Hole Oceanographic Institution - U. S. Geological Survey cooperative continental shelf program headed by K. O. Emery at Woods Hole and supported through Contract 11508. The writer is particularly indebted to his colleagues
Figure 2. Sediment distribution on the Blake Plateau and adjacent continental shelf. The quartz boundary roughly follows the Florida-Hatteras slope and clearly separates the terrigenous shelf sediments from the biogenic carbonate sediment on the plateau.

at Woods Hole, John Hathaway, Peter McFarlin, Frank Manheim, Elazer Uchupi, John Milliman, Thomas Stetson, K. O. Emery and Edward Zarudzki for thoughts and discussions which made the compilation possible. Peter McFarlin ran the x-ray diffraction patterns. Frank Manheim is working on the geochemistry of the samples (Manheim and Pratt, in preparation; Manheim, Pratt and McFarlin, 1967). This paper is contribution number 2497 from the Woods Hole Oceanographic Institution.

SEDIMENTS

Sediment on the Blake Plateau is from two sources: (1) detrital
Figure 3. Distribution of the four basic types of rock dredged from the Blake Plateau. Dominant and subordinate are used in a very subjective sense to give an indication of the amount of material in the dredge samples.
mostly reworked from the underlying limestone.

The limestone is cream to tan to brown in color, fine to medium grained, fair to well indurated and composed entirely of organic carbonate remains with intergranular carbonate cement. Many samples are entirely foraminiferal but many include coral stems, small mollusc shells and pteropods. One large chunk is composed dominantly of pteropods. The limestone becomes stained with manganese oxide with long exposure on the sea floor. Recrystallization was not observed in the limestone samples but submarine cementation and lithification obviously has occurred (Milliman, 1966). Calcarenite is the most applicable descriptive name term for the rock.

Another type of limestone occurs in 80 to 100 meters of water in scattered localities along the shelf edge. This is the "reef" rock consisting of a variety of shallow-water carbonate facies and is probably mostly relic from the lowered sea level conditions of the Pleistocene. The reefs support a diverse present day fauna (Menzies and others, 1966), and are associated with distinct topographic terraces along the shelf break (Uchupi, 1967; Zarudzki and Uchupi, 1968; MacIntyre and Milliman, 1970). South of Cape Kennedy living coral and molluscs indicate a relevance to the active carbonate banks of the Florida Keys.

DEEP WATER CORAL BANKS

The widespread occurrence of deep-water coral on the Blake Plateau was first described by Agassiz (1888) from dredgings of the "Blake" and the Fisheries research steamer "Albatross". However, it was not until continuous echo-sounding and seismic profiles became available that the banks could be mapped (Stetson, Squires and Pratt, 1962). Coral banks are confined to the area under the axis of the Gulf Stream from the Straits of Florida to the north end of the Blake Plateau (Figure 3). They range in height from a few meters to approximately 30 meters and occur as more or less discrete mounds of banks on an otherwise smooth bottom. Several series of dredge hauls over single banks, with relevant echo-sounding records, have demonstrated the isolation of the individual mounds; no coral was recovered until we were over a topographic mound.

The area of greatest development of the banks lies between 31°40' N and 32°010' N in 800 to 1000 meters of water and lies immediately east of the largest scour depression on the Blake Plateau. This is the only area where the banks are more or less continuous. Low coral banks are localized along the edges of depressions (Pratt, 1966; Stetson, Squires and Pratt, 1962), possibly because they must have an area of exposed hard rock for initial attachment.

Coral banks are dominated by the two species of ahermatypic (no symbiotic algae) corals, Lophelia prolifera and Dendrophyllia profunda, with minor occurrences of several other species (Stetson,
Figure 4. Various types of nodules and rocks from the Blake Plateau: upper left round concretionary manganese nodules; center, phosphate nodules partly replaced by manganese; upper right, phosphate nodules; right center, polished conglomeratic phosphate, lower right, two granitic erratic cobbles; lower left, end of a fossil rib bone, possibly from a dugong.

Nodular on the upper surface (Figure 4 and 6). They are typically conglomeratic and unweathered. It is evident from their smooth bottom, and truncation of structures and fossils on upper surfaces, and their well-healed fractures that local accretion and recementation are common where they are not exposed to circulating sea water; but their exposed surfaces are slowly dissolving. Their structure emphasizes the well-known mobility of phosphate, and adds to the problems of determining the primary form of the phosphatic sediment. Cretaceous through Pliocene fossils, have been found both in dredged samples and on land. Sharks' teeth often protrude from the nodules because of differential solution. The nodules from the Blake Plateau are very similar to those described by Dietz, Emery and Shepard (1942) off southern California, where there is also some confusion about the age.

The largest nodule recovered weighs 57.1 kilograms and measures 48 by 40 by 19 centimeters (Figure 6). It, and others nearly as large, come from an area next to the inner margin of the Blake off Wilmington, North Carolina in about 300 meters of water. Even though the largest nodules are about the maximum size recoverable with our
evidence that the only two abundant minerals are carbonoapatite (carbonate-apatite or francolite) and calcite. The poorly-crystalline carbonoapatite making up the phosphate rock of industry is commonly referred to as collophane.

Evidence for shallow water replacement-origin of the phosphate nodules includes, (1) shallow water and land fossils (dugong, horse, Inoceramus and pebbles with shallow water foraminifera), (2) the rounded pebble conglomerates that must have been formed in a moderately high energy, near-shore environment, (3) numerous unphosphatized relict grains of glauconite and quartz, and (4) at least four cycles of pebble formation and cementation. In addition, a shallow water estuarine environment provides a reasonable sink and favorable hydrography to concentrate the phosphate along the coast (Peaver, 1966). Possibly, anaerobic conditions are needed to break the nutrient cycle and release the phosphate in sufficient concentrations to replace the calcareous mud. A review of the various theories of formation is given by Degens (1965).

MANGANESE NODULES

Manganese deposits occur in three principal modes on the north end of the Blake Plateau, (1) round nodules (2) flattened nodules, and (3) continuous pavement. Round nodules are found around the southern edge of the area (Figure 3). They average six to 10 cm in diameter, are more or less round and have concentric internal structure. I surmise that the 10 cm maximum size of round nodules may be the limit at which they can be "rolled" by the bottom currents. No nuclei and few inclusions of extraneous material were observed. Nodules larger than 10 cm are flattened and some are plate shaped. Very large irregular masses several meters across have been observed from deep submersibles (Hawkins, 1969; Milliman and others, 1967). Extreme development of the manganese concretions is the continuous manganese pavement occupying about 500 km² in the center of the nodule area (Pratt and McFarlin, 1966). Samples from the pavement shows that it is a mixture of accretionary manganese oxide covering and cementing phosphate pebbles and limestone, and is forming under present environmental conditions. X-ray diffraction and chemical analyses indicate that even the purest looking manganese concretion have a high phosphate content (Manheim and others, 1967).

The manganese concretions are mostly later than the phosphate nodules and consist of two phases of accumulation: (1) an accretionary and (2) replacement phase. Simplest is the accretionary manganese that forms the typical round nodules and some of the tabular masses. In hand specimens it is soft and soils the fingers. Accretionary textures are distinguished by the nearly complete lack of included detrital mineral matter or relic organic forms, and by a fine network of calcium carbonate exudation veinlets. The small veinlets characteristically are
parallel to the concentric banding of the nodule and show double terminations within the nodule. In thin sections the carbonate crystals appear clear and well-defined and some show equal growth from both walls and abutting terminations down the middle of the veinlet. The veinlets seem to be exudation structures formed by the explosion of excess calcium carbonate from the nodule and indicate a shrinkage and rearrangement of the constituents during the growth. They appear to be smaller toward the periphery. Occasional veinlets have voids that contain accicular crystals of aragonite (McFarlin, 1966); displaced calcium carbonate occurs in typical x-ray diffraction diagrams.

The opaque layers of the accretionary nodules are composed of iron-manganese oxides. X-ray diffraction and chemical analysis reveal that the only two metallic minerals involved are goethite and todorokite. However, the subdued nature of the x-ray peaks and the lack of any crystal definition by optic means suggest that much of the iron and manganese may be unordered and amorphous (limonite and wad) which is similar to pavement described from San Pablo Sea mount (Aumento, Lawrence and Plant, 1968). Under reflected light, occasional fine bands appear intense black, whereas most of the opaque material appears brownish-red. Microprobe analyses indicate that black areas have the highest manganese content and the rest of the brownish opaque material is proportionally high in iron. Aureols of orange limonite stain, especially at the surface, are an indication of some secondary weathering.

The second means of formation of manganese-iron oxide concretions is by replacement of pre-existing phosphate nodules. Replacement criteria include (1) thin apophyses and dendrites of opaque manganese oxide in the centers of phosphate nodules, (2) relict detrital minerals such as quartz and glauconite, (3) differential replacement of relict organic structures, and (4) the lack of carbonate exudation veinlets and concentric structures. In complete replacement, thin sections appear almost opaque and structureless under transmitted light except for relict grains of quartz and glauconite. Under reflected light, some of the opaque material high in manganese appears intense black. Reddish-brown limonitic staining is an indication of total lack of manganese.

The chemical and mineralogical composition of the manganese concretions reflects the carbonate environment of the Blake Plateau rather than a silicious, red clay province and the nodules are noticeably lacking in silica. Nearly all parts of the concretions are high in calcium except the detrital quartz and glauconite. The phosphate has replaced the calcite of the limestone and the iron and manganese oxides have in turn replaced the phosphate nodules. Average manganese values are greater in the accretionary manganese nodules than in replacement nodules and pavement but are still considerably less than values of deep-sea averages (Mero, 1965; Manheim and others, 1967). Trace elements, including Cu, Ni and Co, are a little less than deep ocean
Figure 5. Various vertebrate remains from the Blake Plateau: Top four, mesorostral bones from beaked whales; lower left, sharks teeth; lower center, vertebrate rib bones; lower right, fish spines; bottom center, ear bones of whales and porpoises.

averages (Manheim and others, 1967).

FOSSILS

Included in the dredge hauls from the Blake Plateau are numerous organic remains (Figure 5), most of the occurrences are definitely fossil and an integral part of phosphate nodules. However, a few bone fragments are unphosphatized and appear to be modern. Sharks' teeth in particular are often loose and are difficult to place stratigraphically.

The oldest fossils are a Late Campanian-Early Mastrachian (Late Cretaceous) fauna from the northern Blake Plateau off Charleston, South Carolina. At least five dredge hauls recovered macrofossils which include 29 probable species. Additional localities were probably overlooked because of the difficulty of working with fossils in the highly cemented phosphate. Diagnostic genera are the cephalopods Baculites, Neophylloceras and Eutrepheoceras and three species of Inoceramus. Coral, sharks' teeth, additional pelecypods and gastropods all support the late Cretaceous age. The preservation of the forms and the type of original shell patch preservation (including aragonitic shell material) suggest that the fauna is stratigraphically in place and confirms the
Whitmore, Jr., Report on referred fossils, U. S. National Museum 6-22-1966). Fragments of ribs were noted from several other dredge hauls. Another item of interest was the recovery of four mesorostra bones from the elongate snouts of beaked whales (family Ziphiidae, Figure 5). According to Frank Whitmore (Report on referred fossils, U. S. National Museum 10-16-1969) the bones could well belong to the modern genus (Ziphius), which has been tentatively identified from the lower Pliocene strata of Europe. Apparently, old living beaked whales develop mesorostral bones with a stony appearance so that the preservation and recovery of such bones does not necessarily mean petrification. Of additional note is the recovery of two tympanic bulla (ear bones) from beaked whales, a tympanic bulla from a porpoise (Delphinidae) and a tooth plate from a porcupine fish (Diodon) (Frank Whitmore, Report on referred fossils, U. S. National Museum, 11-20-1969).

Human artifacts from deep water are always interesting because they illustrate a possible means of dispersing erratic geological material. Coal and cinders obviously dumped from passing ships were found in about half the samples. A ham tin was dredged from 800 meters off Miami and a German beer bottle from 1000 meters in one of the scour depressions at the west edge of the Blake Plateau.

Four dredge hauls recovered specimens of modern bone. One was sawed and obviously a steak bone dropped from a ship, the second was identified only as modern mammal and one dredge haul was half full of whale bones. In this case we must have dredge right over an old carcass on the bottom; but it is curious that the only rocks in the dredge haul were rather large granite and limestone erratics.

ERRATICS

The Blake Plateau is a northward continuation of the Bahama Banks carbonate reef complex. It was, therefore, surprising when granitic boulders and cobbles were found in 12 of the dredge hauls (Figure 4). One haul (E-36-69, Sta. 13037) had 47 erratics, another (Sta. 13045) had nine, but eight hauls had only one. The largest boulder measures 15 x 25 x 20 cm in size and they range down to 2 cm pebbles barely retained by the dredge. The shapes are angular to subrounded and are often flattened or elongate reflecting schistose structure of the rock. One small limestone pebble showed good striations but these may well have been caused by abrasion during mass wasting. The texture of the erratics as a whole does not have a glacial "look."

The petrography of the erratics was examined by slicing, for binocular microscopic examination, and 18 petrographic thin sections were made. Out of a total of 78 separate erratics 51 percent proved to be granite and granitic gneiss, 28 percent dense limestone and dolomite, 16.4 percent dark dike-and metamorphic-rock, 2.6 percent volcanic rocks, and 2.0 percent clastic sediment. Thin sections show that
bottom photographs, current meters, deep-submersibles and hydrographic instruments have demonstrated the northerly flow of the current on the bottom (Milliman and others, 1967; Pratt, 1963, 1966). The Gulf Stream acts as a barrier to the seaward distribution of quartzose sediment from the southeast United States and is a factor in controlling the quartz-carbonate boundary along the inner edge of the Blake Plateau. The bottom sediment on the Blake Plateau is very well sorted carbonate sand of pelagic origin that is being winnowed across the bottom. Even the indurated calcarenite bedrock in the area gives evidence of being multicyclic. Erosional depressions and direct observations show that the bedrock is readily eroded if the currents become too strong, but the general cover of loose sediment and partially filled depressions are indicative of stability and even lithification under the present day current regimen in the area.

Deep water coral banks are particularly good evidence supporting the concept of balance between erosion and deposition. It is apparent that excess sedimentation would quickly bury the coral banks but their absence from areas of bare rock surface suggests that a certain amount of trapped sediment is necessary to compact and stabilize the banks. Also, currents supply nutrient and oxygen and thereby control the growth and orientation of coral and other sessil fauna, just as in shallow water coral reefs.

Manganese and phosphate concretions form a rock pavement over much of the northern end of the Blake Plateau. Again, Gulf Stream currents are the decisive factor in the accumulation of the nodules, but for two entirely different reasons. The phosphate nodules are in the form of a lag gravel that often forms a continuous cover on the bottom. They are a mechanically formed lag deposit that is relict from former Tertiary strata, and are now undergoing solution where exposed to currents. The manganese is later than the phosphate and is actively replacing phosphate or accreting on it under present conditions. The rounding of the nodules is probably the result of movement and turning by bottom currents over long periods of time. The round nodules grade into large flat slabs and continuous pavement. The slow rate of manganese accumulation (.01 mm/thousand years; Manheim and others, 1967) suggests a long period of stable environment, probably going back to the mid-Tertiary. In addition the same non-depositional condition allows the accumulation of granitic rock erratics and various odd fossils. The erratics are probably the result of tree root rafting from a source in northeastern South America and again show the dominance of the Gulf Stream.

REFERENCES

35

Manheim, F. T., R. M. Pratt, and P. F. McFarlin, 1967, Geochemistry of manganese and phosphate deposits on the Blake Plateau

Pratt, R. M., 1963, Bottom currents on the Blake Plateau: Deep-Sea
Research, v. 10, p. 245-249.

THE OFFSET COURSE OF THE ST. JOHNS RIVER, FLORIDA

By

William A. Pirkle
Department of Geology
University of North Carolina at Chapel Hill
Chapel Hill, North Carolina 27514

ABSTRACT

The northward-flowing St. Johns River is the dominant river in eastern peninsular Florida. At a point east of Sanford, Florida, the river turns toward the west to reach an older valley that it follows northward almost to Palatka before turning to the east to flow again over a younger terrain. The course of the river over the older, more westerly surface is the St. Johns River Offset. The offset valley probably marks part of the course of an ancestral river. Factors believed to be important in the development of the valley include faulting and fracturing, solution of carbonate sediments, and favorable structures for artesian discharge. The preservation of the offset valley as a major stream course is due primarily to the discharge of large quantities of artesian water. Much of this discharge is made possible in the northern part of the offset area by the relatively permeable nature of the aquiclude and in the central and southern areas of the offset by the exposure of the aquifer. The numerous springs from Lake George southward mark sites where the aquifer is exposed or breached.

INTRODUCTION

The major streams along the east coast of Florida flow parallel with the coast following former lagoons or swales between beach ridges. These are the coast-parallel streams discussed by White (1958, p. 11). The normal flow of these coast-parallel streams is to the north or to the south with occasional eastern turns or jogs as the streams cut from one consequent course to another consequent course closer to the coast. The easterly turns may be through ancient tidal inlets. In the case of the St. Johns River this normal trend of river flow is reversed at Lake Harney, east of Sanford, Florida (Figures 1 and 2). At Lake Harney the St. Johns River turns to the west and flows for 20 miles to reach a valley cut into an older, higher terrain. The river flows northward along this valley for approximately 75 miles to a point south of the town of Palatka. Here the river jogs back to the east to traverse an area of younger, lower surface over which it follows a generally northward
direction with occasional eastern jogs until emptying into the Atlantic Ocean at Mayport in eastern Duval County. The part of the St. Johns course where the river flows on the older, more westerly surface has been named the St. Johns River Offset by White (in Puri and Vernon, 1964, p. 13 and Fig. 6). It is the origin of this offset course that constitutes the first objective of this study.

Since inception of the offset course there has always been the possibility that the river would readjust to a shorter alternate course along a younger, more easterly swale or former lagoon. In fact a course northward from Lake Harney through Crescent Lake would be a shorter route for the river to follow than its present route along the St.
Figure 2. Landforms in the region of the St. Johns River. From White (in Puri and Vernon, 1964).
Johns River Offset (Figure 1). Some set of geological conditions has caused the river to maintain the longer route. The second objective of this study is to determine the factors that result in the relative permanence of the St. Johns River along the offset course.

Acknowledgments

The material presented in this paper was included in a Masters Thesis (Pirkle, 1969) done at the University of North Carolina under the guidance of William A. White. Material was made available by him to aid in an understanding of the geological problems of the region. In addition to White, Walter H. Wheeler and John M. Dennison gave freely of their time throughout the study.

I am grateful to Richard A. Edwards of the Geology Department of the University of Florida for advice and counsel, and to Paul White, geologist of the Hudson Paper Company, for showing me exposures along the offset course. E. C. Pirkle gave me access to his personal files containing data on the area of study. Members of the Bureau of Geology in Tallahassee; the Florida Department of Transportation staffs in Gainesville, DeLand, and Tallahassee; and the United States Army Corps of Engineers in Jacksonville furnished valuable information. The "LP" and "A" logs discussed in this report were made from samples obtained by Warren Leve of the United States Geological Survey.

NATURE OF SEDIMENTS

Cooke (1939) considers surficial sediments (Table 1) through large areas of the eastern part of peninsular Florida to consist mainly of lagoonal and estuarine deposits separated by sediments of barrier islands or beach ridges. Although most investigators believe the surficial materials accumulated during the Pleistocene, there is no general agreement as to the time or the times during the Pleistocene when the sediments were deposited, nor is there any agreement as to the elevations of various Pleistocene shorelines (Cooke, 1945; MacNeil, 1949; Vernon, 1951; Alt and Brooks, 1965). Some workers believe the same lagoonal areas have been occupied by Pleistocene seas a number of times and that sediments of the same elevation may represent materials laid down during different Pleistocene interglacial stages (Brooks, 1966, 1968).

White (in press) considers most of the surficial sediments in eastern peninsular Florida to have been laid down as regressive or progradational beach ridge plains. Several size analyses of surface sands of this area were obtained and are presented in Table 2. These analyses are similar to the analyses of a great number of sand samples obtained from the region. The consistent size distribution of the sand in these samples is compatible with a regressive or progradational
Table 1. Sediments and Formations Mentioned in Text.

<table>
<thead>
<tr>
<th>Types of Sediments or Formation Name</th>
<th>Geological Time Generally Assigned to Sediments or Formations in Study Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Sands</td>
<td>Pleistocene to Recent</td>
</tr>
<tr>
<td>Caloosahatchee Marl and Nashua Marl</td>
<td>Ages assigned range from late Miocene to early Pleistocene</td>
</tr>
<tr>
<td>Hawthorn Formation</td>
<td>Middle to late Miocene</td>
</tr>
<tr>
<td>Ocala Limestone*</td>
<td>Late Eocene</td>
</tr>
<tr>
<td>Avon Park Limestone</td>
<td>Late middle Eocene</td>
</tr>
</tbody>
</table>

*The Ocala Limestone has been raised to group status by the Florida Geological Survey.

Table 2. Mechanical Analyses of Quartz Sand. Selected Samples of Surface Sands from Baywood Promontory Eastward to the Atlantic Ocean. Locations shown on Figure 1. Data from E. C. Pirkle.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Quartz Sand in %</th>
<th>Percent quartz sand retained on mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 (4 to 2 mm)</td>
</tr>
<tr>
<td>A</td>
<td>99.59</td>
<td>.11</td>
</tr>
<tr>
<td>B</td>
<td>99.60</td>
<td>.28</td>
</tr>
<tr>
<td>C</td>
<td>97.62</td>
<td>.04</td>
</tr>
<tr>
<td>D</td>
<td>98.72</td>
<td>.07</td>
</tr>
<tr>
<td>E</td>
<td>97.83</td>
<td>.19</td>
</tr>
<tr>
<td>F</td>
<td>99.93</td>
<td>.03</td>
</tr>
<tr>
<td>G</td>
<td>98.77</td>
<td>.02</td>
</tr>
<tr>
<td>H</td>
<td>97.79</td>
<td>.02</td>
</tr>
<tr>
<td>I</td>
<td>99.01</td>
<td>.01</td>
</tr>
<tr>
<td>J</td>
<td>98.15</td>
<td>.06</td>
</tr>
</tbody>
</table>

A 4.2 miles north of Crescent City, Crescent City Ridge
B Just south of Pomona Park, Crescent City Ridge
C 1.2 miles north of Satsuma, Crescent City Ridge
D Poage Pit west of Palatka, Palatka Hill
E Top of Baywood Promontory
F Crescent Beach
G Jacksonville Airport
H Thick sands along Seaboard Coast Line Railroad north of Hilliard
I Reids Bluff along St. Marys River
J Roses Bluff along St. Marys River
Figure 3. Locations of faults reported along the St. Johns River.

Through faulting and associated Ocala uplift movements, soluble sediments have been lifted close to the land surface at some sites resulting in an acceleration of solution and excavation of valleys. Furthermore, some areas may have subsided slightly through faulting (Wyrick, 1960; Barraclough, 1962). Such low regions would capture surface runoff and help establish surface drainage routes. Captured surface runoff would result in a greater quantity of water percolating downward in these low areas, resulting in an increase in solution.

In addition to influencing solution and stream genesis, warping and faulting have played major roles in giving relative permanence to the St. Johns River through some areas by increasing artesian discharge (Figure 4). For example, the aquiclude over areas where the artesian aquifer has been uplifted usually is thin and relatively permeable, conditions favoring discharge. Also, faults may extend from the
RIDGES AND HILLS IN OFFSET AREA

A comparison of topographic maps with several geological maps of Florida shows the St. Johns River, in the area of the St. Johns River Offset, to thread its way through ridges and hills composed of sediments called the Caloosahatchee Marl or the Nashua Marl (see Cooke's map of 1945 and the 1959 modification of this map by Puri and Vernon). These "Caloosahatchee-Nashua" ridges and hills are limited to the general area of the St. Johns River Offset. Such a correlation indicates the possibility that the flood plain of the St. Johns River Offset could have originated by solution of the carbonate fraction of the "Caloosahatchee-Nashua" sediments.

In evaluating this possible origin for the offset valley, the nature of the sediments within the various "Caloosahatchee-Nashua" ridges and hills becomes significant. Consequently logs made of cuttings from holes drilled along a line crossing the Crescent City Ridge (Figure 2), one of the most conspicuous and largest of the ridges, were examined. The line of borings extends in an east-west direction from the St. Johns River across the Crescent City Ridge to the town of Crescent City (Figure 5). Columnar sections are presented in Figure 6. The presence and amount of carbonate (shells) within the ridge sediments become the critical factors in the examination of these logs.

Hole A-7 on the St. Johns River near Fruitland was drilled to a depth of 48 feet and encountered only an occasional oyster shell. Holes A-8, A-9, and A-10 penetrated more than 50 feet of quartz sand and clayey sand beneath the ridge surface. In Hole A-8 a few shells were encountered at a depth of 68 feet. Hole A-9 was terminated at a depth of 61 feet without encountering any shells. No shells were found in the cuttings from hole A-10, all of the sediments being sand and highly organic sands and clayey sands. In holes A-11 and A-12 approximately 40 feet of loose sand was penetrated beneath which is a mixture of quartz sand and shells. This sand and shell zone extends from 40 to 63 feet in A-11 and from 38 to 48 feet in A-12. Beneath this zone in both holes are fossiliferous sands and clayey sands characterized by abundant small, transparent foraminifera. Hole A-13 at the edge of Crescent City penetrated 58 feet of loose sand and clayey sand. At 58 feet sediments containing a few shells were encountered. Hole A-14, by Crescent Lake, entered a shell bed at a depth of 28 feet. These shells are overlain by black, highly organic, quartz sand and plastic, gray, sandy clay or clayey sand.

Cuttings from other holes (Figure 5) in the area of the Crescent City Ridge give additional information. In well LP 196 at Welaka, limestone was encountered at a depth of only 60 feet. In that well the upper 25 feet of sediments consist of quartz sand and clayey sand with a few shell fragments. Phosphorite is present in the sands and clayey sands from 25 feet to 60 feet. In hole A-1, drilled on state road 309-A about one mile east of state road 309 at Welaka, the upper 33 feet are
loose sand. The interval from 33 to 63 feet consists of clayey sand with a few shells. Hole A-2 was drilled near the southwestern city
limits of Pomona Park about midway between the St. Johns River and Crescent Lake. The first 55 feet are loose quartz sand and clayey sand. There are rare fragments of fossils. Phosphatic sediments were encountered at a depth of 55 feet.

In summary, loose quartz sand and clayey sand make up the upper 30 to 50 feet of much of the Crescent City Ridge in Putnam County, and these sands may be even thicker in some places (Figure 6). It appears that the ridge is not held up by, nor is it composed primarily of, fossil shells of the Caloosahatchee or Nashua marls.

This same conclusion can be drawn for the hills areas just west of the St. Johns River in Putnam County (Figure 5). Well LP 307, drilled through Palatka Hill, penetrated 145 feet of sediments consisting mostly of quartz sand before encountering 20 feet of materials containing fragmented shells. Well LP 234, drilled on Teasdale Hill, penetrated 84 feet of quartz sand beneath the hill surface. These surface sands are underlain by 18 feet of sediments with a high content of shells.

In contrast, wells drilled in low areas near the St. Johns River in the same general latitudes encountered considerably less surface sand. For example, in well LP 243, about 3 miles north of Palatka, 23 feet of quartz sand, clayey sand and clay were penetrated. There are 72 feet of shell material beneath these surface sediments. In well LP 233, located on the river approximately 10 miles north of Palatka, 52 feet of quartz sand, clayey sand and clay were penetrated beneath the land surface. Under these surface materials are 63 feet of shells. It is apparent that the surface sands are thicker in the hill areas.

Logs of wells drilled on the southern part of the Crescent City Ridge in Volusia County show an increase in shell content. For example, at some sites east and southeast of Lake George from 23 to 75
feet of shell lenses and beds are present beneath 30 to 60 feet of surface sands.

Likewise the DeLand Ridge (Figure 2) contains more shell materials than the part of the Crescent City Ridge in Putnam County. These sands cover lenses and beds of shells ranging in thickness from 10 to 45 feet. It should be mentioned, however, that even thicker shell beds were encountered under some of the lowlands surrounding the ridges.

It must be concluded that the ridges in the offset area are mainly sand ridges. However strata and lenses of sediments containing a high percentage of carbonate shells are present locally in the ridge areas. Because of these carbonate lenses, it is reasonable to assume that some solution of such carbonate sediments has taken place, and that such solution could have been a factor in the formation of low areas and in the establishment of surface drainage patterns within the region of the St. Johns River Offset.

SEDIMENTS IN OFFSET AREA

A comparison of sediments composing the Nashua and Caloosahatchee marls with the quartz sands underlying the ridges and hills within the offset valley is important in further considerations of solution of the marls as a factor in the origin of valleys and residual sand ridges.

Sediments Exposed in the Northern St. Johns River Offset

Most of the sediments in the exposed banks of the St. Johns River from the northern extremity of the Crescent City Ridge to the central latitude of Lake George are nonfossiliferous, homogeneous fine quartz sands. A sample of this sand was collected from a bluff on the east bank of the river about 2 miles north of Welaka (location III, Figure 5).

Caloosahatchee or Nashua sediments are exposed at a few locations along the valley walls. In the extreme northern part of the St. Johns River Offset (locations I and II, Figure 5) 3 to 4 feet of gray to white nonfossiliferous surface sands overlie 8 to 9 feet of Caloosahatchee or Nashua sediments. Here the Caloosahatchee or Nashua consists of beds or lenses of quartz sand, shells and shell fragments alternating with thinner beds or lenses of nonfossiliferous, white micaceous quartz sand. Although some shells are unbroken, most of the shells are fragmented. The contact between the overlying barren surface sands and the Nashua sediments is very sharp. Samples were collected from the top two of several shell beds present in the exposure. These are the main shell beds exposed. They are separated from each other by a lens of white, micaceous quartz sand about one foot thick. The upper shell bed is approximately two feet thick and consists of 65
to 75 percent shells and shell fragments and 25 to 35 percent quartz sand. The lower bed is about three feet thick and contains 40 to 50 percent shells and shell fragments and 50 to 60 percent quartz sand.

Caloosahatchee or Nashua sediments are again exposed along the east bank of the St. Johns River at Nashua (location IV, Figure 5). At this location 4 to 5 feet of yellow to white nonfossiliferous quartz sands overlie 9 to 10 feet of fossiliferous Caloosahatchee or Nashua sediments. The change between the fossiliferous sediments and the overlying barren surface sands is abrupt. The Caloosahatchee or Nashua at this site consists of quartz sands, shells, and shell fragments. The shells and shell fragments compose 65 to 75 percent of the bed and the quartz sand from 25 to 35 percent. Again, most of the shells are fragmented.

Comparison of Sand in Samples from the St. Johns River

Bank to Sand in the Ridge Area

Size analyses of the surface sands from sites within the Crescent City Ridge and Palatka Hill, samples A-D in Table 2, should be compared with analyses of samples collected along the St. Johns River, given in Table 3. In samples from the St. Johns River bank, the percentage of fine quartz sand (1/8 to 1/4 mm) varies from 62 percent to 68 percent. In contrast, for samples collected from the Crescent City Ridge and the Palatka Hill the percentage of fine sand varies from 83 percent to 86 percent. Furthermore, from 23 to 36 percent of the quartz sand extracted from the shell beds along the St. Johns River falls within the size range for medium sand (1/4 to 1/2 mm). In contrast, only 4 to 11 percent of the sand from the ridge and hill areas is of this size. The anomalously low percentage of medium sand and the correspondingly high percentage of very fine sand (1/16 to 1/8 mm) in the nonfossiliferous, homogeneous sand from the river bank (sample III, Table 3) is thought to be due to deposition of very fine sand by the St. Johns River during floods.

Based on these samples, the sands from the Crescent City Ridge and the Palatka Hill are finer than the quartz sand extracted from the Caloosahatchee or Nashua marls exposed along the valley walls. The ridges, therefore, could not be simple insoluble residues resulting from the solution of the carbonate fraction of the Caloosahatchee or Nashua sediments. Moreover it would be probable that the Crescent City Ridge and similar areas never, as ridge entities, contained sufficient quantities of fossiliferous Caloosahatchee or Nashua sediments for solution of these shells to form a depression as large as the St. Johns River Offset. Such conclusions, however, do not preclude the possibility that solution of Caloosahatchee or Nashua sediments deposited before the ridges and hills were formed, or deposited in low areas after the ridges were formed, played a role in the formation of the present St. Johns River Offset.
Peace and other rivers of the Bone Valley area of central Florida. The Nashua Marl is present in the eroded straths of the St. Johns River. The "Caloosahatchee deposits" are present in the eroded valley of the Kissimmee River. Brooks states that it is even true that the type Caloosahatchee occurs in a valley-like depression between the Immokalee high to the south and highlands to the north.

If these ideas are correct and the Nashua Marl is Pliocene or early Pleistocene in age as Brooks believes, the valley of the St. Johns River Offset would have to be older than the marl and date back at least to early Pleistocene. The offset course of the St. Johns River would be relatively old; it would be a part of the valley of an ancestral lower St. Johns River and would predate other large segments of the present St. Johns River system. That is, the ancestral lower St. Johns River, perhaps a spring-fed river originating near the headwaters of the Wekiva River, would have followed a course now referred to as the offset valley of the St. Johns River.

PERMANENCE OF OFFSET COURSE

There are a number of factors important in giving relative permanence to the St. Johns River along the offset course. The unique and most significant feature of the offset area is the fact that it is a pronounced region of artesian discharge from the Floridan aquifer. Ground water enters the river valley by slow leakage from below. Also, numerous, well-defined springs rise in the discharge area to furnish large volumes of water to the river. At some sites discharge apparently is along faults (Bermes et al., 1963, p. 61). The discharge in the form of both slow leakage and more rapid flow is possible in some parts of the area because of the permeable nature of the aquiclade and at other sites because of the actual exposure of part of the aquifer.

Region of Discharge

Figure 7 shows the piezometric surface of the Floridan aquifer. The aquifer, composed mostly of Eocene limestones, is a part of one of the great artesian systems of North America. At any specific site ground water within the aquifer moves down gradient and at right angles to the isopiezic lines. It can be seen from Figure 7 that along the offset valley of the St. Johns River, ground water within the aquifer moves toward the river from all directions. The area of the offset valley receives ground-water discharge from a well-defined ground-water drainage basin of more than 3,500 square miles (U. S. Congress, 1938, House Document 194, p. 427). This ground-water drainage area of the offset valley is given in Figure 8. Large springs which rise within the discharge basin and flow into the St. Johns River include Alexander Springs, Juniper Springs, Ponce de Leon Springs, Silver Glen Springs, Salt Springs and Welaka Springs.

Aquiclude

Goodell and Yon (1960, Pl. 1), in presenting a lithofacies map of post-Eocene strata of Florida, show only one area along the entire eastern part of the Florida peninsula where the ratio of sand to clay in the post-Eocene sediments is as high as, or higher than, 8 to 1. That
somewhat southward from Lake George. Locally, however, Hawthorn sediments in this southern part have a relatively high carbonate content, are in hydraulic continuity with, and in fact, are a part of the Floridan aquifer. The numerous springs from the northern part of Lake George southward mark sites where these sediments are actually exposed or are under only a thin cover. The sediments can be seen cropping out at various springs, such as Salt Springs. In short, in the central and southern part of this discharge basin the Floridan aquifer is exposed locally and furnishes large volumes of artesian water to the St. Johns River through springs.

PRESENT INTERPRETATION

It is believed that the offset course of the St. Johns River is a part of the valley of an earlier river. This ancestral river may have originated as a spring-fed river near the headwaters of the present-day Wekiva River. Diastrophic movements associated with the Ocala uplift were important in localizing the course of this ancient river. These movements produced fracture zones which favor valley development by limestone solution, especially during times when surface drainage is downward. Therefore the course of the ancestral river probably was determined largely by fracture zones and by limestone solution along the fracture zones.

When sea level was lower the ancestral river cut its valley deeper. This deepened valley has been back-filled with sediments consisting of quartz sand, silt, clay, and lenses of shells. Solution of these shells may have played a role in establishing the course of the present St. Johns River.

Because of favorable structure in the Floridan aquifer, relatively permeable cover over the aquifer, and local breaching of the aquiclude, the region of the St. Johns River Offset today receives much discharge from the underlying Floridan aquifer. This discharge, received both directly from the aquifer and indirectly through springs and rivers which feed into the St. Johns River, gives relative permanence to the river along the offset course. Because of the relative permanence of flow along the offset course, the St. Johns River Offset is maintained as the major river course to the exclusion of any river course east of the offset area.

REFERENCES CITED

Barraclough, J. T., 1962, Ground-water resources of Seminole County, Florida: Florida Geol. Survey Rept. of Inv., no. 27, 91 p.

