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Expression Of Pituitary Adenylate Cyclase Activating Peptide 
In The Uterine Cervix, Lumbosacral Dorsal Root Ganglia 
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Abstract
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during 

pregnancy and are regulated, in part, by estrogen. These neuropep- tides act as transmitters both in the spinal cord 
and cervix. The present study was under- taken to determine the expression pattern of the neuropeptide pituitary 
adenylate cyclase activating peptide (PACAP) in the cervix and its nerves during pregnancy and the influence of 

estrogen on this expression using immunohistochemistry, radioimmunoassay and RT- PCR. PACAP 
immunoreactivity was detected in nerves in the cervix, lumbosacral (L6-S1) dorsal root ganglia (DRG) and spinal 
cord. PACAP immunoreactivity was highest at day 15 of pregnancy in the cervix and dorsal spinal cord, but then 

decreased over the last trimester of pregnancy. However, levels of PACAP mRNA increased in the L6-S1 DRG at late 
pregnancy relative to early pregnancy. DRG of ovariectomized rats treated with estrogen showed increased PACAP 
mRNA synthesis in a dose-related manner, an effect partially blocked by the estrogen receptor (ER) antagonist ICI 
182 780. We postulate that synthesis of PACAP in L6-S1 DRG and utilization in the cervix and spinal cord increase 
over pregnancy and this synthesis is the under influence of the estrogen-ER system. Since PACAP is expressed by 

sensory nerves and may have roles in nociception and vascular function, collectively, these data are consistent with 
the hypothesis that sensory nerve-derived neuronal factors innervate the cervix and play a role in cervical ripening.
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1. Introduction

The uterine cervix is highly innervated with sensory  and 

autonomic nerves [4,5,32,37–39,46]. When the cervical sensory 

nerves are bilaterally transected (bilateral pelvic neurectomy, 

BPLN) dystocia results [3,15]. Although the exact mechan- 

ism(s) of this effect are unclear, we have shown that systemic 

injection of substance P (SP), a neuropeptide synthesized by 

uterine cervix-related sensory nerves, induces inflammatory- 

like responses and vascular changes resembling those that 

occur during cervical ripening [5]. Moreover, key sensory 

neuropeptides SP and calcitonin gene-related peptide (CGRP) 

co-exist in uterine sensory neurons [43] and their receptors are 

expressed in the cervix [5,41]. We have shown that the 

expression patterns of SP and CGRP have temporal relation- 

ships with cervical ripening [27,28]. In addition, BLPN alters the 

expression of factors involved in vascular and inflammatory 

responses, such as vascular endothelial growth factor (VEGF), 



tissue inhibiting metalloproteinase 1 (TIMP-1) and LIX; and 

VEGF, with its associated basic signaling factors, has a 

temporal relationship with SP, CGRP and cervical ripening 

during pregnancy [29,30]. Collectively, these data indicate that 

sensory nerves and their neuropeptides play a role in 

remodeling the cervix in late pregnancy, in part, by influencing 

factors that regulate the vasculature and inflammatory 

responses. 

The present study builds on our previous observations of 

sensory SP- and CGRP-containing nerves in the cervix and 

was designed to determine if the neuropeptide pituitary 

adenylate cyclase-activating polypeptide (PACAP) could also 

play a role in cervical function, such as cervical ripening. 

PACAP has been identifi in nerves in the female genital 

tract [7,8,9], autonomic neurons of the paracervical ganglia 

[8] and sensory neurons of the dorsal root ganglia [6,11,25] 

and dorsal horn of the spinal cord [6,13,18,25,40]. PACAP, first 

identified by Miyata and co-workers [23,24], was isolated 

from an extract of ovine hypothalamus and was  named 

based on its ability to stimulate formation of cAMP in rat 

pituitary cells [23,24]. PACAP is a member of the VIP- 

glucagon-GRF-secretin superfamily of structurally related 

peptides and is costored with VIP in parasympathetic nerves 

in reproductive organs [8], but is also costored with SP/CGRP 

in a subpopulation of sensory fibers [25] and is considered a 

sensory neuropeptide. PACAP, and its three cloned receptors 

(PAC1, VPAC1 and VPAC2), have widespread distributions in 

the CNS, PNS and peripheral organs, consistent with its 

pleiotropic biological effects that include vasodilation, 

bronchodilation, and regulation of neurotransmitter release 

([13] and review by [47]). 

The objective of the present study was to determine if 

PACAP is present in uterine cervix-related dorsal root ganglia 

(DRG) sensory neurons, changed over the course of pregnancy, 

and responded to estrogen treatment. Here, we show that 

PACAP synthesis increased in L6-S1 DRG, but levels of PACAP 

decreased in the spinal cord and cervix in late pregnancy. 

PACAP mRNA levels in the L6-S1 DRG increased with estrogen 

treatment and the estrogen-induced increase was blocked by 

ER blocker, ICI 182 780. 

2. Materials and methods

2.1. Animals 

Non-pregnant and timed-pregnant (gestational days 10, 15, 

20, parturient (day 22) and 2-day postpartum) Sprague- 

Dawley rats (SASCO strain from Charles Rivers) were 

used. Pregnant animals included n = 6 for radioimmunoas- 

say, n = 5 for immunohistochemistry, and n = 3 for RT-PCR 

at five representative time points and n = 3 for bilateral 

pelvic neurectomy. Nonpregnant animals included n = 9 for 

treatment with 17b-estradiol, n = 3 for treatment with ER 

blocker ICI 182780, and n = 3 for vehicle controls. All 

experiments were performed in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals (NIH 

Publications No. 86–23) revised 1985 and efforts were made 

to minimize both animal suffering and numbers of animals 

used. 

2.2. Immunohistochemistry 

Immunohistochemical studies of the expression of PACAP in 

the cervix, dorsal root ganglia (DRG), and spinal cord used 

intact rats. For additional immunohistochemical studies of 

PACAP in DRG neurons, pregnant rats were subjected to 

bilateral pelvic neurectomy (BLPN). For BLPN, rats on day 8 of 

pregnancy were anesthetized with sodium  pentobarbital 

(45 mg/kg, i.p.), a laparatomy performed, the pelvic nerve 

identified, and a 5 mm segment removed from the nerves. The 

muscle layers were sutured, skin closed with wound clips, and 

rats allowed to recover until day 22 (time that parturition 

should occur). For tissue harvesting, the rats were deeply 

anesthetized (100 mg/kg sodium pentobarbital, i.p.) and 

exsanguinated by cardiac perfusion with saline followed by 

4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.3. The 

cervix, L6-S1 spinal cord segments, and DRG were removed, 

cryoprotected in 30% sucrose, frozen, and sectioned (14 mm 

thick) on  a  cryostat. Sections were processed  on  slide for 

immunohistochemistry to localize PACAP by application of 

antibodies for immunostaining according to protocols routi- 

nely used in our lab [34,35]. Briefly, tissue sections were 

incubated for 16–24 h at room temperature with primary 

antibodies: rabbit generated antibody against PACAP (dilution 

1:1000; Peninsula Laboratories Inc., San Carlos, CA) or mouse 

monoclonal antibody (JHH1, [14]). Sections were washed in 

phosphate buffered saline (PBS), incubated in appropriate 

secondary antibodies: goat anti-rabbit IgG Alexa Fluor 594 

(1:600 dilution) (Molecular Probes), goat anti-rabbit Alexa 488, 

or goat anti-mouse Alexa 488 (1: 100 dilution) (Molecular 

Probes) for 1 h and mounted in Vectashield (Vector Labs). 

Some immunostained sections were developed with the 

Vectastain ABC Kit Elite Standard using  DAB and nickel 

sulfate to produce a blue-purple color signal in transmitted 

light. 

Some sections of the L6-S1 spinal cord were double 

immunostained using a cocktail of antibodies generated in 

different species for antigens located in different cells and 

cellular compartments; i.e., for PACAP (using mouse mono- 

clonal anti-PACAP JHH1) and estrogen receptor-a (ER-a) (using 

a rabbit generated antibody against ER-a; 1:10,000 dilution; 

Upstate Biotechnology, Charlottesville, VA). 

The mouse PACAP antibody is well characterized [14]. The 

ER-a antiserum coded C1355 was raised against the last 14 

amino acids of the ER and its characterization is established 

[10,35]. Controls included omission of the primary antiserum 

or omission of the secondary antibody. 

Tissue sections were viewed with an Olympus Provis 

Microscope equipped for epifluorescence and brightfield 

microscopy. Images were captured with a SPOTTM Digital 

Camera (Diagnostics Instruments, Sterling Heights, Michigan), 

imported into PhotoShopTM V 6.0 (Adobe Systems Inc., San 

Jose, CA), contrast and brightness adjusted if necessary and 

then labeled. 

2.3. Radioimmunoassay 

Pregnant rats were euthanized with sodium pentobarbital 

(100 mg/kg body weight, i.p.), and perfused intracardially with 

0.9% sodium chloride. The cervix, L6-S1 DRG and spinal cord 



segments (dorsal one-half only) were carefully removed and 

stored frozen at -80 8C until processing. 

Before PACAP analysis the frozen tissue specimens were 

weighed and extracted in boiling water/acetic acid [14]. The 

extracted samples were reconstituted in assay buffer and 

analyzed by a radioimmunoassay specific for PACAP 38. The 

PACAP antiserum (code No. 733C) was raised in rabbit and does 

not cross-react with PACAP 27 or structurally related peptides 

[14]. The detection limit of the assay was 5 pmol/l and the 

working range 5–50 pmol/l. The within and between assay 

coefficients of variation were <10%. All tissue extracts were 

assayed in duplicate in at least two different dilutions. 

2.4. Estrogen treatment 

Nonpregnant rats were ovariectomized, after anesthesia with 

sodium pentobarbital (45 mg/kg, i.p.), via two small dorsal 

incisions. Incisions were closed with a single stitch to the 

muscle layer and a single wound clip to the skin. Two weeks 

following surgery, some of the rats were treated with 17b- 

estradiol or 17b-estradiol + an estrogen receptor (ER) blocker in 

order to determine whether estrogen regulates PACAP synth- 

esis via the classical ER pathway. Rats were treated either with 

increasing doses of 17b-estradiol (Sigma Chemicals Co., St. 

Louis, MO, USA) (0.03, 0.3, 3.0, 30.0 mg per rat daily for 4 days, 

s.c., sacrificed 12 h after last injection) or ER antagonist ICI 182

780 (AstraZeneca, Cheshire, UK) (s.c., 4 mg/kg body weight 

plus 0.3 mg 17b-estradiol daily for 3 days—initial injection of ER 

blocker was given 12 h prior to 0.3 mg 17b-estradiol) dissolved 

in 100 ml of sesame oil. Control animals were ovariectomized 

and treated with vehicle (100 ml). 

2.5. Total RNA isolation 

Pregnant (early pregnant day 10 and late pregnant day 20 were 

compared) and nonpregnant ovariectomized estrogen or 

estrogen blocker treated rats were euthanized with sodium 

pentobarbital (100 mg/kg body weight; i.p.) and perfused only 

with 0.9% sodium chloride. The L6-S1 DRG were removed and 

stored at -80 8C until processing. Total RNA was isolated from 

L6-S1 DRG of individual animals  using RNeasy Mini Kit 

(Qiagen, Valencia, CA). The amount and purity of total RNA 

for each sample were estimated by spectrophotometric 

analysis at A260 and A280. The quality of RNA was determined 

by agarose gel electrophoresis following ethidium bromide 

staining. Aliquots of total RNA were diluted in diethylpyr- 

ocarbonated (DEPC)-treated water and stored at -80 8C. 

2.6. Semi-quantitative  reverse  transcription-polymerase 

chain reaction (RT-PCR) 

Total RNA from DRG was reverse transcribed and amplified in 

an Eppendorf Master Cycler, using reagents from Gene AMP 

Gold RNA PCR Kit (P.E. Biosystems, Foster City, CA), according to 

manufacturer’s instructions. Briefly, 0.5–1 mg total RNA was 

reverse transcribed and amplified in a 50 ml reaction mixture 

containing the following: 5X RT-PCR buffer, 1.75 mM MgCl2, 

1.2 mM dNTP’s, 10 U RNase inhibitor, 5.0 mM DTT, 1 mM random 

hexamer, 200 nM PACAP (forward), 200 nM PACAP (reverse), 

5.0 U AmpliTaq Gold DNA polymerase, 30 U MultiScribe reverse 

transcriptase and DEPC-treated water. The RT-PCR protocol 

used for PACAP (modification of [20]) was as follows: pre-heated 

for 10 min at 94 8C followed by 1 min at 94 8C, 1 min at 60 8C, 

2 min at 72 8C for 29 cycles and finally 10 min at 72 8C. The 

sequences used for PACAP were as follows: (i) PACAP: forward: 

50 -CAC-CAA-TGT-GGG-CTC-TGA-AG-30, and (ii) reverse: 50- 

CCG-CTT-GAG-GTT-TAG-CAG-AG-30   (370-bp  fragment). 

The RT-PCR reactions were normalized across runs using 

18S ribosomal RNA as a standard. A Quantum RNA kit with 18S 

primers and competimers for quantitative RT-PCR was used 

(Ambion, Austin, Texas). The ribosomal primers for this kit 

yielded a 488-bp PCR fragment. The PCR product was 

separated using agarose gel electrophoresis, visualized after 

staining with SYBR Green 1 and scanned using the Kodak 1D 

Image Station (Rochester, NY). 

2.7. Statistical analysis 

For RIA, comparisons among groups were made by ANOVA 

and data are shown as S.E.M. (Fig. 4). RT-PCR data are shown as 

means and S.E.M. (Fig. 5); comparisons among groups were 

made by  t-test (Fig. 5A and C) and ANOVA (Fig. 5B). P 

values < 0.05 were considered significant. 

3. Results

3.1. Immunohistochemistry 

3.1.1. Cervix 

PACAP-immunoreactive nerve fibers were evident in the 

fibromuscular stroma of the cervix (Fig. 1A), in nerve trunks 

at the periphery of the cervix (Fig. 1B), and coursing in the 

endocervix (Fig. 1C). Within the endocervix, PACAP-immu- 

noreactive fibers were closely adjacent to the walls of the 

vasculature, especially venules (Fig. 1D). In addition, PACAP- 

positive fibers coursed near the epithelium lining the lumen of 

the cervix (Fig. 1E). 

3.1.2. DRG 

PACAP-immunoreactive neurons were evident as small 

clusters among nonimmunoreactive neurons  in  the  L6-S1 

DRG (Fig. 2A) as well as scattered throughout the DRG sections 

as solitary neurons (Fig. 2B). Such neurons were in the small 

(<20 mm diameter) to medium-sized (21–40 mm diameter) 

categories. In addition, PACAP-immunoreactive nerve fibers 

were evident throughout the DRG (Fig. 2B and C). 

3.1.3. Spinal cord 

Sections of the L6-S1 spinal cord immunostained for PACAP 

showed positive fibers in a dense band in the superficial areas 

of the dorsal horn (DH) (Fig. 3A), along the medial border of the 

DH and coursing to the dorsal intermediate gray (DIG) of the 

central spinal cord (Fig. 3B), and along the lateral border of the 

DH in the lateral collateral pathway (Fig. 3A) coursing to the 

sacral parasympathetic nucleus (SPN) (Fig. 3A and C). Some 

PACAP-immunoreactive fibers were closely adjacent to ER-a- 

immunoreactive neurons in the LCP and SPN (Fig. 3D and E). 

In   general,   changes   in   immunostaining   or   density   of 

neurons or fibers in the cervix, DRG or spinal cord over the 



Fig. 1 – Sections of the uterine cervix immunostained for PACAP-immunoreactive nerves. (A) Nerve fibers (arrows) are 

evident coursing through the fibromuscular stroma (S) of the cervix at day 10 of pregnancy. (B) A nerve trunk at the edge of 

the cervix from a parturient rat showing a subset of nerve fibers immunoreactive for PACAP (arrows). (C) A PACAP- 

immunoreactive nerve fiber (arrow) courses from the fibromuscular stroma (S) to the endocervix (E) of a day 10 pregnant rat. 

(D) PACAP-immunoreactive nerve (arrow) in a day 10 pregnant rat closely adjacent to a venule (V) in the endocervix. (E) 

Immunoreactive nerve fiber (arrow) subjacent to the epithelium (E) lining the lumen of the cervix of a parturient rat. Scale 

bar = 25 mm. 

course of pregnancy were not readily evident with immuno- 

histochemistry. 

3.2. Radioimmunoassay (RIA) 

Levels of immunoreactive PACAP change in the cervix and 

spinal  cord  during  pregnancy  (Fig.  4);  levels  of  PACAP 

immunoreactivity in individual DRG were not readily detect- 

able in our assay procedure. Levels of PACAP in the cervix and 

L6-S1 spinal cord were highest over the early to middle stages 

of pregnancy (days 10 and 15) and then levels began to 

decrease during the third trimester of pregnancy, reach a nadir 

at parturition (day 22), and remain low at 2 days postpartum 

(Fig. 4A and B). There were notable and significant differences 



Fig. 2 – Cryostat sections of the L6-S1 dorsal root ganglia (DRG) immunostained for PACAP. (A) DRG from a day 15 pregnant 

rat. In some instances small clusters of PACAP-positive neurons (arrows) were evident in the DRG. These neurons were 

small to medium in size. (B) Low magnification view of the DRG (from a bilaterally pelvic neurectomized rat) at day 22 of 

pregnancy  showing  PACAP-immunoreactive  neurons  scattered  throughout  the  section.  Both  small  (S)  and  medium  (M) 

sized neurons show staining. Large neurons (L) are unstained for PACAP. (C) Higher magnification view of the area of the 

DRG shown in the box of (B) illustrating PACAP-immunoreactive nerve fibers (arrow) within the DRG. Scale bar = 25 mm. 

in tissue concentrations of PACAP between the second and 

third trimesters of pregnancy (days 10–15 versus days 20–22) 

(Fig. 4A and B) ( p < 0.05). 

3.3. RT-PCR 

PACAP mRNA in L6-S1 DRG is up-regulated in late pregnancy, 

increased by exogenous 17b-estradiol treatment, and this 

increase is blocked by an ER antagonist. PACAP mRNA bands 

showed an apparent increase in density in late pregnancy (day 

20) compared to early pregnancy (day 10) (Fig. 5A). When the

bands were scanned using the Kodak 1D Image Station to 

produce a histogram of the net intensity of the bands the 

changes were more apparent (Fig. 5A). The difference in net 

intensity of bands in late (day 20) versus early pregnancy (day 

10) was statistically different ( p < 0.05). 

Increasing doses of 17b-estradiol (0.03, 0.3, 3 and 30 mg per

rat per day for 4 days) in ovariectomized rats produced dose- 

related increases of PACAP mRNA in L6-S1 DRG between the 

ranges of 0.03–3.0 mg (no further response was observed 

beyond 3.0 mg) (Fig. 5B). Differences between vehicle-treated 

and 0.03 mg were statistically significant ( p < 0.001). 

Exogenous estrogen up-regulates PACAP mRNA expres- 

sion, and ERs are expressed in neurons of DRG [34,45]. Thus, 

we examined whether estrogen effects on PACAP mRNA levels 

were ER-mediated. Ovariectomized rats treated with the ER 

antagonist ICI 182 780, 12 h prior to 17b-estradiol, exhibited 

reduced effects of estrogen (at 0.3 mg) on PACAP mRNA 

expression (Fig. 5C). The partial blockage of PACAP mRNA 

expression by ICI 182 780 was statistically significant com- 

pared to the 17b-estradiol-treated animals ( p < 0.0014). This 

suggests that the effects of estrogen on PACAP mRNA 

expression are mediated, in part, via ER signaling pathway. 

4. Discussion

The important findings of this study are that (1) in the female 

rat, neurons in the L6-S1 DRG express PACAP and apparently 

transport this sensory neuropeptide to nerve terminals in the 

uterine cervix and in the corresponding levels of the spinal 

cord, (2) PACAP mRNA increases in the DRG during pregnancy, 

whereas levels of immunoreactive PACAP in the cervix and 

spinal cord decline toward the end of pregnancy, and (3) 



Fig. 3 – Cryostat sections of the L6/S1 spinal cord from a parturient rat (A–C) and a day 10 pregnant rat (D and E). (A) Shows a 

plexus of PACAP-immunoreactive nerve fibers in the superficial dorsal horn (DH) of the spinal cord. Also evident are 

bundles of fibers coursing along the lateral collateral pathway (LCP) toward the area of the sacral parasympathetic nucleus 

(SPN). Fibers from the medial aspect of the DH (arrow) course to the dorsal intermediate gray (DIG) (dorsal to the central 

canal). (B) Plexus of PACAP-immunoreactive fibers in the DIG of the spinal cord. (C) Higher magnification view of PACAP- 

immunoreactive fibers (arrows) surrounding neurons (N) in the SPN. (D) Spinal cord section immunostained for PACAP (red) 

and ER-a (in a nuclear location and appears yellow when photographed with the filter for Alexa Fluor 594 used for PACAP). 

ER-a-immunoreactive neurons (arrows) are evident among the PACAP-positive fibers of the lateral DH, LCP and SPN. (E) 

High magnification  view  of  PACAP  immunoreactive  varicosities  (arrows)  closely  adjacent  to  an  ER-a-positive neuron 

(yellow nucleus) in the SPN. Scale bar = 25 mm. 

synthesis of PACAP is influenced by the estrogen-ER system. 

These data, taken together with the current literature, imply 

that PACAP-expressing sensory neurons represent a subtype 

of neuron innervating the cervix that could be influenced by 

estrogen and ultimately play a role in cervical ripening in 

preparation for birthing. 

It is important to recognize that PACAP in the genital 

organs may, in addition to sensory neurons, also be derived 

from parasympathetic neurons in the pelvic paracervical 

ganglion [8]. That most PACAP-immunoreactive fibers in the 

genital organs, as well as other tissues, were sensitive to 

capsaicin treatment and costore ‘‘sensory neuropeptides’’ 

substance P (SP) and calcitonin gene-related peptide (CGRP) 

[8,25]  suggests  that  they  are  small  unmyelinated  sensory 

fibers. A small number of capsaicin-resistant PACAP-immu- 

noreactive fibers are likely derived from autonomic neurons 

and costore vasoactive intestinal peptide (VIP) [8]. 

The presence and distribution of PACAP immunoreactivity 

in the L6-S1 spinal cord of female rats shown in the present 

study is consistent with that shown by other groups in various 

levels of the spinal cord [6,13,18,40]. PACAP-immunoreactive 

fibers were prevalent in laminae I and II of the dorsal horn 

which are the sites for termination of many central sensory 

axons of nociceptive neurons in the DRG. In addition, PACAP- 

positive fibers were noted to course (1) medially along the 

dorsal horn to an area dorsal to (dorsal intermediate gray, DIG) 

and around the central canal and (2) laterally along the gray 

matter  of  the  dorsal  horn  as  the  lateral  collateral  pathway 



Fig. 4 – Concentration of immunoreactive PACAP in 

extracts of the cervix (A) and dorsal half of the L6-S1 spinal 

cord (SPC) (B). Levels of PACAP in the cervix and spinal 

cord peaked at about the end of the second trimester of 

pregnancy and then progressively declined until delivery. 

expression pattern of another sensory nerve-derived neuro- 

peptide, PACAP. Fahrenkrug and Hannibal [8] and Fahrenkrug 

et al. [9] previously reported PACAP-immunoreactive nerves in 

the cervix; the present study detailed their distribution and 

corroborated the results of the earlier report. The pattern of 

PACAP-immunoreactive fibers in the cervix paralleled that of 

other sensory nerves containing such neuropeptides as SP and 

CGRP [32,46], though they were less dense. A subpopulation of 

PACAP-immunoreactive fibers is capsaicin-sensitive, costores 

SP and CGRP, and likely originates from small sensory neurons 

of DRG [8,25]. PACAP-positive fibers were frequently evident 

subjacent to venules,  a location from which their neuropep- 

tide could influence vascular activities as do other sensory 

neuropeptides such as SP and CGRP [5,16,17,22,41]. In addition, 

fibers were associated with the epithelium lining the lumen of 

the cervix, a location where sensory fibers could respond to 

activity that impinges on the cervical lining such as noxious or 

mechanical stimuli. PACAP-immunoreactive nerves were 

evident among the nonvascular smooth muscle of the cervix. 

PACAP released from such fibers could have an important 

function in the cervix during late pregnancy and parturition as 

PACAP has an inhibitory effect on nonvascular (and vascular) 

smooth muscle in the female reproductive system [9,44]. Thus, 

PACAP may be a factor to inhibit motility and promote 

relaxation of the sphincteric function of the cervix for 

completion  of  birthing.  Our  immunohistochemical   studies 

did not reveal any obvious changes in density or distribution of 

PACAP-positive nerves in the cervix during pregnancy. 

However, RIA indicated  that  PACAP  concentrations  tended 

to be high until the end of the second trimester/beginning of 

the third trimester when PACAP immunoreactivity decreased 

and remained lower through pregnancy. This could indicate a 

release and utilization of PACAP in the cervix. Along this line, 

RT-PCR data showed an increase in PACAP mRNA in L6-S1 DRG 

at this same time. It is likely that the increased mRNA levels 

for PACAP reflect increased synthesis. It is, however, possible 

that other mechanisms are involved, e.g., increased mRNA 

(LCP) to the area of the sacral parasympathetic nucleus. The 

DIG and SPN are target areas of many visceral sensory fibers; 

indeed  sensory  SP-  and  CGRP-immunoreactive  fibers  termi- 

nate   and   are   closely   adjacent   to   estrogen   receptor   (ER) 

expressing neurons in the DIG and SPN [33,36]. As shown in 

the  present  study,  PACAP-immunoreactive  varicosities,  pre- 

sumably  central  terminals  of  primary  sensory  neurons  from 

viscera, also are closely adjacent to ER-a expressing neurons. 

Given the DRG-spinal cord localization of PACAP, it is possible 

that PACAP functions in nociceptive processing and output of 

autonomic neurons, some of which is influenced by estrogen. 

Small   primary   afferent  neurons   serve   a   dual   role:   as 

sensory   neurons   they   transmit   information   about   stimuli 

from peripheral sites to the spinal cord; as efferent effectors 

they can release neuropeptides at peripheral sites to mediate 

such  responses  as  neurogenic  inflammation  (which  consists 

of  vasodilatation,  plasma  extravasation,  and  recruitment  of 

immune   cells).   We   previously   reported   the   expression 

patterns  of  SP  and  CGRP,  two  neuropeptides  derived  from 

L6-S1 DRG, over pregnancy and demonstrated their potential 

functional    significance    in    neurogenic    inflammation    and 

influencing cervical ripening as well as conveying information 

to  the  spinal  cord.  In  the  present  study,  we  examined  the 

stability. Thus, it appears that as pregnancy advances there 

could be an increase in synthesis in the DRG with an increased 

utilization at terminal sites. Consequently, PACAP, like SP and 

CGRP, influences the function of nonvascular and vascular 

smooth muscle [7,9,44], inflammatory actions [52], nociceptive 

signaling [49,50,54,55] and cervical ripening. 

Our study localized PACAP immunoreactivity in small- 

medium size sensory neurons of the L6-S1 DRG of intact 

pregnant rats and the visualization of PACAP was enhanced by 

bilateral pelvic neurectomy (BLPN—which entailed transect- 

ing the primary afferent nerves to the urogenital organs). 

These observations are consistent with previous studies 

showing enhanced PACAP immunoreactivity and/or PACAP 

mRNA after colchicine treatment [25], or perturbations  to 

sensory nerves such as axotomy of the sciatic nerve [51,53], 

spinal cord injury or chronic cystitis [48,56] thus illustrating 

plasticity in this system. PACAP, under normal physiological 

conditions, was localized in small sensory neurons [6,18,25], 

which are responsible for mediating nociception, but also in 

medium-sized sensory neurons after inflammation-inducing 

processes, such as injection of adjuvant in the rat paw [52], 

suggesting a role for PACAP in inflammation. Such an effect is 

thought to be mediated by the PACAP preferring receptor, 



Fig. 5 – PACAP mRNA levels in L6-S1 DRG (A–C). Levels of PACAP mRNA increased in late (day 20) pregnancy compared 

to early pregnancy (day 10) (A). In ovariectomized rats estrogen increased PACAP mRNA synthesis in a dose-related 

manner (B), an effect partially blocked by the ER antagonist ICI 182 780 (C). Asterisk indicates a significant 

difference between: in (A) early and late pregnancy; in (B) treatment and vehicle control; and in (C) treatment with 

estrogen plus blocker and estrogen alone. 

PAC1, since in the formalin test; mice lacking PAC1 had a 

profoundly decreased nociceptive response in the late, 

inflammatory phase [19]. Cervical ripening is a normal 

physiological process in which inflammatory-like  changes 

occur, in part, through neuropeptides, such as SP and CGRP [4]. 

Since levels of PACAP increase  during inflammatory condi- 

tions [52], it is plausible that PACAP mRNA (synthesis) should 

increase in DRG, and PACAP decrease in the spinal cord and 

cervix, during the  inflammation-like  conditions  associated 

with cervical remodeling in the last trimester  of  pregnancy. 

This could help explain the rise in PACAP mRNA in L6-S1 DRG 

and decrease of PACAP in the cord and cervix at late pregnancy 

in the present study. Moreover, PACAP-immunoreactive 

nerves innervate mast cells and release histamine in humans 

and rodents [26,31]. 

Other factors, in addition to inflammation, likely to be 

involved in regulating synthesis of PACAP in uterine cervix- 

related sensory neurons during pregnancy are neurotrophins 

(such as NGF [19]) and sex steroids (such as estrogen). Because 

sex steroid hormones have a significant modulating effect 

during pregnancy, including the synthesis of neuropeptides SP 

and CGRP [27,28], it is plausible that they influence PACAP 

synthesis observed  in the  present study. The synthesis  of 

hypothalamic PACAP is regulated by sex steroid hormones, 

including estrogen and  progesterone  [1,12].  Moreover,  the 

temporal correlation in the rat (at about day 20) in the rise of 

serum estrogen (and decline of progesterone) [2,21,42], up- 

regulation of ER-a mRNA [27], and PACAP mRNA (present 

study) in L6-S1 DRG argues in favor of the notion that estrogen, 

working through ERs, positively influences PACAP expression. 

Although PACAP has been demonstrated in the neurons of 

the DRG, the present study is the first to show a relationship 

between  pregnancy  and  PACAP  synthesis  and  the  dose- 

dependent effect of exogenous estrogen on PACAP mRNA. 

Because prior administration of an estrogen (receptor) blocker, 

ICI  182  780,  to  ovariectomized  rats  treated  with  estrogen 

attenuates the effects of estrogen, we suggest that the effects 

of estrogen on PACAP synthesis, as with SP and CGRP [27,28], 



are mediated by ERs. The specific ER subtype (a or b) in the DRG 

neurons mediating up-regulation of PACAP was not deter- 

mined in the present study. However, our previous studies 

using PCR have shown that only ER-a mRNA levels, but not ER- 

b, increase during pregnancy [27,28]. 

The exact role of PACAP in the remodeling cervix has not 

been elucidated. However, our working hypothesis is that, like 

other neuropeptides, PACAP is axonally transported (shown 

by [51]) to the cervix and impacts cervical ripening by 

influencing the local microvasculature. The present data, 

showing proximity of nerve terminals immunoreactive to 

PACAP to the microvasculature of the cervix, is consistent with 

this hypothesis. 
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