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Abstract
No methodology is currently available to allow the combining of individual risk factor information derived from 
different longitudinal studies for a chronic disease in a multivariate fashion. This paper introduces such a 
methodology, named Synthesis Analysis, which is essentially a multivariate meta-analytic technique.
Design  The construction and validation of statistical models using available data sets.
Methods and results Two analyses are presented. (1) With the same data, Synthesis Analysis produced a similar 
prediction model to the conventional regression approach when using the same risk variables. Synthesis 
Analysis produced better prediction models when additional risk variables were added. (2) A four-variable 
empirical logistic model for death from coronary heart disease was developed with data from the Framingham 
Heart Study. A synthesized prediction model with five new variables added to this empirical model was 
developed using Synthesis Analysis and literature information. This model was then compared with the four-
variable empirical model using the first National Health and Nutrition Examination
Survey (NHANES I) Epidemiologic Follow-up Study data set. The synthesized model had significantly 
improved predictive power (v2 = 43.8, P < 0.00001).
Conclusions:  Synthesis Analysis provides a new means of developing complex disease predictive models from 
the medical literature. 
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Background No methodology is currently available to allow the combining of individual risk factor information derived from 

different longitudinal studies for a chronic disease in a multivariate fashion. This paper introduces such a methodology, 

named Synthesis Analysis, which is essentially a multivariate meta-analytic technique. 

Design  The construction and validation of statistical models using available data sets. 

Methods and results Two analyses are presented. (1) With the same data, Synthesis Analysis produced a similar prediction 

model to the conventional regression approach when using the same risk variables. Synthesis Analysis produced better 

prediction models when additional risk variables were added. (2) A four-variable empirical logistic model for death from 

coronary heart disease was developed with data from the Framingham Heart Study. A synthesized prediction model with 

five new variables added to this empirical model was developed using Synthesis Analysis and literature information. This 

model was then compared with the four-variable empirical model using the first National Health and Nutrition Examination 

Survey (NHANES I) Epidemiologic Follow-up Study data set. The synthesized model had significantly improved predictive 

power (v2 = 43.8, P < 0.00001).

Conclusions  Synthesis Analysis provides a new means of developing complex disease predictive models from the medical 

literature.  

Keywords: risk factors, National Health and Nutrition Examination Survey (NHANES), risk assessment, coronary heart disease, multivariate analysis 

. 

Introduction 
An estimate of a person’s risk for coronary heart disease 
(CHD) is important for many aspects of health promotion 
and clinical medicine. A risk prediction model may be 
obtained through multivariate regression analysis of a 
longitudinal study. For example, the CHD prediction 
model derived from the Framingham Heart Study has 
been widely used [1] and has been incorporated into the 
latest National Cholesterol Education Program Adult 
Treatment Plan III guidelines for the management of 
hypercholesterolemia [2]. However, the study was started 
long before many currently known risk factors were 
suspected. Therefore, new risk factors such as serum 
albumin, lipoprotein (a), homocysteine, C-reactive pro 

tein and plasma fibrinogen were not included in  the 
Framingham CHD model [3,4]. Nevertheless, the 
relationship of those new risk factors with heart disease 
has been repeatedly demonstrated in many other long 
itudinal studies [5,6]. 

A key question would be: is it possible to update the 
Framingham CHD model? To answer these questions, all 
known risk factors, traditional as well as the emerging risk 
factors, need to be statistically evaluated together in a 
single longitudinal data set in a single study. Unfortu 
nately, these data are rarely available. This is partially due 
to the prospective longitudinal study design; 5 to 10 years 
of follow up are often required before a complete data set 
becomes available. 

In this study, we introduce a method that we have named 
Synthesis Analysis. This method allows for the evaluation 



 

 

 
 

of the contributions of newer relevant risk factors and 
then allows for the development of a comprehensive 
prediction model from data derived from different 
studies. Without the requirement that all needed 
information come from a single data set, as with the 
usual empirical analysis, Synthesis Analysis is able to 
combine evidence from numerous longitudinal studies so 
that a comprehensive evidence-based disease prediction 
model can be built where an empirical model is not 
presently possible. 

 

The purpose of this study is to evaluate the validity of the 
comprehensive prediction models derived from Synthesis 
Analysis. 

 

Material and methods 
Synthesis Analysis methodology 

Synthesis Analysis constructs multivariate regression 
equations for the estimation of disease risk by integrating 
information from: (1) the univariate association (or age 
and gender-adjusted association) of each independent 
variable with disease onset; and (2) correlations among all 
the independent variables. The univariate regression 
coefficients of each variable with the disease of interest 
may be derived from different longitudinal studies or 
from more comprehensive meta-analyses of the medical 
literature. The correlations between the independent 
variables would be available from a cross-sectional data 
set, which contains all the independent variables but not 
necessarily the outcome of interest. 

 

The details of the Synthesis Analysis methodology are 
explained in the following six steps in a logistic regression 
format. 

 

Step 1 
The univariate association of the dependent variable (for 
example, D1 = logit of the probability of the onset of a 
disease) is calculated with the first independent risk 
factor variable (RF1), such as age, as the baseline 
equation, D1 = a + bu1RF1, where bu1 is the univariate 
regression coefficient (log of the relative risk or odds 
ratio) for the first variable. The intercept, a, is the mean 
of D1  if RF1  is mean-centered (value of RF1 – mean of 
RF1). In other words, the intercept reflects the average 
incidence rate of the disease in a target population before 
the first variable is added. 

 

Step 2 
Using a cross-sectional data set of the predictor variables, 
such as the third National Health and Nutrition Examina 
tion Survey (NHANES III), D1 is calculated from the 
baseline equation, for each member of the data set. 

 
Step 3 

With the same cross-sectional data set, D1 is fitted as the 
dependent variable to the second risk factor of interest, 

RF2, using a weighted linear regression equation to obtain 
a regression coefficient (bc2). This regression coefficient 
represents the association of D with RF2 that has been 
‘captured’ in the baseline equation. 

 
Step 4 
The regression coefficient (bc2), derived from step 3, is 
compared to the univariate regression coefficient of RF2 

(bu2) with the disease of interest. This coefficient is 
usually derived from the medical literature. The differ 
ence between them (bu2 – bc2) reflects the association of 
RF2 with the disease that was not previously captured in 
the baseline equation. The difference will be treated as 
the ‘extra’ regression coefficient (be2). If RF1 and RF2 are 
highly positively correlated then the difference could be 
very small and RF2 should not be added to the model. 

 
Step 5 
The new equation that reflects the joint association of 
RF1   and  RF2   with  the  disease  has  the  form  D2 = 
a + bu1RF1 + be2RF2. This new equation is treated as a 
new baseline equation. The constant, a, remains approxi 
mately the same if RF2 is mean-centered. 

 
Step 6 

Steps 2 to 5 are repeated until all the independent 
variables are included in the final equation. 

 
The key assumption of Synthesis Analysis, which is 
similar to any other meta-analysis, is that the input 
information, namely the associations of each risk factor 
with the disease outcome and the correlations among the 
multiple risk factors, are representative of the same 
underlying population. Therefore, the differences be 
tween the findings of different studies are assumed to be 
attributable to the random error of sampling and not to 
inherently different populations. If, however, significant 
heterogeneity is found between cohorts for a particular 
variable then its inclusion in the model should be 
reconsidered. 

 
Comparison between Synthesis Analysis and regression 

analysis in one data set 

The  objective  of  this  analysis  was  to  see  whether 
Synthesis Analysis could generate models that were close 
to what would be derived from regression analysis should 
a data set exist for a comparison. A second objective was 
to determine the magnitude of prediction power increase 
by adding a new risk variable while the input information 
was all from a single data set. 

 
The data used were the follow-up study data set from the 
Framingham Heart Study. These data are the public- 
release version, which contain data from 5209 subjects. 
Data include baseline health risk information and up to 
40 years of follow-up for onset of CHD. Details of the 



 

 

 
 

study design and procedures have been previously 
described [1]. 

 
Logistic regression was used as the empirical regression 
approach. CHD onset within 40 years was used as the 
outcome (1844 events), while gender, age, serum 
cholesterol, systolic blood pressure and body mass index 
were the risk factors or independent variables. Instead of 
using literature information for this analysis, all the input 
information used by Synthesis Analysis, the univariate 
regression coefficients of each independent variable and 
the correlation information among independent variables, 
was all from the same data set. A number of prediction 
models with different numbers of risk factors were 
developed by both logistic regression and Synthesis 
Analysis. Area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve for each model was 
calculated. 

 
Comparison of a base empirical model and a 

synthesized model in predicting CHD death 

The objective of this analysis was to use an empirical data 
set to compare a simple empirical prediction model with a 
comprehensive synthesis model which used literature 
information. For this objective two comprehensive long- 
itudinal data sets were needed, one for the development 
of a simple empirical risk model and one to compare this 
base model with a synthesized model developed by the 
addition of several risk factors to the base model using 
literature information. The Framingham Heart Study data 
set with follow-up outcomes, including CHD deaths, was 
the data set used to develop the base model. The first 
National Health and Nutrition Examination Survey 
(NHANES I) Epidemiologic Follow-up Study (NHEFS) 
met the requirement for a data set in which to compare 
the base and synthesized models. NHEFS included 20 
years of follow-up outcomes including CHD deaths. The 
baseline survey of NHANES I was conducted on a 
nationwide probability sample of approximately 32 000 
people, ages 1 to 74, from 1971 to 1975. Follow-up 
surveys were conducted among 14 407 subjects who were 
25–74 years old at baseline (11 593 had complete data 
available). CHD mortality was recorded during the 
follow-up (591 events). The details of the study design 
were published elsewhere [7]. 

 
The base empirical logistic model included risk of age (in 
years), gender (male = 0, female = 1), serum total choles 
terol (TCHOL, mg/dl), and systolic blood pressure (SBP, 
mmHg). 

 
Logit CHD death = – 10.15741 – 1.28756 x GENDER + 
0.06662 x AGE + 0.00909 x TCHOL + 0.01962 x SBP. 

 

The 20 year probability of CHD death = 1/(1 + exp [–
logit CHD death]). 

 

The synthesized CHD death model considered five 
additional risk factors; diabetes, smoking, BMI, serum 
albumin, and leukocyte count. These variables were 
chosen because they were available both in NHEFS (the 
test data set) and NHANES III (the data set used in the 
actual synthesis process). They were each widely 
accepted risk factors for CHD. The literature was 
searched for a consensus on the univariate effects of 
these variables. An exhaustive search and meta-analysis 
was beyond the scope of the needs for this validation. 
Published results from the NHEFS and the Framingham 
Heart Study were deliberately avoided where possible. 
Relative risks were chosen for use in modeling from 
studies that were relatively large and were representative 
of the literature in general. 

 

For the effect of diabetes on CHD, the gender-specific 
risk among the ARIC cohort, as published in 1997, was 
chosen [8]. After adjustments (for sociodemographic 
characteristics, smoking status, ethanol intake, sports 
participation, and hormone replacement therapy), the 
relative risk of CHD onset for women was 3.45 and for 
men 2.52, for people with diabetes compared to those 
without diabetes. The effect of smoking on CHD death 
came from the Chicago Heart Association Detection 
Project in Industry [9] with a follow-up of 22 years. The 
univariate relative risk for female current smokers 
compared to non-smokers was 2.49; for men the relative 
risk was 1.72. The effect of body mass index on heart 
disease onset was derived from the Nurses Health Study 
and the Health Professional Follow-up Study [10]. The 
relative risk (adjusted for age, smoking status, and race) 
per body mass index unit was estimated from body mass 
index quintiles for both men and women. The relative 
risk for men was 1.077 per increase of 1 body mass index 
unit; for women the relative risk was 1.040. These values 
we used for diabetes, smoking, and BMI compared 
favorably with other reports on these risk factors. 

 

Danesh et al. [11] published a meta-analysis of several risk 
factors for heart disease including serum albumin and 
leukocyte count. For albumin the relative risk (adjusted 
for smoking, lipid levels, blood pressure, obesity, and 
socioeconomic class) for CHD was 0.904 for each increase 
of 1 g/l. For leukocyte count the relative risk (usually 
adjusted for smoking, blood pressure, and obesity) was 

1.156 per a rise of 109/l. 
 

A synthesized model was developed using the Synthesis 
Analysis method as mentioned earlier: 

 

lcdp1 = – 10.15741 – 1.28756 xGENDER + 0.06662 xAGE 

+ 0.00909 x TCHOL + 0.01962 x SBP. 
 

For men; 
 

lcdp2 = lcdp1 + 0.8751 x (DIABETES – 0.133) 



 

 

 

lcdp3 = lcdp2 + 0.6079 x (SMOKE – 0.417) 

lcdp4 = lcdp3 + 0.0596 x (BMI – 28.02) 

For women; 

 

lcdp2 = lcdp1 + 1.0304 x (DIABETES – 0.234) 

lcdp3 = lcdp2 + 1.0315 x (SMOKE – 0.296) 

lcdp4 = lcdp3 + 0.0245 x (BMI – 29.45) 

For both; 
 

lcdp5 = lcdp4 – 0.800 x (ALBUMIN – 4.0935) 

lcdp6 = lcdp5 + 0.137 x (LEUKO – 7.624) 

cdp6 = 1/(1 + exp( – lcdp6)) 

 
The dependent variables lcdp1 to lcdp6 are the stepwise 
calculations of the logit of the probability of CHD death 
after adding each variable. The variable cdp6 was the final 
synthesized probability of CHD death within 20 years. 
Each variable was centered with a subtractant (e.g. 0.133 
for diabetes among men) that was close to the mean for 
each variable. This was determined empirically and was 
used to keep the average probability of CHD death the 
same from step to step. 

 
The prediction power of the two models was compared by 
applying both models to the NHEFS data set and testing 
the goodness of fit using logistic regression weighted by 
the length of follow-up. Observed CHD death was the 
outcome and the computed probability by the models was 
the independent variables. The statistical significance of 
the incremental improvements, in term of goodness of fit 
of the series of synthesized models over the base model, 

was assessed by the w2 test of the likelihood ratio. The 
predication power of the two models were also compared 
by sensitivity, specificity and ROC curves, but when 
those parameters were calculated the length of follow-up 
time were not considered. 

 
Results 
The comparison between Synthesis Analysis and conven 
tional regression analysis was first made within a context 
that all information used to build both models are all 
contained in one data set. As shown in Table 1, when both 
models considered the same risk factors, the area under 
the curve (AUC) of the synthesized models were lower 
than the logistic models by about 0.001. The addition of 
the risk factors cholesterol, systolic blood pressure and 
body mass index by the synthesized model increased the 
AUC by 0.022, 0.011 and 0.006, respectively. 

 
Table 1  Area under the receiver operating characteristic curve of a 
synthesized coronary heart disease model and a logistic regres 
sion model with different number of risk factors, from the 
 Framingham follow-up study data   

 

Risk variables Logistic regression Synthesis analysis 

Sex, age 0.641 – 
Sex, age, cholesterol 0.663 0.662 

Sex, age, cholesterol, SBP 0.674 0.673 

Sex, age, cholesterol, SBP, BMI 0.680 0.679 

SBP, systolic blood pressure; BMI, body mass index. 
 
 
 
 

The comparison between Synthesis Analysis and conven 
tional regression analysis was then made within a context 
that the conventional regression analysis generated a 
simple empirical model in one data set and a compre 
hensive synthesized model was developed by adding 
additional risk factor to this base model using literature 
information. Then the predictive power of the two 
models were compared in another empirical data set. As 
shown in Table 2 the goodness of fit of the final 
synthesized model was significantly higher than the base 

empirical model with w2 of 43.8 (P < 0.00001). When the 
length of follow-up was not considered, comparisons of 
the AUC for the ROC curves showed an improvement 
from 0.802 to 0.812 (P = 0.13). Defining the top quintile 
of risk as high risk generated a sensitivity of 58% in the 
synthesized model, significantly higher than the empiri 

cal base model 55% (w2 = 8.0, P = 0.005). The specifi 
cities were the same (82%) for both models. 

 

 

Discussion 
Synthesis Analysis builds multivariate meta-analytic 
models by drawing the needed data from different 
sources rather than from a single source as is normally 
done. The initial model in the stepwise Synthesis process 
is either a simple incidence model (probability of disease 
onset based on age and gender) or a more complex risk 
model derived from the literature for a specific disease. 
Relative risks for additional risk factors for the disease are 
also derived from the literature. The actual construction 
of the model is done using a cross-sectional data set such 
as NHANES III. All of the necessary calculations are 
usually done with this data set. The process is stepwise in 
which, at each step, a new independent risk factor is 
added to the model. The beta used for each new factor is 
based on how much it adds to the model that exists at 
that point. If the new risk factor is highly correlated with 
the risk as predicted by the existing model, then there is 
little point in adding that new factor since it does not add 
any new risk information to the existing equation. The 
contribution of each risk factor to the emerging model 
(its beta) is based on its univariate (or solitary) 
contribution to disease risk minus the contribution that 
is already explained by the existing model up to that step. 
Hence a risk factor that is not highly correlated with the 



 

 

 

 
Table 2   Comparison of synthesized models of coronary heart disease death for incremental improvement in predictive ability among first 
National Health and Nutrition Examination Survey (NHANES I) Epidemiologic Follow-up Study (NHEFS) data 

 

Model Added variable Incremental w2
 P X2 compared to base model P 

1 Base model* – – – – 
2 Diabetes 30.3 < 0.00001 30.3 < 0.00001 

3 Smoking negative – 21.7 < 0.00001 

4 BMI 8.3 0.0031 30.0 < 0.00001 

5 Albumin 11.1 0.0008 41.0 < 0.00001 
6 Leukocytes 2.7 0.10 43.8 < 0.00001 

*Base model variables were age, gender, total cholesterol, and systolic blood pressure. BMI, body mass index. 

 

 

existing model, and also is a strong risk factor in its own 
right, will certainly be included. 

 

The first feature of Synthesis Analysis is that it is an 
approximation of the conventional regression approach 
which can be viewed as a drawback. The second feature 
of the Synthesis Analysis is that new risk factors can be 
added while the comprehensive data are not yet available. 
This should be viewed as an advantage. The comparison 
between those advantages and disadvantages were made 
in the first analysis and shown in Table 1. In that 
example, the benefits of including any of the considered 
risk factors, as measured by the increase in the AUC of 
the ROC (from 0.006 to 0.022), outweighed the 
approximation drawbacks which reduced the AUC of 
ROC by 0.001. 

 

The third feature of Synthesis Analysis is that it is based 
on the assumption that the information on the correla 
tions between risk factors and disease outcome are 
exchangeable across different studies, representing the 
same underlying population. Even though similar assump- 
tions have been made by other acrossstudy methodo- 
logies [12], deviation from this assumption is common 
because of the heterogeneous nature of different study 
populations. 

 

This third feature can be viewed as both a disadvantage 
and an advantage of Synthesis Analysis. It is a disadvan 
tage because variations will be generated from synthe 
sized models depending on which study results are used 
as inputs even though this variation can be lessened by 
careful, comprehensive meta-analyses. Those disadvan 
tages could be reflected as a lower prediction power when 
using a specific empirical data set which may contain 
different risk-outcome associations than were used as the 
input of Synthesis Analysis. On the other hand however, 
this unique feature of Synthesis Analysis also could be 
viewed as an advantage because relying on a wide range of 
studies may increase the external validity of the method. 
The more robust and stable meta-analyzed betas could 
better represent the underlying population. Hence, the 
synthesized model might be more generally applicable to 
a wider population than any single empirical model based 
on one cohort of subjects. The disadvantageous part can 
be tested by applying the model to a specific data set; the 

 

advantageous part however, cannot be empirical tested. A 
good analogy would be that the validity or the benefit of 
conventional meta-analysis can only be evaluated by 
scrutinizing the meta-analysis process itself; it cannot be 
empirically tested in a given data set. 

 
In the presented second analysis the prediction power 
in a specific data set, NHEFS in this case, is the 
outcome for evaluation. Therefore any  deviation  of 
risk factor-CHD death associations in these data from 
what were used as input of Synthesis Analysis would 
cause a reduction of prediction power in this analysis. 
In other words, the second analysis tested the dis- 
advantageous part of the previously mentioned third 
feature of Synthesis Analysis. This made this validation 
analysis very conservative, meaning the benefit of the 
synthesized model could be higher than that shown in 
the results. 

 
Similar to the first analysis, the second analysis also 
tested the effect of a synthesized model on the predi 
cation power because of the mathematic approximation 
(drawback) and benefit of adding additional risk factors. 

 
The results showed that the prediction power of the 
more comprehensive synthesized model is statistically 
higher than that of the simple empirical model while the 
prediction power was evaluated as the goodness of fit in 
the NHEFS data. 

 
NHEFS is a longitudinal and censored data set meaning 
different individuals may have different lengths of follow- 
up time. When the goodness of fit was evaluated, the 
length of follow-up time in the NHEFS data was 
controlled, but they were not considered when the 
sensitivity, specificity and ROC were calculated. This 
may partially explain why the synthesized model was only 
shown to be modestly improved when those parameters 
were used. 

 
In this second analysis, the increase of predication power 
by Synthesis Analysis was achieved even though the input 
information used in the Synthesis Analysis was different 
from the risk factor-outcome association in the NHEFS 
data. When developing the synthesized model we were 



 

 

 
 

not aware of the predictive power of the variables 
available in NHEFS. It is not too surprising that two of 
the nine variables we chose were not significantly 
predictive of CHD death in the NHEFS. The robustness 
of the Synthesis Analysis was demonstrated by its ability 
to obtain increased predictive accuracy despite deviations 
among variables in a given cohort. The strength of this 
technique is in developing models where all the variables 
are not available in a single data set. 

 

Synthesis Analysis has some inherent limitations. First, 
subjective selection is involved in identifying the 
univariate associations of individual risk factors with 
disease from multiple studies from the literature. Careful 
meta-analysis can reduce this selection bias somewhat. 
Second, Synthesis Analysis cannot provide an estimate of 
the standard deviation for each estimated probability 
from the equation. Therefore, no statistical test can yet 
be done to test the significance of the estimated 
probabilities. Third, Synthesis Analysis is unable to 
detect, and then include, any previously undetected 
interactions among any of the new variables in the 
model. Synthesis Analysis, like meta-analysis, cannot 
generate new information but only summarize currently 
existing information. However, if interactions have 
been detected and documented in the literature then 
these terms can be added in a manner similar to terms 
without interactions. This was done for the three 
variables with different betas for men and women. 
Fourth, the validity of one synthesized model will not 
guarantee the validity of others. Diseases and their 
predictors are different. The validity of any synthesized 
model will depend on the balance of the benefit of 
including more risk factors and the cost of the noise that 
is introduced in the process. Noise would come from 
the variability in literature reports, the added assump- 
tions, and the inherent approximation of the Synthesis 
Analysis procedure. 

 

In this paper we introduced a statistical method, 
Synthesis Analysis, which can combine multiple long- 
itudinal research findings from the medical literature to 
build evidence-based chronic disease prediction models 
where none now exist. Synthesized models could provide 
useful tools for health professionals, health promotion and 
managed care organizations in assessing the disease risks 
of individuals. Research will continue to further define 
the applicability and limitations of this method. 
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