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Abstract 
 

SPAE: A Scratch Project Analysis tool for Educators  
 
 

Joseph O’Neill 
B.S., University of Tennessee 

M.S., Appalachian State University 
 
 

Chairperson: Dr. James B. Fenwick Jr. 
 
 

Middle school and high school educators are always seeking new ways to offer 

differentiation and personalization of learning to their students. Computer programming can 

provide a differentiation technique as well as strengthen mathematical and problem solving 

skills. However, text-based computer programming languages are difficult for younger students 

to learn. Scratch is a visual, block-based programming environment that targets these younger 

novice learners. Scratch has been very successful at breaking down this learning barrier, 

evidenced by the 35 million projects created by 33 million unique users in twelve years.  

Educators that wish to use Scratch in the classroom now have a new problem in 

understanding how to evaluate and assess student projects. This thesis describes the Scratch 

Project Analysis for Educators tool (SPAE). SPAE is an easy to use web application that 

provides a summary of Scratch project characteristics that teachers can use in evaluating student 

work. SPAE is implemented on a variety of hardware and software platforms to ensure 

accessibility to any teacher. The reliability of SPAE was demonstrated through the analysis of 

nearly one million Scratch projects. 
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Chapter 1 - Introduction 

Educators have long known that techniques for learning which work well with one 

student do not necessarily work well with another student [69]. Differentiation is the method of 

providing varying means of learning appropriate for different students. This differentiation, or 

personalization, has driven educators to explore new methods of teaching their students the skills 

needed for success. Along with the rise of differentiation within the classroom, many teachers 

have begun to work on teaching strategies utilizing the mathematical and problem-solving skills 

of programming. Over the past couple of decades, more and more schools are including 

computer programming courses in their schedules [46]. Originally developed for students in high 

school, teachers in middle and elementary schools now realize the mathematical and problem 

solving skills found in programming can also be beneficial to students in their own classrooms. 

This interest inspired a need for programming languages that are easier to understand and use 

than traditional text-based languages.  

One language that has gained popularity in recent years is MIT’s Scratch programming 

environment. Scratch is a free visual programming language using a drag-and-drop interface. 

Directed at young adults, Scratch concentrates on event-driven actions where students, parents, 

and teachers can build and implement various projects, games, and stories. These projects can 

then be shared with their peers, allowing them to see the code behind these projects and ‘remix,’ 

or modify, them to their own liking. Scratch is a web-based application, which simplifies its use 

in schools because there are no installation issues. Through Scratch and other simple 

programming languages, users are able to learn the basic skills (if-else statements, loops, 

conditionals, process development, etc.) needed to succeed in computer science. And, equally as 

important, is the use of these languages to help teachers provide differentiation within their 
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classrooms. For example, instead of a traditional book report a student could submit a dynamic 

and interactive presentation. As another example, the common diorama project can be replaced 

with a Scratch project that uses actual images of desired landscapes, flora, and fauna. 

 The use of Scratch in classrooms has driven the need for tools that can be used to 

evaluate Scratch projects. Teachers can have a difficult time determining the difference in 

complexity between a Scratch project with many simple blocks versus a project with fewer, but 

more challenging, blocks. The process of evaluating a classroom full of projects in detail is 

relatively time consuming and repetitive, even for experienced educators and programmers. 

Combined with the continued increase in classroom sizes nationwide [55], similar project-based 

assignments have become less appealing to educators who need to cover a wide range of topics 

and material over the school year. A tool assisting with the assessment of student work would be 

invaluable in supporting educators use of Scratch as a differentiation strategy.  

This thesis describes the development of SPAE1, the Scratch Program Analysis for 

Educators tool. SPAE allows students and educators to easily analyze their work through a 

simple web-accessible interface. SPAE adapts and combines several third-party modules to 

extract the internal information of a specific Scratch project and provides the user with a 

summary of the project. Chapter 2 covers the history of Computer Science in the classroom, as 

well as the effect analysis tools have on the teacher-student dynamic. Chapter 3 discusses 

previous examples of Scratch project analysis and related work. In particular, the SCATT third-

party module is discussed because it is used internally by SPAE. Chapter 4 describes the 

software components of SPAE developed for this thesis as well as the stages of their 

development. In addition this chapter covers the hardware used in this project and the testing 

                                                
1 Spae, old Scottish for “to prophesy; foretell; predict.” The SPAE application is used to inspect and 
interpret student work.; in other words, to help teachers “see” student projects in a new light. 
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methodology. Chapter 5 presents the results of testing in terms of SPAE performance, as well 

some insight into the usage of the popular CS First curriculum. Finally, Chapter 6 summarizes 

and presents areas of future work. All code, a copy of this thesis, and the thesis defense 

presentation can be found at the following URL: https://github.com/oneilljo/SPAE. 
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Chapter 2 - Background 

2.1 History of Computer Programming Education 

Computer programming within the classroom has dated back to the early days of personal 

computers. While universities in the United States often had their own systems in place to teach 

concepts of computer science as early as the mid 1960s [70, 9], primary and secondary schools 

were slower to adopt computing education because of the high costs, hardware shortages, and 

lack of training [24]. Even when primary and secondary schools had computers, these devices 

were primarily used to aid in the already established administrative and teaching methods of the 

time. It wasn’t until the late 1980s, when computers and software became more readily available, 

that teaching programming and computer literacy began to emerge within the classroom. 

With the development of more user-friendly software and the explosion of the Internet, 

educators began using software to aid in their student’s education. In the late 1990s and early 

2000s, Microsoft Office programs, such as Word, PowerPoint, and Excel, were widely used by 

students and educators to promote computer learning and aid in the mastery of educational 

concepts [6, 44]. These programs allowed students to write reports for classes, explain learned 

concepts to educators, and teach basic computer literacy to anyone with access to the programs. 

Other software was also developed for more specific educational topics, such as mathematics and 

science. The Minnesota Educational Computing Consortium (MECC) [34] was one such 

organization that concentrated on developing games for students to achieve academic success 

[39]. MECC developed games like Word Munchers [33] that concentrated on teaching students 

basic grammar skills, including identifying verbs, nouns, and other parts of speech. The Learning 

Company [68], developed similar educational games such as Super Solvers: Treasure MathStorm 



 5 

[10], which is a mathematical based game that taught students concepts like addition, 

multiplication, understanding clock time, and simple money concepts. 

2.2 Effective use of Technology in the classroom 

The two previously cited games were a few of many pioneers in educational software that 

allowed students to master subject concepts educators were teaching. Each of these games 

allowed educators to see how well students were understanding concepts through a simple 

scoring system. These methods also allowed students to work on their computer literacy skills, as 

well as provide a fun format to involve them in the subject matter. While these earlier games 

only provided a simple feedback of success/failure to educators, educational software has 

advanced to give much more detailed feedback to teachers.  

While these advancements can provide educators with more knowledge of student 

progress, the software is only as effective as its ability to keep student attention and interest. “A 

Pedagogy must, however, be subordinate to story… the entertainment component comes first. 

Once it’s worked out, the pedagogy follows.” [71] An effective educator should tailor their 

education plan around the student’s interests. According to Sharyn O’Neill, “Effective teachers 

personalize the learning for their students. They understand that students develop at different 

rates and that in every classroom there will be a range of student abilities.” [22] 

Another obstacle that educators must hurdle with computer education is cheating and 

plagiarism. Computer science students are caught cheating more often than in other disciplines. 

[40]. There are many suggestions why this may be the case, such as poor understanding of how 

cultural collaboration works or that computer science solutions are more prevalent on the 

Internet for copy and paste. However, Bidgood and Merrill argue that another explanation is that 

computer science teachers have more tools to detect cheating in their courses [5]. Plagiarism 
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detection software has been around for a few decades and has been effective at catching and 

discouraging the unethical actions from occurring in the first place. Regardless, in 2015, nearly 

100 students in a University of Berkeley class of 700 violated course policy by copying code [4]. 

Moreover, this is not just a problem with college students. In 2010, 59% of high school students 

admitted cheating on a test during a single school year, and 34% self-reported cheating at least 

two times [43]. 

Educators and researchers have been reporting more student involvement and success 

when they have prior interest with technology [27]. However, combining all of the aspects of 

developing an effective curriculum for each individual student in the classroom, teachers are 

often overwhelmed with the workload required to develop such a plan. According to a study 

from 2012, teachers work an average of 53 hours per week [67]. Utilizing technology for 

effective teaching becomes even more time consuming when educators must analyze individual 

projects and reports for student mastery. This juggling of tasks reveals the need for easy-to-learn 

interactive activities with teacher oriented automated analysis tools in the classroom. 

2.3 The Scratch Programming Tool 

 Scratch [57] is an event-driven, block-based programming language developed to help 

students understand basic programming concepts and build their own programs. Students use the 

Scratch tool to tell stories, animate backgrounds, manipulate variables, and create games. The 

following sections detail various aspects, functions, and issues with the Scratch programming 

language.  
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2.3.1 Overview of Scratch 

 
Figure 2.1: An example Scratch project interface window  

 Figure 2.1 shows a sample script that uses Events, Control, Operators, Data, and Looks 

blocks to animate a character. The left side of Figure 2.1 shows the “project stage.” Much like a 

theatrical performance, the project stage can have backdrops (Figure 2.1 shows a street with a 

mural as an example) and players or actors (for example, the blue alien here) called “sprites.” 

The action of a program occurs on the project stage and users interact with their project using a 

mouse, keyboard, and even a webcam. The middle section, known as the blocks palette, allows 

the user to select blocks that will perform an action or operation for the project. There are ten 

categories of blocks in the blocks palette:  

● Motion: Blocks that provide instructions to sprites for movement around the stage. 

● Events: Blocks that control events that occur in projects such as beginning scripts and 

detecting keyboard and mouse events. 

● Looks: Blocks that change a sprite's appearance; often used to animate a character. 

● Control: These blocks manage the order of blocks within a script and include conditional 

statements and loops. 
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● Sound: Blocks that produce sounds and provide MIDI functions such as volume and 

tempo. 

● Sensing: Blocks used to detect various environmental characteristics of a project, 

including mouse location, collision detection, and sprite location. 

● Pen: These blocks provide the old Logo [31] functionality of allowing a sprite to control 

a pen that would draw on the stage. 

● Operators: Perform arithmetic, logical, and relational functions and string handling for 

variables, etc. 

● Data: Blocks for creating and managing lists and individual data variables. 

● More Blocks: Custom blocks and unique blocks used with supported third-party 

hardware vendors such as Legos [28], PicoBoard [47], Finch robots [14], and Raspberry 

Pi [52, 54] to name a few. 

The right section of Figure 2.1 is the scripts space, where individual blocks are combined 

together to create action. The user drags a block from the palette area into the scripts space and 

“snaps” it into place. The blocks also have shapes that help prevent syntactical errors because 

only the right shape block can snap into place. For example, in Figure 2.1 Scratch will not allow 

a blue, jigsaw-shaped motion block to replace a green, round operator block. In the figure, preset 

images give the appearance of the sprite reacting to a lack of ice cream.  

2.3.2 Scratch History and Usage 

Scratch, originally released in 2002 by the Lifelong Kindergarten Group at MIT, is 

designed for students age 8 to 16. Scratch 2.0 was released to the public in 2007 in its current, 

web accessible format. Figure 2.2 shows the dramatic growth of the use of Scratch since 2008. In 

addition, according to [59], during the month of September 2018 (historically the slowest month 



 9 

of the year), the Scratch website recorded 195,696,610 pageviews from 17,128,700 unique 

visitors. During this same period, the Scratch website also recorded 839,370 new projects and 

942,409 new users [59].  

 
Figure 2.2: Growth seen by Scratch since its official release in 2007 

 
Early next year, Scratch will be releasing the next version of their tool, Scratch 3.0, which will 

better support usage from mobile devices. With the newly introduced ability to use mobile 

devices, Scratch expects to see a large uptick in the program’s use over the coming years [58]. 

2.3.3 Scratch Collaborations 

The Scratch project has also developed an active education community that is focused on 

sharing curriculum ideas and developing student projects. Scratch-ED [61], a website maintained 

by the Harvard Graduate School of Education, has thousands of projects, stories of success, and 

classroom resources geared towards primary and secondary educators interested in using the 

Scratch tool to teach students a variety of concepts and skills.  

Scratch also takes part in the yearly Computer Science Education Week [11], most 

notably through the Hour of Code program [23]. The goal of the Hour of Code program is “to 
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demystify code” [23], and provides individuals aged 8 to 104 with a basic understanding of 

computer science. Hour of Code, started in 2013 by Code.org [12], has helped teach more than 

600,000,000 individuals in over 180 countries [23] about Computer Science. 

2.3.4 Scratch File Formats 

 Since Scratch has been around for over 15 years, the application has gone through quite a 

few changes, including the handling and storage of Scratch projects. Between 2003 and now, 

Scratch projects have been stored in three separate file formats. The filename was project 

specific and the “extension” of the file indicates the file format version. A file extension of 

“.scratch” was the original Scratch project format during beta testing. The file extension of “.sb” 

was used for Scratch 1.x projects; and this will be referred to henceforth as an SB file. Lastly, a 

file extension of “.sb2” indicates the file format for current Scratch 2.x projects [64]. Henceforth, 

these will be referred to as SB2 files. The “.scratch” files have become widely deprecated [56]. 

 The SB2 format is essentially a ZIP file containing all the media files (e.g., audio, 

images, etc.) used in the Scratch project. In addition, the ZIP file contains a JSON file that 

encodes project information including sprites, scripts, etc. Figure 2.3 shows a portion of a 

Scratch project JSON file. Near the top, a sprite object named “Goal” can be seen. Continuing to 

examine the JSON file shows the “scripts” attribute. The script shown in the figure contains 

block commands that describe the behavior that when the object named “Ball” touches this 

“Goal” object, a caption saying “You win!” should pop up in the project space. Continuing to 

look at the JSON file shows that this Goal sprite can make a “meow” sound, has one “costume” 

defined, and its original position on the stage was the Cartesian (x,y) coordinate of (202,-179). 
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Figure 2.3: Portion of a JSON from a SB2 file 

 Another helpful aspect of these JSON files are the “info” lines, which describe certain 

elements of the project. Here, information such as the number of scripts, number of sprites, and 

the project ID are provided. For the SPAE tools, the project ID is particularly useful, as every 

Scratch project created on the Scratch website has one of these unique identifying values 

attributed to it. This value can also be seen on each individual Scratch project webpage URL. In 

the case of Figure 2.3, the URL would be https://scratch.mit.edu/projects/10128431/, where the 

last section, 10128431, is the unique project ID. 

 Originally, Scratch saved project files in a folder on the local machine, but with Scratch 

2.0 moving to a web application, all project work is stored on the Scratch website. The 

programmer has the option to download the SB2 file onto their local machine. While the Scratch 
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project is stored on the Scratch website, it is not visible for other Scratch users to see unless it is 

explicitly “shared” by the Scratch programmer. However, even an unshared project can be 

accessed via its project ID if the project ID can be somehow learned. Finding these project IDs 

was an important part of testing SPAE on a large number of projects as described in Chapter 4. 

2.3.5 Scratch Project Remixing 

 “Remixing” is the term Scratch uses to describe when “a Scratcher makes a copy of 

someone else’s project and modifies it to add their own ideas” [56]. Remixing is a keystone to 

the Scratch tool, allowing users to learn how any shared project works and modify a project to 

their own personal liking by remixing it and modifying the project source code. The developers 

of the Scratch tool believe “...that viewing and remixing interesting projects is a great way to 

learn to program, and leads to cool new ideas” [56]. Because of this ideology, all projects that are 

shared on the Scratch website are able to be remixed.  

2.4 Google CS First 

 Google’s CS First curriculum [21] uses the Scratch tool to develop computer science 

skills for students aged 9-14. Organized as “clubs,” this program allows students to pick a theme 

that interests them and guides students through a step-by-step curriculum based on their 

selection. CS First currently has nine themed curricula: Storytelling, Art, Game Design, Fashion, 

Music & Sound, Friends, Social Media, Sports, and Animation. Each of these programs have 

eight self-paced lessons that allow students to follow along and learn new programming concepts 

through the Scratch program. Each lesson is tailored to last between 60 - 90 minutes, perfect for 

a class-long activity or a before/after-school program. 

 Each themed curriculum also provides mechanisms for the “club creator” to keep track of 

student progress: Lesson plans, solution sheets, passports to keep track of usernames and 
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passwords, badges show completed tasks, informational flyers promote interest, and even 

promotional videos and student rosters. Each of the eight lessons start with an introductory video 

to show what project they will be working on that day, a link to a Scratch starter project, and a 

simple explanation on how to complete each step. In Figure 2.4, the Scratch interface is nested 

inside the curriculum window. The top of the window identifies the “Game Design” curriculum 

and the current lesson is lesson 4 on creating a winning condition. On the right side are 

instructions and links to starter projects. 

 
Figure 2.4: CS First Game Design walkthrough page 

One example of a successful program designed around the CS First curriculum is 

Appalachian State’s “COmputer Science for Middle schools In Caldwell county” (COSMIC) 

program [8]. COSMIC was designed to improve competencies in programming skills among 

middle school aged children of all backgrounds and upbringings. The program hosted an after-

school program for three years at four middle schools in Caldwell County, North Carolina, where 

each club typically contained about 20 students. Students chose their own CS First curriculum 
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and worked in a self-paced way through each lesson. Professors, graduate students, and teachers 

from area schools were available to help guide students as needed. The program was successful 

at introducing computer science concepts to middle school students and was highly valued by the 

schools and teachers. 

While the CS First program is effective at teaching students the major concepts of 

programming, there are a few areas that do fall flat. For the curriculum as a whole, there is a fair 

amount of video watching required. In addition, without the right facilitator and interest in the 

theme, students can lose interest in the projects [32]. Even with the detail oriented descriptions, 

some of the tasks can be challenging to students who are being introduced to programming. Yet, 

in spite of these minor drawbacks, the amount of detail, provided resources, and extra activities 

the program provides make CS First a highly effective introductory Computer Science tool. 
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Chapter 3 - Related Work 

3.1 Dr. Scratch 

Dr. Scratch [13, 16] is a Scratch project analysis tool developed by Jesús Moreno León of 

Spain. Originally developed in 2015, Dr. Scratch allows users to analyze projects for good 

coding practices, checks for “dead code,” duplicate code segments, and good naming 

conventions [35]. The below sub-sections describe Dr. Scratch in more detail. 

3.1.1 Description of Dr. Scratch 

 Using a simple Scratch URL or a downloaded Scratch SB or SB2 file, this web 

application will a score a project based on preset criteria. As seen in Figure 3.1, these criteria 

encompass a selection of foundational computer programming skills: 

● Flow Control: The use of Scratch control blocks, such as forever and repeat until blocks, 

allowing for multiple repeated actions without the duplication of scripts. 

● Data Representation: The use of Scratch data blocks storing data into variables and lists. 

This includes strings, colors, numbers, and pointing to other elements of a Scratch project 

by name. 

● Abstraction: The use of the Scratch “more blocks” feature to create custom blocks that 

reduce repetitive scripts. Also includes using the clone block to create exact copies of 

functions and sprites. 

● User Interactivity: The use of blocks that involve a webcam, keyboard, mouse, or 

microphone determines this criteria. 

● Synchronization: The use of blocks requiring a specific criteria or event order to take 

place before executing. Examples are the broadcast and “wait until” blocks in the Events 

category. 
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● Parallelism: The use of blocks allowing multiple actions to occur simultaneously; for 

example, having multiple sprites react when a key is pressed or a mouse button is clicked. 

● Logic: This concept is scored by using conditional blocks including and, or, and if. 

 
Figure 3.1: Dr. Scratch analysis page for a project at the Basic level 

 All of these are extremely helpful concepts and provide an excellent way to critique 

projects of any scope. Dr. Scratch also uses a simple three point scoring system to provide users 

with feedback for each concept. With a maximum score of 21 points, every project is categorized 

into one of three levels: 0-7 points for Basic, 8-14 points for Developing, and 15-21 points for a 

Master project. As a user progressively uses more advanced methods in their project, Dr. Scratch 

begins to report on more aspects of their project. In Figure 3.2, a Master project is shown with an 

additional section “Best Practice.” This section further investigates the project being analyzed, 

showing the user issues with duplicate scripts, sprite naming conventions, dead code, and sprite 

attributes. 
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Figure 3.2: Dr. Scratch analysis page for a project at the Master level  

3.1.2 Issues with Dr. Scratch 

Dr. Scratch in particular is relatively unreliable when it comes to analyzing projects via 

URL. While the Scratch API [63] is regularly updated and well documented, most projects 

submitted via URL fail to be processed and analyzed through the Dr. Scratch website. Another 

issue that arose was with newer projects uploaded via the SB2 file. When these projects had 

relatively newer blocks in their projects, the tool failed to process the project altogether. This is 

more likely is due to its reliance on Hairball, which is described below. Another shortcoming of 

the Dr. Scratch tool is the analysis guidelines [37]. The guidelines themselves are excellent 

practices that, when followed as intended, promote growth in knowledge of programming. 

Unfortunately, these guidelines are explicitly explained on the website, showing how to obtain 

the maximum score with a set of blocks. When copied as displayed, a non-working project can 

achieve the maximum score. Alternatively, because the guidelines simply look for a specific 
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formula or block (e.g., an “or” or “and” operator block [37], “repeat until” loop block [36], or 

using a microphone or video camera [38]), projects that do show progress and effective 

programming skills without these blocks can receive low-level scores. While impossible to 

develop a tool that effectively covers all of the concepts of Scratch and programming in general, 

the Dr. Scratch tool unfortunately provides the means to allow users to beat its own system, 

which means it is not a good choice for educators needing help to evaluate student 

accomplishment and growth. Lastly, Dr. Scratch does not check to see if the project has been 

remixed, or copied, in the first place. 

3.2 Hairball 

 Developed by the UC Santa Barbara Computer Science Education Group, Hairball [19, 

31] is a low-level tool intended to be used by educators and students alike to promote “safe and 

robust programming practices” [7]. The goal of Hairball is to provide educators with a quick and 

thorough analysis of Scratch projects and promote use of programming practices within the 

classroom. “The main contribution of Hairball, however, is the framework and set of available 

plugins that support more sophisticated analysis. We want to answer questions not just about the 

use of Computer Science (CS) constructs, but about the competence demonstrated for different 

CS concepts” [7]. Discussed in the sections below is the relationship of Hairball with this thesis 

and issues that were uncovered during testing. 

3.2.1 Description of Hairball 

While Dr. Scratch is an interactive web application, Hairball is the Python-based 

framework for the static analysis used within Dr. Scratch. Hairball only reports on what is 

actually applied or run within the project, leaving out any blocks that go unused. Hairball calls 

these unused elements “dead code,” reporting them to the user upon final analysis. Hairball can 
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also report on the blocks provided in the report, but failed altogether when newer (post-2015) 

blocks were used within projects. Hairball does support the analysis of older Scratch 1.4 projects, 

although this is no longer really a needed feature as Scratch 1.4 projects become more obsolete. 

3.2.2 Issues with Hairball 

Hairball also has a fair amount of issues, including lack of standardized output and 

testing. Hairball also has a few processing issues as well. In Hairball: Lint-inspired Static 

Analysis of Scratch Projects [7], the author points out that, during a test of recognizing concepts 

manually vs recognizing concepts via the Hairball tool, “...manual analysis resulted in 32 false 

positives, and Hairball resulted in 33 false negatives...we consider a false positive to be an 

instance that was labeled correct, when in fact it is not, and a false negative to be an instance that 

is actually correct, but was not labeled as such...” [7].  

Another issue with this tool is the lack of regular updates. As of this writing, Hairball has 

seen only minor updates since early 2014 [20]. Because of the Scratch tool’s continued 

development and rapid growth, Hairball has become obsolete, not recognizing many of the new 

blocks introduced in recent years. This causes issues throughout other tools that use Hairball as a 

framework, an example being Dr. Scratch. 

3.3 Kurt 

 Kurt [18] is another Python library which can be used to analyze and create original 

Scratch SB files [60]. The oldest Scratch analysis tool reviewed, Kurt, is a console based tool 

that analyzes a SB project file. This tool can be used to count the number of specific blocks used 

in a project, write a new project based on a raw text file, quickly import hundreds of images into 

a Scratch project. The newest installment, Kurt2, can convert the current Scratch format, SB2, 

back to the older SB file format. 
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Kurt has a few issues impeding its use as well. The first of these issues lies within the 

aging Python 2 version. Kurt currently requests Python 2.7.2 to be installed, which was released 

in July 2011. Along with this, the current Python 2.7 documentation states that “there will be no 

new full feature releases for the language or standard library” [65, 48]. Given the lack of any 

significant updates to the tool in over the five years, updates to the tool seem unlikely. 

Unfortunately, this stagnancy in production and lack of updates has also allowed multiple bugs 

to arise in the tool. No new blocks added in the last 5 years are currently recognized by the 

project analysis performed by the tool. These issues leave the tool mostly unusable for the 

purpose of this application. However, the older Scratch project SB files can now be converted to 

the new SB2 format by simply uploading them to the Scratch website. While still a good 

resource for older SB Scratch project analysis, the stagnancy of the Kurt code repository has 

caused the tool to continue to lose usefulness and thus is not used in this application. 

3.4 SCATT 

Students at Appalachian State University also worked on a Scratch analysis engine called 

SCATT, the SCratch Automated Textual Transcriber [15]. Unlike the Hairball analysis tool, 

SCATT solely analyzes the code based on the number of specific elements used within the 

project. The purpose of the software was to take in a Scratch project SB2 file and produce a 

report on the number of distinct blocks, costumes, scripts, and other elements within the Scratch 

project. SCATT is not an interactive graphical tool but rather a low-level, command line tool that 

generates text file reports.  

Another issue that arose was the SCATT reliance on user input. The SCATT tool is 

passed a SB2 project location to the program via a user supplied directory. This directory is then 

used to locate the uploaded project to be analyzed. With some slight code changes to SCATT, 
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this directory location input was configured for automation. This also means that the modified 

SCATT tool had to be packaged and built into the SPAE tool. 

3.5 Conclusion 

While Dr. Scratch and Hairball are the most frequently cited Scratch Project analysis 

tools, further investigation proved that these tools were incomplete, had a number of bugs, or 

simply hadn’t been updated in multiple years. SCATT is more reliable than these two analysis 

tools, but lacks web-based access and is solely used via a terminal. This lack of options 

combined with the shortcomings provided an excellent opportunity to develop a new framework 

for analyzing Scratch projects in a new and objective way. Learning from the shortcoming of 

these tools, the modified SCATT tool will be the basis of analyzing Scratch projects for this 

thesis. 
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Chapter 4 - Methodology 

 The Scratch Program Analysis for Educators tool (SPAE) is a web application that 

provides a user with the ability to analyze Scratch projects. SPAE is intended to provide primary 

and secondary educators with objective feedback about student Scratch projects that can assist in 

evaluation. However, it can also be used by students or parents to monitor understanding and 

progress. It is important for SPAE to be reliable and responsive; teachers may be submitting 

dozens of Scratch projects in a single session and may be using older school-issued hardware. 

This chapter describes the components of SPAE including the Scratch API, the 

ProjectDownloader.py Python script [17], the SCATT engine [15], and other implementation 

aspects.  

4.1 Overall SPAE Architecture 

 
Figure 4.1: Overview of the SPAE Application 
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Figure 4.1 shows the complete process for the SPAE tool, from the Scratch project ID 

submission to the display of a Scratch project’s statistics. The SPAE user submits a Scratch 

project ID or URL to the server via the SPAE home page, which can be seen in Figure 4.2. Upon 

submission, the server checks that the submission is formatted correctly and that the project is 

shared. If either of these criteria aren’t met, an error message is shown to the user suggesting 

corrective actions. After confirming these criteria, the server tests for the project’s existence in 

the Scratch API. If it is accessible, the ProjectDownloader.py utility is invoked. This utility 

communicates with the Scratch API to receive the Scratch project SB2 file.  

 
Figure 4.2: The SPAE Home Page 

After returning a successful download, the back-end script then invokes the SCATT 

utility which will generate a text file as output. The server then scrapes the Scratch project site 

for any remixes this project may be created from. If the project is a remix of a previous project or 

has been remixed multiple times from an original project, the server grabs both the original 

project and the most recently remixed project IDs, downloads those corresponding Scratch 
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projects, and runs the analysis again, creating a text file for each of the scraped projects. The 

script then accesses all newly created text reports from SCATT and parses them to a final 

webpage, which can be seen in Figure 4.3. On this page, the user can see the parsed elements of 

each individual project. To name a few, these include the number of scripts, sprites, and 

variables used, as well as the number of specific block types, e.g., Control blocks, Data blocks, 

Event blocks, etc. The Report menu option allows the user to view the raw SCATT analyzed 

project document. The project’s actual Scratch project page at the Scratch website is also 

available via the Project Page menu option. 

 
Figure 4.3: Scratch Project Analysis Page 

4.2 Scratch API 

 There are currently two primary instances of the Scratch API, one for the older Scratch 

1.4 projects [62] and one for the newer Scratch 2.0 projects [63]. The Scratch 2.0 API was 

selected for this project as the older 1.4 version will soon begin to phase out. Future references to 

the Scratch API in this thesis will refer to the Scratch 2.0 API. The Scratch API is well 

documented and provides information that is publicly available on the Scratch website. These 
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queries include the current health of the Scratch website, the current number of Scratch projects 

stored on the site, the current featured projects, and even current featured news about Scratch. In 

addition, the API2 allows a user to download a Scratch SB2 project file. 

 Originally, SPAE was envisioned loading a Scratch project file from a user’s local 

machine. But upon discovery of the Scratch API and given that most users no longer save their 

projects locally, the SPAE tool design changed to incorporate the use of the Scratch API to 

access projects. This decision brought an issue to the surface very quickly. The size of the 

Scratch project files can impact the speed of the download process. Ranging from a few 

kilobytes to nearly half a gigabyte, the size of downloaded SB2 files proved to be difficult to 

predict. The large variance in the sizes of downloaded projects was found to arise from the 

number of images and sounds used in each project. As could be expected, more intricate projects 

often had more elements for various actions. With every image used in a Scratch project, the 

corresponding SB2 file became larger as well. In fact, during a round of preliminary testing of 

SPAE, the tool downloaded just over 50 GBs of data from 5000 random Scratch projects. While 

this is an extreme use case of the tool, this realization prompted the rethinking of the storage of 

downloaded projects. Thus, SPAE employs some rudimentary data management techniques 

because testing the tool requires downloading hundreds of thousands of Scratch projects. Full 

SB2 projects are currently saved for a period of two hours, while the much smaller SCATT 

analysis output text files are stored indefinitely. The API also makes it possible to ignore the 

media components and only download the JSON file contained within a Scratch project, which 

contains the basic description of the project and is much smaller in size. This option was not 

                                                
2 The APIs and descriptions are accessible from the https://en.scratch-wiki.info/wiki/Scratch_APIs 
website. 
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pursued in the hopes that future analysis and development could be attained by examining the 

full SB2 files.  

4.3 Project Downloading 

In order to sufficiently analyze the command and inner workings of a Scratch project, it is 

necessary to retrieve the SB2 project file. Dylan Beswick has developed a Scratch project 

downloader script in Python [17]. A major benefit of using this tool over directly interacting with 

the Scratch API is the tool’s ease of use. By simply providing a Scratch project ID, all of the 

packaging required to produce a SB2 file is taken care of, while also allowing the user to specify 

the storage location. Unfortunately, the Scratch project downloader script was developed to be 

used via a console. This required modification to the script to allow for automation. 

An impactful issue arose at this point that involved how the contents of a Scratch project 

are encoded for download. The original Python project downloader script used CP850 encoding 

and decoding for downloading Scratch projects. Whereas, the Scratch API uses UTF-8 encoding. 

These two approaches, unfortunately, do not always match up, particularly with non-English 

characters such as the Spanish characters â, ñ, and ó. Whenever there was a mismatch in the 

encodings, the download would fail. This inevitably led all projects using non-CP850 characters 

to fail to be converted. 

 When the discrepancy was found, the SPAE tool had already been tested against the 

entire Scratch project data set of over 800,000 projects. However, all Scratch projects that had 

failed were saved for closer inspection. After changing the encoding in the Python project 

downloader script from CP850 to UTF-8, the previously failed projects were re-run. This change 

resulted in 533 new successes of the 561 previously failing projects. The remaining 28 failing 

projects were due mostly to SB2 files that contained very large audio files. 
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4.4 Project Scraping 

 In order to test its reliability, SPAE needed to be tested against a large number of Scratch 

projects. At first, testing SPAE was attempted by using random numbers as project IDs. This 

proved troublesome, as many projects are not shared publicly, other projects previously using a 

project ID had been deleted, and many random numbers were not project IDs at all. While 

unshared projects are still accessible through the API, the Scratch project page is not, making 

remix analysis impossible. Because of the popularity of CS First and the curriculum’s use of a 

wide variety of Scratch blocks, it was decided to attempt to web scrape as many CS First projects 

as possible. In addition, CS First student projects are often based on a remix of a starter project 

making these good choices to ensure the proper functioning of that SPAE analysis feature. 

The first step towards this goal required finding the original CS First projects. These were 

easily found at the CS First home website, which provided an initial, valid project ID. Using this 

project ID, SPAE can access the project’s remix page that provides links to every remixed 

project based on this project. Figure 4.4 shows an example of the remix page for a popular CS 

First Scratch project named “Impossible Cube!” Thus, from this one project it is possible to get 

valid project IDs for many other Scratch projects. While the smaller or newer CS First activities 

only had a few thousand remixed projects, those in the more popular curriculum themes, such as 

Game Design, could have well over 100,000 remixes per project. For testing, the SPAE tool 

would simply need a large number of project IDs. Deciding to use this as a starting point, the 

web scraping tool getRemixedProjects.sh, a Bash script used to retrieve remixed projects, was 

developed to retrieve as many projects as possible. 
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Figure 4.4: Example of the project remix page for web scraping 

4.5 Project Sharing 

 Part of the drive behind the SPAE tool is the desire to compare the amount of original 

work a Scratch programmer has put into a project with the amount that was inherited from the 

remix project. Because a major part of the Scratch tool is the ability to share projects with other 

users, being able to check if a project is not an exact copy of a previous project will allow 

educators to better evaluate their students. However, often times users are not prepared to 

publicly share a project that is in the process of being developed. This isn’t an issue for the API, 

as the service can still access and download the project. However, in regards to Scratch projects, 

the API can currently only retrieve the images, sounds, blocks, and Scratch project elements in 

the SB2 file but not the project page that lists remixes. 

The Scratch API does not keep track of any remixing related to a Scratch project. Thus, 

there is no way to check if a project was remixed or is an original work through a Scratch SB2 

file. Currently, the only way to check for project remixes is through the Scratch project’s 
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webpage. A user can see whether a project is an original work or has been remixed from another 

project in the credits section of a project page. This section allows us to scrape for any original or 

remixed project simply by knowing what project id we need to evaluate. However, this solution 

does come with a single caveat: in order for our application to be able to scrape the web page, the 

project must be shared on the Scratch website. Without this, only an analysis of the original 

Scratch project can be achieved. 

4.6 SCATT - A Scratch Project Analyzer 

 Now that a Scratch project SB2 file can be obtained, the next step is to examine the 

contents of the SB2 file. As described in the related work chapter, there are two Scratch project 

analysis engines available: SCATT and Hairball. The major benefit of the SCATT tool is its high 

level of reliability. During testing, SCATT provided accurate analysis of Scratch projects 100% 

of the time. Because of the analysis and organization that SCATT uses, the reports provide an 

easy and efficient method for cross-examination of projects. Hairball takes a much different 

approach, providing the user with a higher level of analysis, such as the ability to test for dead 

code, duplicate scripts, and say/sound block synchronization [7]. However, its lack of reliability 

in successfully completing analysis on many projects, its lack of software updates, and its output 

standardization were particular areas of concern. 

The results of the SCATT analysis tool, as can be seen in Figure 4.5, provide the basic 

and necessary elements of a Scratch project. The file section describes the overall elements 

within a Scratch project. The stage counts section describes the elements within each project 

stage or sprite. However, SCATT did need to be automated in order to work with SPAE. The 

original SCATT tool required a user to manually input a Scratch SB2 project via command-line. 
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This in turn had to be rewritten to work in conjunction with the Python project downloader 

script. 

 
Figure 4.5: Partial example of a SCATT project report 

4.7 Other Software and Tools 

 Along with the major pieces of software described earlier, there was also a need to 

develop tools to aid in server management, web scraping, and the dynamic display of web pages. 

Python and Java were used in the SCATT and Python project downloader tool, respectively. 

However, most development for the web server was done in Perl, using previously developed 

packages to handle program processing and web page representation. 

 Perl 5, hereafter referred to simply as Perl [3], is a particularly powerful parsing 

language, borrowing many elements from AWK, sed, and C programming [50]. Also capable of 

being utilized as a Common Gateway Interface (CGI) scripting language, Perl allows users to run 
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scripts and applications which in turn write dynamic web pages. Gaining popularity in the late 

1990s, Perl has a vast array of tools (also known as “Packages”) for numerous applications in 

data munging, web development, and managing systems work. These reasons, alongside the 

ability to parse large documents, develop dynamic web pages, and execute other various scripts 

on the server, made Perl the clear choice in the development of this application.  

4.7.1 Third Party Software 

 Various third party software components were used in conjunction with Perl to produce 

the SPAE web application. This software consists of the following. 

● Apache Web Server 

A web configuration tool used to allow web access from a server [2]. Apache is a free 

and open source HTTP web server that can be used on most operating systems. 

Developed in the mid 1990s, Apache is the most used web server in the world, 

accounting for around 39% of all website configurations [41]. 

● RRDTool 

The Round Robin Database Tool (RRDTool) [42] is another free tool designed to track 

regularly timed data, such as CPU Usage, memory usage, and other system data. Often 

paired with Perl, RRDTool is used during SPAE testing to graphically observe the system 

impacts of SPAE. 

4.7.2 Program Specific Software 

 Software was also developed for use in the SPAE to test the tool for hardware usage and 

reliability. Software was also developed to web scrape large numbers of projects from Scratch 

remix webpages: 
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● Autorun Bash script 

A Bash script developed as a part of this thesis to enable thorough testing of the SPAE 

web application. This script imitates a user submitting a job through the web interface. 

The script allows for the back to back processing of Scratch projects, without the need to 

submit a project ID or URL by hand. 

● Remixed projects Bash script 

A shell script developed to support the goals of SPAE related to student projects being 

based on other projects. This script calls the remix page of a specific Scratch project, then 

scrapes the Scratch website specific to the requested project for any remixed projects. 

While this script was used and developed to retrieve most of the CS First projects used in 

the results section and for hardware testing, the script can also be used on any Scratch 

project with remixes. 

4.8 Hardware and Access 

Public school teachers considering Scratch have very limited funds, so an important 

complementary goal of SPAE is to be a resource that users could set up easily, for a very low 

cost, and require minimum maintenance. Therefore, several different hardware configurations 

were evaluated. Early testing of the software used in this program proved that the tools used 

within the application are not particularly taxing on the hardware. CPU and memory usage was 

minimal, typically staying below 20% total CPU usage and 30% total memory usage. This 

prevents the need for expensive server machines and allows relatively affordable and available 

devices to host the application. In addition to the capabilities of the host machine, the SPAE 

application needs a very reliable Internet connection to deal with the sometimes large Scratch 

project files being downloaded from the Scratch API.  
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As a hosted web application, many users should be able to access the system. To ensure 

the effectiveness and reliability of SPAE, it was necessary to perform a number of tests on 

different and varying systems for two reasons. First, it is necessary to ensure that this application 

would be tested and succeed on different platforms using different hardware for users with 

different budgets. Second, understanding application behavior on multiple platforms can provide 

a better idea of what device may be the best option for a particular user. It was decided to test the 

application on three different sets of hardware: a Raspberry Pi, a cloud server service, and an 

older, surplus personal computer. 

4.8.1 Raspberry Pi 

 The Raspberry Pi [53], as seen in Figure 4.6, is a simple System on a Chip (SoC), single-

board computer. Officially released in 2012 [49], Raspberry Pi systems are known for their 

affordability ranging in price from $5 to $35. The systems come equipped with most modern 

peripherals and can also utilize their on-board 40-pin pinout [51].  

Because of its low cost and robust hardware, the Raspberry Pi 3 Model B [1] was 

selected. With the high level of documentation and number of projects being developed on 

Raspberry Pis, it was quick and painless to install all of the necessary components on the device 

to prepare for testing and device comparisons. Figure 4.6 shows the Raspberry Pi device used for 

this study. Across the top of the device there is an SD storage card and a white Ethernet cable for 

Internet connection. Along the right side is an HDMI connector to a display screen for 

monitoring and controlling the device and a power cable. While not shown in Figure 4.6, the 

Raspberry Pi does allow for a usb or bluetooth connected keyboard and mouse, which were used 

during the installation of the SPAE tool. 
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Figure 4.6: Raspberry Pi 3 Model B  

 

4.8.2 Cloud Server Service  

 For cloud server testing, prior successful experience with the Linode hosting service was 

a deciding factor in choosing the cloud service provider. In terms of specific service 

configurations, Linode’s cheapest option, the Nanode 1GB service, was selected. The $5 per 

month option [30] provides Internet access, a selection of popular Linux distributions, and 

roughly around the same device specifications as a Raspberry Pi 3 Model B. While the service 

does not provide direct access to a physical machine, it does allow configuration of the cloud 

server to the user’s specification.  

Aside from eliminating the necessary physical hardware maintenance, a cloud server 

service has many benefits over a traditional physical server:  

● Cloud server hosting has an incredible track record for maintaining up-time. In fact, most 

cloud server hosting services guarantee an uptime of over 99.9% [29, 25]. 
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● Most cloud server hosting services allow customization of the server to nearly any 

specification, including what operating system to deploy. 

● Cloud server services are typically centered around areas with excellent Internet access. 

Internet access is also included in all hosting plans, but there is typically a limit to the 

amount of downloading and uploading on the server. 

● Hosting plans for lower tiered plans are very affordable, often costing less than 

$10/month. 

● Cloud server services are scalable, allowing for affordable options to be upgraded as 

necessary, including the number of CPU cores available, memory usage, transfer volume 

and disk space. 

One of the other major benefits to this service is the built in monitoring included with a 

subscription. Using the RRDTool package, the service tracks CPU, memory, and disk usage, 

allowing users to quickly track down processing issues and receive alerts whenever usage hits a 

user defined threshold. Figure 4.7 shows an example of this tool in action. During testing, the 

cloud server was running a large selection of Scratch projects using the SPAE tool. One of these 

Scratch projects caused the tool to max the CPU at 100% for a period of about a day. The cloud 

service noticed this issue after about two hours and sent a message to the affiliated account 

email. This allowed for a fast response that included stopping and researching the behavior. 
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Figure 4.7: Example of Linode CPU Monitoring 

Included with this service is the occasional upgrade in memory and disk size, which often 

proves to be expensive on a traditional server. Along with a nearly constantly Internet 

connection, the device can be accessed and managed from anywhere with reliable internet 

access. These elements made installing the SPAE software to the machine a simple task. After 

registering with the cloud server provider, SPAE was deployed on the new cloud server within 

30 minutes. 

4.8.3 Personal Computer 

 While most software is typically designed for use on current or even future hardware, 

more often than not educators must work with strict budgets that often leave them hesitant to 

spend what little money they do receive on something they haven’t worked with before. Even 

more, teachers are often supplied with older machines and technology for their classrooms, 

leading them to make do with what is provided for them. Thus, it was desired to use an old and 

free item of hardware to ensure the SPAE software can be utilized by anyone, regardless of their 

budget and constraints. 

 For this test, a 2008 Apple MacBook [26] was used. With an average lifespan of around 

four and a half years [66], most computer users have a working desktop or laptop that hasn’t 

been used since a recent upgrade. Also, most school teachers know of donation programs that 
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provide older computers to individuals that meet a few criteria [45]. Unfortunately, more often 

than not, older machines require software updates, which can add to the deployment time of the 

SPAE software and can often lead to dealing with issues of incompatible versions of software. 

For the 2008 MacBook machine, several hours were required to update the OS X operating 

system before installing the SPAE software, which did end up having a few dependency issues. 

Regardless, a successful installation of SPAE was achieved. 

 
Figure 4.8: Old MacBook used for testing 

Figure 4.8 shows the laptop used for the testing and installation of SPAE. At the time this 

photo was taken, the laptop was running OS X Mountain Lion. Unfortunately, the issues 

encountered trying to upgrade this outdated system may be too difficult for someone without a 

fair amount of experience. With the realization that an outdated operating system could also 

negatively impact continued SPAE development, an alternate operating system may be needed. 

The user-friendly, easy-to-install, and free Linux operating system, Ubuntu Bionic Beaver, was 

chosen to resolve these issues. The SPAE software was then promptly and successfully installed 

with a noticeable increase in performance. The only issue of note was with wireless connectivity. 
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This is a common issue among laptops with Linux distributions and so there is ample 

documentation online for each distribution to help diagnose and resolve the issue.  

4.8.4 Hardware Comparisons 

 The SPAE software and required dependencies (e.g., Perl) were installed and properly 

configured on all tested hardware, albeit with varying levels of difficulty for certain 

dependencies. Each piece of hardware was set to factory settings prior to installation and then 

configured as needed. Table 4.1 displays the primary hardware features as well as some of the 

more notable differences between the tested hardware. 

Table 4.1: Comparison of Hardware used for Testing [48, 31, 3] 
Hardware Raspberry Pi 3 Model B Linode Nanode 1GB 2008 13” Apple MacBook  

Operating 
System Ubuntu 16.04.4 LTS Centos 7 Ubuntu 18.04.1 LTS 

Cost $35 (+ $15 for SD card) $5/Month Free 

CPU Cores 4 1 2 

CPU 
Frequency 1.3 GHz 2.8 GHz 2.4 GHz 

RAM 1 GB 1 GB 4 GBs 

Disk Space 30 GB 25 GB 1000 GB 

Network 100 Mbit/s Ethernet, 
802.11n Wireless 

Net Out: 1000 Mb/s 
Net In: 40 Gb/s 

1000 Mb/s Ethernet,  
AirPort Extreme 
(802.11a/b/g/n) 
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Chapter 5 - Results 

5.1 Project ID Scraping 

Testing for the SPAE tool required the use of a large assortment of Scratch projects. 

Because of the educational nature of CS First, most blocks and concepts contained within 

Scratch are covered throughout the program’s nine curricula. This provided an excellent testing 

ground for various Scratch concepts against the SPAE tool as well as providing the option of a 

basic understanding of the effectiveness of the CS First program. 

The first task of obtaining the CS First remixed project IDs was finding all of the original 

CS First projects. This proved to be less problematic than originally feared by simply trying out 

each curricula from the CS First website whereupon the 147 starter projects were provided in the 

associated activities. Using the remixed projects Bash script, 134 of these 147 CS First starter 

projects were successfully web scraped for remixed projects. The software was unable to 

download the 13 remaining starter projects because of their popularity; the download would 

timeout. At the end of the scraping process initiated from the 134 starter projects, a total of 

802,191 project IDs were scraped from the CS First projects. When attempting to load a popular 

Scratch project remix page, the Scratch website can timeout, resulting in an error. It is estimated 

that approximately 500,000 Scratch projects were excluded because of this, particularly among 

the popular Game and Sports themes. While revisiting this issue and improving on the process of 

attaining Scratch project IDs for future developments of the SPAE tool is preferable, the number 

of project IDs secured proved to be more than sufficient for our testing purposes. 

5.2 Hardware Reliability Testing 

To test how well the SPAE software can run on the different platforms, 5000 of the CS 

First Scratch projects from our web scraped data set were randomly chosen. This selection was 
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run on each machine, tracking the average CPU and memory usage every 5 seconds for the 

duration of each run. Successful runs vs total runs and start/end times were also tracked to test 

for reliability and speed of each system. To collect this data, the autorun Bash script used a TXT 

file containing the 5000 Scratch projects to be analyzed back-to-back. This script also used the 

sar3 command package to track CPU and memory usage. Table 5.1 shows the results of these 

tests in detail.  

Table 5.1: Comparison of Runtime testing over 5000 Random Scratch Projects 
Hardware Raspberry Pi 3 Model B Linode Nanode 1GB 2008 13” Apple Macbook 

CPU Usage 
Average 22.76% 75.38% 43.31% 

CPU Usage 
Min/Max 0.2% / 97.39% 10.46% / 100% 1.09% / 67.77% 

Memory Usage 
Average 88.60% 82.33% 65.97% 

Memory Usage 
Min/Max 58.01% / 97.22% 79.16% / 86.71% 61.93% / 67.58% 

Total Run 
Time 

(HH:MM:SS) 
08:23:08 01:57:35 04:00:19 

Analysis 
Average Time 
(sec/project) 

6.04 sec / project 1.41 sec / project 2.88 sec / project 

Successful Run 
% 5000/5000 = 100% 5000/5000 = 100% 5000/5000 = 100% 

 

As can be seen from Table 5.1, all three systems were successful in analyzing the 5000 

projects with a 100% success rate. The fastest system was the Nanode server, which completed 

its testing in just under 2 hours with an average of 1.41 seconds per project. The old personal 
                                                
3 Sar, or “System Activity Report,” is a system monitor used to report various activities being performed 
on Linux machines 
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computer finished in just over 4 hours, averaging just over 2.88 seconds per project. The 

Raspberry Pi finished in nearly eight and a half hours, averaging just over 6 seconds per project. 

This speed increase in project processing time correlated with the type of storage used on each 

device. The Nanode server, old personal computer and Raspberry Pi used SSD, HDD, and SD 

card storage respectively. The write speeds on each of these devices corresponded with the 

increase or decrease in analysis speed on each device; SSD access is typically about 200 MB/sec, 

HDD is about 100 MB/sec, and SD card speeds are about 25-50 MB/sec. Incorporated with the 

slightly slower Internet speeds for the old personal computer and Raspberry Pi, the run results 

match up appropriately. 

The CPU averages for each system also correspond with the number of cores within each 

CPU. For example, since each instance of the SPAE tool is a single process, most processing was 

performed on a single core at a time. Where the Nanode server had a single core and averaged 

about 80% CPU usage, the Raspberry Pi and its 4 cores averaged about 20% CPU usage. This 

suggests a relatively level and manageable amount of CPU balancing across systems when using 

the SPAE tool. However, the min/max CPU usage of both the Raspberry Pi and Nanode server 

varied wildly, ranging from around 10% all the way to 100% CPU usage. The old personal 

computer, however, showed a fair amount of stability in this area, never rising above 70% usage.  

Average memory usage suggested relative stability across all systems. This testing also 

proved that a system with as little as 1 GB of RAM would be sufficient enough to handle our 

tool, even after hours of repetitive analysis. However, both the Raspberry Pi and Nanode servers 

once again showed a high level of stress, averaging well above 80% memory usage, whereas the 

old personal computer was fairly stable in the mid 60% area. 
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All of the systems tested reported positive results, particularly with each system’s 100% 

analysis success rate. In fact, the largest factor for the SPAE tool seemed to be the storage device 

used in each system. Memory and CPU usage also did not seem to be a large issue for any 

device, even with the constant bombardment of Scratch projects. With this knowledge, all of 

these systems can be recommended to run an instance of SPAE, with a few considerations. After 

viewing the system results, it is highly recommended to use SSD storage on your system to 

maximize performance. If the user anticipates a large number of project analysis in a short period 

of time (e.g. during an after-school program such as COSMIC), a multi-core CPU would be 

recommended. However, this test also proved that, given a tight budget, the SPAE tool can be 

effectively and successfully used on most recent systems with Internet connectivity, free of cost. 

5.3 Project Analysis 

Because of the large number of projects to be analyzed, the Nanode server was used to 

analyze the CS First Projects web scraped in the previous section. Using the autorun Bash script, 

the entire dataset was loaded and run over the course of about 17 days. Figures 5.1, 5.2, and 5.3 

show a sample of a single day of runs. Figure 5.1, showing CPU usage, shows a few “jumps” in 

CPU usage. This is to be expected, as projects are lumped together based on what original 

project they are being parsed from. For example, the low plateau around 9:00-14:00 shows all 

projects remixed from the first of CS First Storytelling starter project. The graph then spikes 

upward around the 14:00-23:00 time slot, showing that the remixes to the second CS First 

Storytelling starter project have begun to be analyzed. These spikes continue throughout testing 

and provide insight to when a new batch of remixes from another starter project have begun to be 

analyzed. 
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Figure 5.1: Example of CPU usage for a single day of continuous runs 

  Figure 5.2, which shows the network activity during the same time period, suggests that 

larger projects also contribute to CPU usage by requiring the hardware to wait for a download to 

complete. The bottom portion of Figure 5.2 also shows the total traffic for the tool. The figure 

shows that in a single day with a high level of activity, it is possible to transfer over 80 GB of 

data using SPAE. While this kind of transfer is unlikely to be encountered outside of testing, a 

server with a high level of use may require more disk space. 

  
Figure 5.2: Example of Network Traffic for a single day of continuous runs 
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Figure 5.3 shows the CPU usage and Figure 5.4 shows the Network traffic of the entire 

dataset. In these figures, it becomes easier to see how the remixed projects are lumped together 

to run based on their original project. The “peaks and valleys” seen in these two figures line up 

with the timing that each new set of starter project remixes begin to be analyzed. One has to deal 

with image and sound intensive projects, which require more network traffic to download with 

no to little increase in analysis results. This results indicates why it may be beneficial to 

downloading only the JSON portion of the SB2 file and not the full project. The two figures also 

match up relatively well at three particular spots that demonstrate the same exception of SPAE 

crashing due to errors in SCATT. In the third and fourth days of Week 30, Figure 5.3 shows 

CPU usage hitting 100% for an extended period of time. This occurs again at day 6 in Week 31. 

Similarly, Figure 5.4 shows the network traffic falling to 0 at these times. Upon realization of 

these errors in Week 30, the failing project IDs were recorded, the SCATT process was killed, 

and the run continued to the next project. Upon completion of the entire run in Week 31, the two 

failing projects were given twelve hours each to complete analysis with SCATT; and, both 

projects failed once again. Section 5.4 provides a deeper analysis of these failed projects. 
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Figure 5.3: CPU usage during entire CS First dataset run 

 
Figure 5.4: Network traffic during entire CS First dataset run 

 Aside from these two projects, the autorun Bash script performed analysis on all projects. 

On the original run, the encoding issue with the Python project downloader script discussed in 

section 4.2 had not been corrected, which resulted in errors with 18,872 projects. Upon 

completion of the initial full run and fixing the encoding error in the Python project downloader 

script, these projects were rerun, reporting successful runs for 18,837 of the 18,872 original 
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failed runs. Including the two projects that crashed the SPAE tool, this results in 802,156 projects 

being successfully analyzed out of 802,191 projects, or a 99.9956% success rate of project 

analysis using SPAE. 

5.4 SPAE Analysis Errors 

 Nearly all of the Scratch projects were successfully analyzed using the SPAE tool. While 

most of these projects failed from an encoding issue or a timeout because of a particularly large 

music file or image file, there were two special cases that resulted in the tool crashing entirely. 

 The first project, with a project ID of 83710710, was based on the Quest Game project, 

the 7th starter project for the Game Design curriculum in CS First. This project involves a user 

interacting with a surrounding environment and completing a quest involving finding specific 

artifacts or foods. Because of the images used in this project, the download sizes were often 

larger than normal. However, once the project was downloaded without timing out or failing 

from encoding, two red blocks were noticed that had not been seen in any previous Scratch 

projects. These red blocks, as seen in Figure 5.5, were revealed to be obsolete blocks supported 

by an earlier version of Scratch. Because the SCATT tool did not recognize these blocks, the tool 

entered into an infinite loop, causing the SPAE tool to fail. However, once these blocks were 

removed from the project, the SPAE tool was able to analyze the project successfully. 

 
Figure 5.5: Two red “obsolete” blocks which cause SPAE to fail 
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 The other project, with a project ID of 109234200, is based on the first starter project for 

the Social Media curriculum in CS First. This project was interesting, as the project failed 

regardless of what was removed from the Scratch project. In fact, the project continued to fail 

when all elements were removed from the project, leaving only a blank backdrop remaining. 

Two theories were that the project file is corrupt or that the JSON file is formatted improperly. 

However, manual inspection showed no differences or anomalies proving these theories to be 

false. Upon further troubleshooting, the issue was pinpointed to be within the SCATT tool. 

However, SCATT does not fail or report anything to the log files. After much research and 

troubleshooting, the issue remains unresolved.  

5.5 CS First Curriculum Analysis 

 Figure 5.6 shows the totals for all 802,156 processed CS First projects. According to the 

complete SPAE analysis, blocks in the Looks, Control, and Event categories make up most of the 

blocks used in all CS First Projects. The blocks-to-script ratio is approximately 11.43 

blocks/script, scripts-to-project ratio is approximately 6.55 scripts/project, and the blocks-to-

project ratio is approximately 76.39 blocks/project. Table 5.2 breaks down these results by CS 

First theme. Future work may indicate that educators can use these ratios as benchmarks for 

evaluating student work. 
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Figure 5.6: Overall results from entire Scratch Project ID dataset 

 

Table 5.2: Results based on CS First Curriculum 

CS First 
Theme 

# of 
Projects 

# of 
Scripts 

# of 
Sprites 

# of 
Blocks 

Blocks/ 
Script 

Scripts/ 
Project 

Blocks/ 
Project 

Animation 40292 285947 143441 4023210 14.07 7.10 99.85 

Art 140976 589006 364573 5718802 9.71 4.18 40.57 

Fashion 49007 257960 131583 2439034 9.45 5.26 49.77 

Friends 47575 201242 139003 2701538 13.42 4.23 56.78 

Game 154263 1199632 687294 15202442 12.67 7.78 98.55 

Music 92852 290036 191359 4444158 15.32 3.12 47.86 

Social 56324 627467 467291 4303492 6.86 11.14 76.41 

Sports 73013 367315 245567 5563988 15.15 5.03 76.20 

Story 185688 1183884 549041 14971966 12.65 6.38 80.63 
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Chapter 6 - Conclusions and Future Work 

6.1 SPAE Tool 

 The SPAE tool discussed in this thesis presents a simple web interface allowing 

users to submit a Scratch project ID or URL and receive a straightforward analysis of the project. 

The SPAE tool successfully analyzed over 99.9% of projects from a test suite of over 800,000 

projects, which is a strong indication of tool reliability. Unlike related Scratch project analysis 

tools, SPAE provides a comparison with any remixed sources of a project. In addition, SPAE is 

successful at analyzing recent Scratch projects whereas related Scratch project analysis tools 

have fallen into disrepair and fail frequently. The SPAE tool was tested extensively on multiple 

software and hardware platforms to demonstrate its viability in different school environments. 

Upon configuration, SPAE runs as a web application that allows any user with Internet access to 

use the tool. The SPAE tool is also capable of storing large amounts of analyzed project data, 

proving to be a capable tool for educators to store student projects and user data for future use. 

Over 800,000 Scratch projects submitted by students worldwide as part of the CS First 

curriculum were analyzed using SPAE. The cumulative analysis provides teachers with potential 

benchmarking information on the characteristics of student projects in terms of the number of 

scripts, the number of blocks per script, the number of blocks per project, etc.  

6.2 Future Work 

 There are many enhancements that can be made to the SPAE tool. While the success rate 

of the tool is currently very high, there are a few projects that fail when used with the SPAE tool. 

One solution is to simplify the download process from the Scratch API. This would require a 

change to the Python project downloader script to request just the JSON file rather than the full 

SB2 file. A modification would also need to be changed to the SCATT tool, where just the JSON 
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would be analyzed rather than unpacking the full SB2 file to retrieve the JSON for analysis. This 

would most likely speed up the analysis process, require less network activity, and reduce 

memory and CPU usage. 

 A better storage mechanism would also allow for increased readability of project results. 

MySQL would be an excellent resource to store and manage projects that have been analyzed 

using this tool. This likely would reduce the overall disk usage as well, as the current analyzed 

project results are being stored in TXT files. Storage into a MySQL database would also speed 

up search times of past projects, opening up the possibility to compare past projects against 

current projects with the same ID, allowing users to track progress of student work. This would 

also make tracking of total results more efficient and give rise to other new advancements which 

would be more difficult with the current storage schema. One example of this would be the 

ability to produce a class or group wide report for teachers and educators to keep track of a 

student’s progress through their Scratch project ID. This would allow educators to quickly view 

a the progress of an entire class at the click of a button, allowing educators to make adjustments 

to coursework as deemed necessary without the need of manually analyzing every project. 

 The design of SPAE enables expansion of existing work as well as extension into new 

analysis areas. An example of an expansion is to have SPAE report on new SCATT analyses 

such as recognizing duplicate scripts or dead blocks (as described by Hairball). An example of an 

extension is to have SPAE perform analysis itself on the SCATT report to provide a 

categorization of block usage patterns similar to Dr. Scratch’s “flow control,” or “logic” 

categories. It would also be interesting to have teachers be able to define their own rubric for 

block usage patterns. 
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Another area of potential performance improvement involves making SPAE a 

multithreaded application. In this way, one project can be analyzed by SCATT while another is 

being downloaded. This becomes even more important if teachers are working on an entire class 

of student projects. 
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