Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/

Appalachian

STATE UNIVERSITY.
BOONE, NORTH CAROLINA

Foundations For Structured Programming With GADTSs

By: Patricia Johann & Neil Ghani

Abstract
GADTs are at the cutting edge of functional programming and be-come more widely used every
day. Nevertheless, the semantic foundations underlying GADTs are not well understood. In this
paper we solve this problem by showing that the standard theory of data types as carriers of
initial algebras of functors can be extended from algebraic and nested data types to GADTs. We
then use this observation to derive an initial algebra semantics for GADTs, thus ensuring that all
of the accumulated knowledge about initial algebras can be brought to bear on them. Next, we
use our initial algebra semantics for GADTs to derive expressive and principled tools analogous
to the well-known and widely-used ones for algebraic and nested data types for reasoning about,
programming with, and improving the performance of programs involving, GADTs; we christen
such a collection of tools for a GADT an initial algebra package. Along the way, we give a
constructive demonstration that every GADT can be reduced to one which uses only the equality
GADT and existential quantification. Although other such reductions exist in the literature, ours
is entirely local, is independent of any particular syntactic presentation of GADTs, and can be
implemented in the host language, rather than existing solely as a met theoretical artifact. The
main technical ideas underlying our approach are (i) to modify the notion of a higher-order
functor so that GADTSs can be seen as carriers of initial algebras of higher-order functors, and (ii)
to use left Kan extensions to trade arbitrary GADTs for simpler-but-equivalent ones for which
initial algebra semantics can be derived.

Patricia Johann & Neil Ghani (2008) "Foundations For Structured Programming With
GADTSs". Proceedings, Principles of Programming Languages (POPL) pp. 297-308 Version Of
Record Available At www.dl.acm.org

1. Introduction

Generalized algebraic data typeer GADTS, are at the cutting
edge of functional programming and are finding an ever-increasing
number of applications. Types are traditionally used to guarantee
that programs do not ‘go wrong’ by using data in inappropriate
ways. GADTs extend this traditional use of types, allowing them
to index, and thereby capture more sophisticated properties of,
data types. Properties of interest may include the size or shape of
data, the state of program components, or some invariant that the

data type is expected to satisfy. By encoding properties as types,
GADTSs provide a means of abstracting them into a form that com-
pilers and other language tools can exploit. This makes proper-
ties of programs that would otherwise be available only dynami-
cally, if at all, statically checkable and analyzable, and thus makes
progress toward closing what Sheard calls skeenantic gapbe-
tween what the programmer knows about a program and what the
programming language allows to be stated. GADTSs are especially
useful when combined with higher-kinded types, as in (extensions
of) Haskell, and with user-definable kinds, as{)mega [Omega,
Sheard et al. (2005)]. In such settings, GADTSs can represent refine-
ment types, witness types, existential types, and certain dependent
types. GADTSs are closely related to several other concepts, includ-
ing first-class phantom types [Cheney & Hinze (2003)], equality-
qualified types [Sheard & Pasalic (2004)], guarded recursive types
[Xi et al. (2003)], and inductive families [Dybjer (1994)]. They can
even be regarded as a variant of dependent types [McBride (2004),
Xi & Pfenning (1999)] in which the distinction between types and
values is maintained.

It is widely accepted that a good theory of data types requires
principled foundations in order to provide expressive tools for
structured programming with them. One of the most successful
foundations for algebraic data types — such as the natural numbers,
lists, trees — is that ohitial algebra semanticsin initial algebra
semantics, every data type is seen as the carrier of the initial algebra
of a functor. The value of initial algebra semantics lies not only
in its theoretical clarity, but also in that it supports principled
structured programming techniques for data types including:

e Combinatorswhich uniformly produce, uniformly consume,
and otherwise capture commonly-occurring type-independent
programming idioms for data types. Among the most significant
of these are theuild combinator, which uniformly produces
structures of a given data type; the structured recursion com-
binatorfold, which uniformly consumes structures of a given
data type; and theap combinator, which applies a specified
function to all data in a structure of a given data type.

Church encodingdor data types, which represent structures
of data types as functions in the Girard-Reynolds polymorphic
lambda calculus, the core formal calculus on which many func-
tional languages are based. In addition to being interesting in
their own right, Church encodings are the key to definingld
combinators. Indeed, theiild combinator for each data type
derives from the isomorphism between that data type and its
Church encoding.

fold/build fusion rules also derived from the isomorphisms
between data types and their Church encodings, that can be
used to improve the performance of modularly constructed pro-
grams which manipulate data of those types. Such a rule re-
places a call to th&uild combinator for a given data type
which is immediately followed by a call to th&o1d combi-
nator for that type with an equivalent computation that does not

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

construct the intermediate structure introducedbhy1d and
immediately consumed byold. Local program transforma-
tions [Gill et al. (1993), Johann (2002), Svenningsson (2002)]
based onfold/build rules can result in order-of-magnitude
increases in program efficiency. They also open the way for de-
veloping a so-calledlgebra of fusion

Generic programmingechniques based on the observation that
initial algebra semantics allows us to derivesiagle generic
fold combinator, singlegenericbuild combinator, and ain-

gle genericfold/build rule — each of which can be special-
ized to any particular data type of interest.

Despite their ubiquity and utility, the semantic foundations of
programming with GADTs are not well understood. In particular,
there is currently no known initial algebra semantics for GADTSs.
From a theoretical standpoint, it is unsettling to think that our un-

as Haskell is extended by more and more features. Thus, although
we use Haskell to illustrate our ideas, we presently regard full
Haskell as being in the second group of languages discussed above.

In the remainder of this paper we assume that we have at our dis-
posal a parametric model in the form of a categdmwhose objects
interpret the types of the target language and whose morphisms in-
terpret its functions. Our first major result is

THEOREM1. Given a parametric model, every GADT has an ini-
tial algebra semantics.

Theorem 1 is significant both theoretically and practically. On
the one hand, it entails that GADTs can be understood entirely
in terms of initial algebras and thereby extends the semantics of
algebraic types to cover GADTSs. This is advantageous, since it
ensures that all of our knowledge about initial algebras can be

derstanding of data types in terms of initial algebras of functors is brought to bear on GADTs. On the other hand, Theorem 1 is the

limited to algebraic and nested data types [Bird & Meertens (1998)], key to structured programming with GADTSs since it can be used to

and not app|icab|e to more advanced ones such as GADTSs. But thederiVe from every GADT, directly from its declaration, a collection

lack of an initial algebra semantics for GADTSs is also problematic Of tools for structured programming with data of that type. Indeed,

from a programmer’s point of view, since it forestalls the principled in Section 5 we use the initial algebra semantics of GADTSs to give

derivation offolds, builds, fold/build fusion rules, and other ~ fold andbuild combinators, Church encodings, afuld/build

tools for structured programming with GADTSs. Thus, for both the- rules for GADTSs, and to show that these constructs are worthy of

oretical and practical reasons, the time has come to ask whether othe names, i.e., that they have properties analogous to those of the

not an initial algebra semantics for GADTs can be given. corresponding constructs for algebraic and nested data types. If we
This paper provides an affirmative answer to this question for call such a collection of tools amitial algebra packagethen a

covariant GADTs. The covariance restriction is very mild: it is the second contribution of this paper is to show that

natural analogue of the standard restrictions to covariant algebraic L

data types and covariant nested data types which appear in thel HEOREM2. Every GADT has an initial algebra package.

literature, and is also satisfied by virtually all GADTs which arise . . .

in practice. Moreover, covariance is central to the derivation of Note that_ th's result ho_Iqs even when no parametr_lc model exists.

initial algebra semantics for algebraic and nested data types, since_ 1 n€ difficulty in deriving initial algebra semantics for GADTs

initial algebras of functors are taken, and functors are, by their very IS tWO'f.OId' The first is"sue]Es that, although tne int'erpretatior_l ofa
nature, covariant. The covariance restriction is similarly central GAPT is most naturally a functo€ — C, such an interpretation
to the derivation of initial algebra semantics for GADT&Ve turns out not actually to be possible. It is therefore not clear how

; : to model GADTs as carriers of initial algebras of higher-order
trzii[ﬁ:‘:%rgnsirr;leg!éist.}mply of GADTSs below, and leave the covariance functors(C — C) — C — C. Our solution to this problem lies

With this understanding, we derive initial algebra packages for in modeling GADTS as carriers of initial _algebrz_:\s of higher-order
GADTSs in any language which also supports universal and exis- functors(ICl— C) — ICI— C, wherelClis the discrete category
tential type quantification. We use categorical tools as our main derived fromC. The second issue is that an arbitrary GABT
technical devices, and use Haskell to illustrate and make these cat-has data constructors whose return types are not of the ¢oem
egorical techniques more accessible to the programming IanguageéOr some type variable, but rathe_r are .Of the for_nG_ (b).
community. We offer two kinds of results: (The possible presence of a non-ldenlmtys_ what distinguishes

GADTs from nested types.) We solve this second problem by
¢ For those languages supporting formal parametric models, our using left Kan extensions to show how to trade a GADT whose
results can be read as formal theorems about GADTs and theirdata constructors have return types of the f@mh a) for an
semantics. This is because the existence of a parametric modekquivalent one all of whose constructors have return types of the
entails that existentially quantified types are interpreted as co- form G a. An initial algebra semantics for any GADT can be
ends, that left Kan extensions are definable, and that initial al- derived from the initial algebra semantics of the equivalent GADT
gebras exist for all functors interpreting type constructors in the obtained by transforming all of its constructors in this way.
underlying language. The canonical candidate for a parametric ~ This paper is a follow-up paper to [Johann & Ghani (2007a),
model is the category of PERs [Bainbridge et al. (1990)]. Johann & Ghani (2007b)], which derive initial algebra semantics

e For languages not supporting formal parametric models, we O nested data types. Those papers view nested data types as car-
use category theory as a heuristic to guide the derivation initial 11€'S Of initial algebras of higher-order Haskell functors mapping

algebra packages for GADTSs. In this case, no formal proofs are
claimed for the initial algebra packages, and all results about
initial algebra packages must be verified independently.

Haskell functors to Haskell functors. They also use Kan extensions
to establish the expressiveness of the resulfioid and build

combinators for nested data types. There are thus similarities with
this paper, but note that i) GADTs are interpreted here as carri-

As mentioned above, irrespective of the target language, we ers of initial algebras of higher-order functors which map functors
use Haskell to illustrate our categorical ideas. We stress, however,with discrete domains to functors with discrete domains, rather than
that we do not claim the existence of a parametric model for full functors with possibly nondiscrete domains to functors with possi-
Haskell. The existence of such a model is a standard assumption inbly nondiscrete domains, and ii) Kan extensions are used in this pa-
the literature, but this assumption becomes increasingly speculativeper to derive initial algebra semantics for GADTSs rather than to es-
tablish their expressiveness. As a result, this paper is related only in
LWe do, however, expect the standard techniques for dealing with mixed Spirit to [Johann & Ghani (2007a), Johann & Ghani (2007b)], via
variance algebraic and nested data types to scale to mixed variance GADTstheir shared use of functor categories and Kan extensions. But as

with those papers, the ideas in this one can be understood even ifapplications of its type constructor which occur in its declaration
one has no prior knowledge of Kan extensions. have precisely the same type variables as argunie@asisider, for

In the course of our development we also give a constructive example, the data type of lists, realizable in Haskell as
derivation of a third fundamental result, namely

data List a = Nil | Cons a (List a)

THEOREM& Every GADT. can _be reduc_e_d to one involving only This declaration introduces the data construclidrs :: List a
the equality GADT and existential quantification. andCons :: a -> List a -> List a. The type variables ap-

Like Theorem 2, Theorem 3 does not require a parametric model. Pearing in the declaration of an algebraic data type are implicitly
Yet in the presence of one it ensures that we can reason aboutuniversally quantified; algebraic data types and their data construc-
GADTSs by reasoning about the equality GADT and about existen- tors are thus polymorphic in general. Since every application of the
tial quantification. Although this result is implicit in the literature ~ type constructoList in the declaration okist a — and thus in

(see, e.g., [Sulzmann & Wang (2005), Sulzmann & Wang (2004)]), the types ofiil andCons — is of the formList a for the same

our reduction has the benefit of being local to the particular GADT type variablea, theList data type is indeed algebraic.

under consideration, and so does not require manipulation of the ~GADTSs relax the restriction on the types of data constructors
entire host language. It therefore is not impacted by the addition Of algebraic data types. Data constructors for a GADT can both
or deletion of other language features. Furthermore, our reduction take as arguments, and return as results, data whose types involve
is independent of any particular syntactic presentation of GADTs. type instances of the GADT other than the one being defined. (By
And it is easily implemented in Haskell, rather than existing solely contrast, data constructors of nested types can take as arguments,

as a metatheoretical artifact.

We make several other important contributions as well. First,
we execute our program for deriving initial algebra semantics and
packages for GADTs in a generic style by parameterizing our
GADTSs over the types occurring in them. While this incurs a cer-
tain notational overhead, the inconvenience is outweighed by hav-
ing a singlegenericfold combinatora singlegenericbuild op-
erator, anda singlegenericfold/build rule, each of which can
be specialized to any particular GADT of interest. Secondly, while
the theory of GADTSs has previously been developed only for syn-
tactically defined classes of GADTSs, our development is not re-
stricted to a particular syntactic definitional format for GADTSs, but
rather is based on the semantic notion of the carrier of the ini-
tial algebra of a (in this case, higher-order) functor. Thirdly, this
paper provides a compelling demonstration of the practical ap-
plicability of Kan extensions, and thus has the potential to ren-
der them more accessible to functional programmers. Finally, we
give a complete implementation of our ideas in Haskell, available
athttp://www.cs.nott.ac.uk/"nxg. This demonstrates their

but cannotreturn as results, data whose types involve instances of
the nested type other than the one being defined.) For example, the
following Haskell declaration defines the GAOErm:

data Term a where

Const :: a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
App :: Term (a => b) -> Term a -> Term b

As is customary, the types of the data constructors of this GADT
are given explicitly. The data constructexir takes as input data

of the instanceSerm a andTerm b, and returns as its result data
of the instanceTerm (a,b) of the Term GADT. Similarly, App
takes as input data of the instandsm (a -> b) andTerm a

of the GADT, and return data of the instanterm b. Although

it is not illustrated by this example, a single data constructor for a
GADT can simultaneously take as in@rtdreturn as its result data

of new instances of that GADT as well. As for algebraic and nested
data types, all of the type variables appearing in the types of the
data constructors of a GADT are implicitly universally quantified,

practical applicability, makes them more accessible, and provides aS0 thatthe type parametem the expressioflern a is a “dummy”

partial guarantee of their correctness via the Haskell type-checker.
This paper can therefore be relagth as abstract mathematiasd
as providing the basis for experiments and practical applications.
The remainder of this paper is organized as follows. In Section 2
we introduce GADTS, use Haskell (for which our abstract category
C interprets the king) as a target language to show that GADTs are
not obviously functor€ — C, and discuss the difficulty this poses
for deriving initial algebra semantics for them. In Section 3 we
show that GADTSs from a restricted class are semantically carriers
of initial algebras of higher-order functof$C|— C) — IC|—
C (although, as just notediot necessarily higher-order functors
(C — C) — C — C). We then use this observation to derive initial
algebra semantics for such GADTSs. In Section 4 we recall the
derivation of initial algebra packages of structured programming
tools for inductive types and recap the well-known categorical ideas
which underlie them. In Section 5 we instantiate these ideas in
the relevant category to derive initial algebra packages for GADTs
from our restricted class. In Section 6 we extend our derivation to
all (covariant) GADTs. We derive initial algebra packages for some
GADTs from the literature in Section 7. In Section 8 we conclude
and indicate our next step in this line of research.

2. The Problem
2.1 GADTs

Syntactically, GADTs are generalizations of algebraic data types.
An algebraic data types a data type with the property that all

parameter used only to give the kind of the GADT type constructor
Term. Using Haskell’'s kind syntax, we could have instead written
the above declaration d@ata Term :: * -> * where

2.2 Are GADTs Haskell Functors?

The goal of this paper is to show that GADTSs have initial algebra
semantics. To have an initial algebra semantics, a GADWust
have an interpretation as the initial algebra of a functor (see Sec-
tion 4.2). Sinces is a type constructor, it is natural to try to model

it as a functoiC — C which is the carrier of the initial algebra of a
functor (C — C) — C — C. The first question which arises is thus
whether or not every GADT can be interpreted as a functes C.

To answer this question, consider the situation in Haskell, where
the categoryC interprets the Haskell kind. Functors are imple-
mented in Haskell as type constructors supporfingp functions,
as captured by the built-in type class

class Functor f where
fmap :: (@ > Db) >fa->fb
The functionfmap is expected to satisfy the functor laws

fmap id = id

fmap (f . g) = fmap f . fmap g

stating thatmap preserves identities and composition. But satisfac-
tion is not enforced by the compiler: it is the programmer’s respon-

2There are different uses of the waliyebraicin the literature. We use this
definition consistently in this paper.

sibility to ensure that thémap function for each Haskell functor,
i.e., instance of Haskell'Bunctor class, behaves appropriately.

If Gis to be a Haskell functor then it must support fiep
operation. Establishing th&rm is a Haskell functor, for example,
would require a declaration

instance Functor Term where
fmap :: (d -> e) -> Term d -> Term e

The clause for terms of the forhair x ywould havef :: (b,c)

-> e and fmap f (Pair x y) :: Term e. Keeping in mind
that fmap should change the data in a term while preserving its
structure, we should have

fmap £ (Pair x y) = Pair u v

for some appropriately typed andv. But it is not clear how to
achieve this since cannot be guaranteed to have a tuple structure.
Even if e wereguaranteed to be of the forgb’, c’), we'd then
havef :: (b,c) -> (b’,c’), but still no way to produce data
of typeTerm (b’,c’) fromonlyf :: (b,c) -> (b’,c’) and

x :: bandy :: c. The problem stems from the fact thais not

functors to maps between functors, i.e., natural transformations to
natural transformations. In particular, higher-order functorsxon
can be implemented in Haskell by the following analogue of the
built-in Functor class:

class HFunctor f where
ffmap :: Functor g => (a ->b) >fga->fgh
hfmap :: Nat g h -> Nat (f g) (f h)

That a higher-order functor maps functors to functors is captured
by the requirement that afFunctor — i.e., an instance of the
HFunctor class — supports afifmap function; that a higher-
order functor maps natural transformations to natural transforma-
tions is captured by the requirement thatunctor supports an
hfmap function. The type of natural transformations can be given
in Haskell by

type Nat g h = forall a. ga ->h a

A parametric interpretation of theorall quantifier ensures that a
function of typeNat g h can be thought of as a uniform family of
maps fromg to h, so that the relevant naturality squares commute.

guaranteed to be a pair of functions. So it is not clear how to treat While not explicit in the class definition above, the programmer is

an arbitrary GADT in Haskell as a Haskell functor. It is thus not
clear how to treat GADTs semantically as functors in general.

3. The Key Ideas
3.1 Recovering Functoriality

The above considerations lead us to try to model a GADSS a
functor ¢’ — C for a categoryC’ distinct from the category.
A natural candidate fo€’ is the category whose objects model
the (inhabited) types of. For theFin GADT from Example 1

in Section 7, for instance, the inhabited types are essentially the

natural numbers. But for some GADTSs, sucliTasm, the inhabited
types will be all types. So a simpler and more uniform approach is
always to take the objects 6f to be those of.

expected to verify that i§ is a Haskell functor, thefi g is also a
Haskell functor. Moreover, like themap functions for functors, the
hfmap functions are expected to preserve identities and composi-
tion — here for natural transformations.

An example of a basic GADT is the following alternative pre-
sentation of the GADTin of finite sets from Example 1 in Sec-
tion 7. Here Either is the standard Haskell type for disjunctions,

f g aisEither Unit (g a),h aisS a,andG f hisBFin.

data BFin a where
BFinCon :: Either Unit (BFin a) -> BFin (S a)

Now, if G £ h is to be interpreted as the carrier of the initial
algebra of a higher-order funct¢tC|— C) — I1CI— C, thenin
order forG £ hand its data constructGCon to be well-kinded we

Atfirst glance this seems to have gotten us nowhere, but we haveShould have in Haskell:

not yet fully specified the category’. In addition to specifying
the objects ofC’, we must also specify its morphisms. Since the
only functions between types that we know for sure can be lifted to

h o x| => |*]
f oo (%] => %) => |*x| => %
Gfh :: |*¥] -> %

functions between GADTSs parameterized over those types are the

identity functions, we simply tak€’ to have as morphisms only
the identities. That is, we take the categdfyto be the discrete
category derived frorg. Writing |C | for this category, we observe
that every function from the objects of |to C is trivially a functor
|C1— C. We now turn our attention to showing that every GADT
can be modeled as the carrier of the initial algebra of a functor
(ICI—=C) = ICI—C.

3.2 Basic GADTSs and Higher-order Functors

To keep syntactic overhead to a minimum, and to highlight the key
ideas underlying of our approach, we make some simplifying as-
sumptions in this section about the syntax of GADTs. We show
how to extend our approach to GADTs which do not satisfy these

assumptions in Section 6. On the other hand, to emphasize that our

We can tailor theéiFunctor class above to accommodate higher-
order functors of kind(|*| -> *) -> [*] -> *, This amounts

to eliminating theffmap function from the class definition, since
every functor necessarily maps identities to identities. When work-
ing with GADTs, we therefore use the following specialized ver-
sion of theHFunctor class:

class HFunctor f where
hfmap :: Nat g h -> Nat (f g) (f h)

3.3 Initial Algebra Semantics for Basic GADTs

We seek to derive from the syntax®ff h a higher-order functor

(IC1— C) — ICl— C such that the carrier of its initial algebra
interpretsG £ h.

In a parametric model, the interpretation of the typ&G f h) a

approach is generic over all GADTSs, as discussed in the introduc--> ¢ £ h (h a) of GCon is isomorphic to the interpretation of the

tion, our notation explicitly parameterizes GADTs over the types
from which they are constructed.
We say a GADTG £ his basicif it has the form

data G £ h a where
GCon :: £ (Gfh) a->Gf h (h a)

The covariance restriction mentioned in the introduction is captured
by the requirement that does not appear ih, and thatf is an
instance of the higher-order functor class which we now discuss. A
higher-order functormaps functors to functors, and maps between

typeLan h (f (G £ h)) a ->G £ h a, where
forall b. Lan (Eql (h b) c, g b)

data Lan h g ¢

is the Haskell representation of tledt Kan extensiofMacLane (1971)]
of g alongh, andEql is theequality GADT

data Eql a b where
Refl :: Eql a a

The use ofEql in the definition of Lan reflects the fact that,
in Haskell, the domain of is the discrete category*|. Con-

structing an element of typeé £ h c requires usingsCon, and For our left Kan extensioH, toLan andfromLan specialize to the
thus finding a typeb such thath b = ¢ and giving an element following functions giving an isomorphism between the interpreta-
of £ (G £ h) b to which GCon can be applied. The interpre- tion of forall c. K £ h g ¢ -> k c and the interpretation of
tation of G £ h c is therefore isomorphic to the interpretation forall c. £ g ¢ -> k (h c):
of exists b. (h b =c, £ (G £ h) b). Writing this type as
Lan h (f (G £ h)) c captures this observation precisely —
once we remember that existential type quantification is written
using top-level universal type quantification in Haskell.

From this it follows that the interpretation 6f £ h s the carrier
of the initial algebra of the higher-order functor interpreting h,
whereK f his defined by

Kfhga=Lanh (f g) a

toK :: HFunctor f => (forall c. £ g c -> k (h c))
->Kfhgc->kc
toK s (K (Refl, v)) = s v

fromK :: HFunctor f => (forall c. Kf h g c -> k ¢)
> fgc->k (hoc)
fromK s t = s (K (Refl, t))

Thus, giving data appropriate for input@Qon is equivalent to giv-
Unfortunately, we cannot simply use this specification in a Haskell ing data appropriate for input N&Con. Since the data constructors
type synonym, since this would render the partial application of these types contain exactly the same information, they generate
K £ h unavailable for computations. We therefore make the fol- exactly the same GADT.

lowing data type declaration instead: In light of the above, we can write £ hasMu (K £ h) where

data K f h g a = forall b. HFunctor f => newtype Mu f a = In (f (Mu £) a)

K (Eql (h b) a, £ g b) represents the carrier of the initial algebra of the interpretation of
We can verify thak f hisindeed amFunctor by observing that £. SinceG £ his interpreted as the carrier of the initial algebra of
it is the composition oft, which is anHFunctor by assumption, the interpretation ok £ h, it admits an initial algebra semantics.
andLan h, which is anHFunctor as shown here:
4. Semantic Foundations of Initial Algebra

instance HFunctor (Lan h) where

hfmap k (Lan (p, v)) = Lan (p, k v) Packages
Composition ofFunctors can be coded in Haskell using In this se_ction we first recall the deri_vation of initial algebra pack-
ages for inductive types from [Ghani et al. (2003)], and then recap
newtype (HFunctor g, HFunctor h) => the well-known categorical ideas which underlie it. In the next sec-
HComp g h k a = HComp (g (h k) a) tion we show how to instantiate these same ideas in our higher-

The following instance declaration shows that the composition of order setting to derive initial algebra packages for GADTs.

two HFunctors IS again amFunctor: 4.1 Initial Algebra Packages for Inductive Types

instance (HFunctor g, HFunctor h) => An inductive data typds a data type which can be interpreted

HFunctor (g ‘HComp‘ h) where as the carrier of the initial algebra of a functor, andimsuctive
hfmap k (HComp t) = HComp (hfmap (hfmap k) t) data structurds a data structure of inductive type. It is well known

We can instantiate this declaration fosn h andf to show that [Ghani et al. (2005), Ghani et al. (2003), Takano & Meijer (1995)]
their composition is afiFunctor. But unfortunately, this causes a that every inductive type has an associated initial algebra package.
proliferation of HComp type and data constructors throughout our If £ is a Haskell functor, then the associated inductive typeand
code. To avoid this — and thus purely for cosmetic reasons — its associatedold andbuild combinators can be implemented
we give anHFunctor instance declaration for the composition of generically in Haskell bY
Lan h andf directly. We have newtype M £ = Inn (£ QM £))

instance HFunctor f => HFunctor (K f h) where
hfmap k (K (p, v)) = K (p, hfmap k v) fold :: Functor £ => (f a -=> a) > M f -> a

Thehfmap on the right-hand side of the definition in the instance fold b (Inn k) = h (fmap (fold) k)

declaration is the one fa.

SinceG f hisinductively defined, we can see that the interpre-
tation ofG £ h is the carrier of the initial algebra of the interpre-
tation ofK £ h by establishing that the interpretation®ff h is
isomorphic to the interpretation of the type As usual, the type of the polymorphic function argumeritiald
gives the Church encoding for £. Thesebuild andfold com-
data NG £ h a where binators can be used to produce and consume inductive data struc-

NGCon :: K £ h (NG £h) a->Nefha tures of typeM f£. Moreover, iff is any Haskell functorh is any
This follows from the isomorphism between the interpretation of function of any type a -> a, andg is any function of closed type
forall c.Lan h g c-> f candtheinterpretation dforall c. forall b. (f b -> b) —-> b, then the followingfold/build

build :: Functor f =>
(forall b. (f b -=>b) =>b) > M £
build g = g Inn

g ¢ => £ (h ¢) which holds for allh, g, and £. This isomor- rule forM £ eliminates from computations structures of typef
phism can be coded in Haskell as which are produced Iiyuild and immediately consumed Hy1d:
tolan :: (forall c. gc -> £f (h c)) —> fold h (build g) = gh
Lanh gc > fc The familiar initial algebra package for list types [Gill et al. (1993)]
tolan s (Lan (Refl, v)) = s v is an instance of this scheme, as are the corresponding packages
fromlan :: (forall c. Lan h g ¢ -> £ ¢) —> 3Unfortunately, we cannot use the same fixed point operator here as in
gc->1f (hc) Section 3. This is becauseis not anHFunctor in this case, which is

fromLlan s t = s (Lan (Refl, t)) problematic because Haskell lacks proper polymorphic kinding.

foldr :: (@ ->b ->b) ->b -> [a] > b 4.2 The Fundamental Theory
foldr ¢ n xs = case xs of [] ->n

z:25 -> ¢ z (foldr ¢ n zs) The key idea underlying initial algebra packages is the idea of

initial algebra semanticsWithin the paradigm of initial algebra
semantics, every data type is interpreted as the caudenof the
initial algebra of a suitable functdf : C — C for some suitable
categoryC. In more detail, suppose we have fixed a categary
An algebrafor a functorF' : C — C (or, simply, anF-algebrg
is a pair(A, h) where A is an object ofC andh : FA — Als
a morphism ofC. Here, A is called thecarrier of the algebra and
h is called itsstructure mapAs it turns out, the'-algebras for a
given functorF' themselves form a category. In the categoryef
algebras, a morphism betweéhalgebras(A, h) and (B, g) is a
mapf : A — B such that the following diagram commutes:

-= Church encoding
forall b. (a -=> b ->b) ->b -> b

buildl :: (forall b. (a -=> b ->b) -> b -> b) -> [a]
buildL g = g (:) []

-- fold/build rule
foldr ¢ n (buildL g) = g cn

Figure 1. Generic initial algebra package for list types.
F
FA ——I%>}?B

foldT :: (a -=>b) => (b ->b ->b) -> Tree a -> b hl lg
foldT 1 b t = case t of
Leaf x > 1 x A —B
Branch t1 t2 -> b (foldT 1 b t1) We call such a morphism afi-algebra homomorphism
(foldT 1 b t2) Now, if the category of"-algebras has an initial object — called
) aninitial algebra for F', or, more simply, arnnitial F-algebra—

—- Church encoding then Lambek’s Lemma ensures that the structure map of this ini-
forall b. (a ->b) > (b > b ->b) -> b tial F-algebra is an isomorphism, and thus that its carrier is a fixed
. point of F'. If it exists, the initial F'-algebra is unique up to isomor-
buildT :: (forall b. (a -> b) -> phism. We write(.F, in) for the initial F-algebra comprising the

(b =>b ->b) ->Db) -> Tree a fixed point,.F” and the isomorphismn. : F(uF) — pF.

buildT g = g Leaf Branch
4.2.1 Folds

The standard interpretation of a type constructor is a fungtor

and the standard interpretation of the inductive type it defines

- — is the carrier of the initial algebra of'. Initiality ensures that

Figure 2. Generic initial algebra package foree. there is a uniqueF-algebra homomorphism from the initidi-

algebra to any othef’-algebra. The map underlying thi&-algebra
homomorphism is exactly thid for uF. Thus if (A, h) is any

for algebraic data types given in [Johann (2002)]. The former is F-algebra, therfold h : uF' — A makes the following diagram

given in Figure 1, while the initial algebra package for the non-list commute:

algebraic data type F(fold h
g yp F(uF) () 4

data Tree a = Leaf a | Branch (Tree a) (Tree a)
znl h
fold h

-- fold/build rule
foldT 1 b (buildT g) =g 1 b

of trees over data of typeis given in Figure 2.
It is the fact that inductive types are interpreted by carriers of uF

initial algebras of functors that makes it possible to define initial o
algebra packages for them. In particular, this is what ensures thatFom this diagram, we see thatld : (FA — A) — pF — A
their folds are true folds, that their Church encodings really en- @nd thatfold h satisfiesfold h (in t) = h (F (fold h) t).
code them, and that theflold/build rules truly are correct. It's T_hls justifies the definition of_theold combinator given in Sec-_
what allows us to program with, and reason about programs involv- tion 4.1. Furthermore, the uniqueness of the medla}tlng morphlsm
ing, inductive types. Section 4.2 explains the theory underlying this €nSures that, for every algebfa the mapfold h is defined
assertion and, at the same time, develops the semantic foundation&Niquely. This provides the basis for the correctnesscid fu-
for our derivation of initial algebra packages for GADTSs; note that SION flor inductive types, which derives from the fact thathif
the material in Section 4.2.2 may be new even to those familiar with @nd h" are J;?-algebras and) is an F-algebra homomorphism
initial algebra semantics. Readers without the required backgroundrom % to h’, then . fold h = fold h'. But note thatfold
in category theory or whose main focus is not on the categorical fusion [Bayley (2001), Blampied (2000), Bird & Paterson (1998),
foundations of initial algebra packages for advanced data types canBird & Paterson (1999), Martin et al. (2004)] is distinct from, and
safely omit this section and other categorical discussions in the pa-inherently simpler than, theold/build fusion in this paper.

er since all of the relevant category-theoretic constructs used in
Phis paper are implemented in Haskell. Readers who choose to do?-2-2 Church Encodings, builds, and fold/build Fusion Rules
this will miss some of the motivations for the theory of GADTs, Although the above discussion shows thetd combinators for in-
and some of the connections between the theory of inductive typesductive types can be derived entirely from, and understood entirely
and the theory of GADTs developed in this paper, but will miss no interms of, initial algebra semantics, regrettably the standard initial
necessary facts. We stress that we do not attempt a complete reconalgebra semantics does not provide a similar principled derivation
struction of all of category theory here, but instead introduce only of the build combinators or the correctness of theld/build
those concepts that form the basis of our initial algebra approach torules. In factbuild has been regarded as a kind of optional “add-
deriving principled programming tools for GADTS. on” which is not a fundamental part of the basic infrastructure for

programming with inductive types. The practical consequence of coding forall x. (f x -> x) -> ¢ -> x. The term “gener-
this is that thebuild combinators have been largely overlooked, alized” reflects the presence of the parameterhich is absent in
treated as poor relatives of their correspondfedd combinators, other Church encodings [Takano & Meijer (1995)], but is essential
and regarded as unworthy of fundamental study. to the derivation obuild combinators for GADTs. Choosingto

This situation was rectified in [Ghani et al. (2003)], where the be the unit type gives the usual isomorphism between the interpre-
standard initial algebra semantics was extended to support nottation of an inductive type and the interpretation of its usual Church
only fold combinators for inductive types, but also Church encod- encoding. This isomorphism comprises precigely! (up to order
ings andbuild combinators for them. Indeed, [Ghani et al. (2003)] of arguments) andusld for the interpretation of that type. Writing
considers the initiaF'-algebra to be not only the initial object of fold’ m h for fold h m we have

the category of'-algebras, but also the limit of the forgetful func- ’
tor from the category of-algebras to the underlying categaty éozid . nE = V. (Fo —) —
. ; . . ui w (Vo (Fz—z) — 2) > uF

as well. We now summarize this result and its consequences, which
we later apply to derive our combinators for GADTSs. From this we see that correctness of theld/build rule for

If F is a functor onC, then theforgetful functorUz mapsF- inductive types codes one half of the requirement thatd and
algebras to objects ifi by forgetting theF-algebra structure. That ~ fold’ are mutually inverse. A parametric model guarantees the
is, Ur maps anF-algebra(A, h) to its carrierA, and maps att- existence of the interpretation of the Church encoding of a type
algebra homomorphisnf : A — B betweenF-algebras(4, k) constructor, which, by this isomorphism, guarantees the existence
and (B, g) to the morphismf : A — B in C. If C is an object of the initial algebra for the interpretation of that type constructor.
in C, then al/r-cone forC comprises, for every-algebra(A, h), Genericbuild combinators and Church encodings for inductive
a morphismy(4) : C — A in C such that, for every-algebra types are given in [Takano & Meijer (1995)], but that paper does
mapf : A — B,we haveyg gy = f ovian. not show how to derivebuilds for fixed points of higher-order

functors or how to interpret GADTs as such fixed points. Indeed, it
doesn’t even mention GADTSs.

(A,h) ———— (B, g)
"(:N U(V 5. Initial Algebra Packages for Basic GADTs
c

In this section we give Haskell implementations of the initial alge-
bra packages for basic GADTSs derived from the initial algebra se-

We write (C, v) for this cone, and call” its vertexand the mor- mantics developed for them in Section 3. From Section 3 we have
phismu(4 ;) the projectionfrom C to A. A Ur-cone with vertex ~ thatthe interpretation of the basic GADT

C can be thought of as having the tyge.(f'z — z) — C — . data G f h a where

A Up-cone morphisny : (C,v) — (D, p) betweenUr-cones GCon :: £ (Gfh) a->Gfh (ha)

(C,v) and (D, 1) is a morphismg : C' — D in C such that for L) . .

any F-algebra(A, h), we havep 4 n) 0 g = v(an). A Up-limit is isomorphic to the interpretation of

is aUr-cone to which there is a uniqué--cone morphism, called data NG f h a where

the mediating morphismfrom any othei/»-cone. When they ex- NGCon :: Kfh (NG £h) a->NGfha

ist, Ur-limits are unique up to isomorphism. Moreover, no extra

structure is required of eithe? or C for the Up-limit to exist — it which is the carrier of the initial algebra of the interpretation of

simply comprises the carrier of the initiél-algebra together with K £ h. where
the family of F-algebra-indexedold functions. data K f h g a = forall b. HFunctor f =>
In [Ghani et al. (2003)], the characterization of the initfa K (Eql (b b) a, f g b)

algebra as both the above linaihdthe initial object in the category

of F-algebras is called thextended initial algebra semanticas Instantiating the fundamental theory we get fie@d combinator

shown there, an initiak’-algebra has a different universal property fo0ldNG :: (HFunctor f, Functor h) =>

as a limit from the one it inherits as an initial object. This alternate Nat (K f h a) a -> Nat (NG f h) a
universal property ensures: f0ldNG m (NGCon u) = m (hfmap (foldNG m) u)

e For eachF-algebra, the projection from the vertex of the - the generalized Church encoding

limit (i.e., from pF') to the carrier of thatF'-algebra defines
fold : (Fx — z) —» uF — x.

e The unique mediating morphism from the vertéx of a

(forall a. Nat (K f h a) a -> Nat c a)
and thebuild combinator

Ur-cone to the vertexyF' of the Ur-limit defines build : buildNG :: HFunctor f => (forall a. Nat (K £ h a) a
(Vz.(Fz — z) - C — z) — C — pF tobebuild g = -> Nat ¢ a) -> Nat ¢ (NG f h)

g in. This justifies the definition of theuild combinator given buildNG g = g NGCon

in Section 4.1.

forNG £ h.Here, the instance affmap in the definition off 01dNG
e Correctness of théold/build rule follows from the fact that is the one for thélFunctor K £ h. We have theold/build rule
fold h . build g = g h, i.e., thatfold afterbuild is a projection .
after a mediating morphism from' to F, and is thus equal ~ fo1dNG m . buildNG g = g m
to the projection fromC' to the carrier ofh. Taking C to be for NG £ h. If we define
the unit type proves the correctness, relative to the underlying

semantics, of th&old/build rule given in Section 4.1. toNG :: HFunctor £ => Gfha ->NGfha

toNG (GCon t) = NGCon (K (Refl, hfmap toNG t))
The extended initial algebra semantics thus shows that, given

a parametric interpretation of universal quantification of types, fromNG :: (HFunctor f, Functor h) =>

there is an isomorphism between the interpretation of the type NG fha->Gfha

c -> M f and the interpretation of itgeneralized Church en- fromNG = foldNG (toK GCon)

HFunctor f => (forall a. f x a -> x (h a))
-> Nat (G f h) x
m (hfmap (foldG m) t)

foldG ::
f0ldG m (GCon t) =

-- generalized Church encoding
forall y. (forall a. f ya ->y (ha)) ->Nat cy
buildG :: HFunctor f =>
(forall y. (forall a. f y a >y (h a))
-> Nat ¢ y) -> Nat ¢ (G f h)
buildG g = g GCon

-- fold/build rule
foldG m . buildG g = gm

Figure 3. Generic initial algebra package for GADTSs.

then we have thatoNG andfromNG are Haskell codings of mutual

inverses. We can therefore use these functions to derive from theentails that it is not possible to reduce

initial algebra package foKG £ h the one forG £ h given in
Figure 3. The derivation is based on the following definitions:

HFunctor f => (forall a. f x a -> x (h a))
-> Nat (G f h) x
f0ldNG (toK m) (toNG t)

foldG ::
foldGm t =

HFunctor £ =>
(forall y. (forall a. £y a ->y (h a))
-> Nat ¢ y) -> Nat ¢ (G f h)
buildG g = fromNG . (buildNG g’)
where g’ k = g (fromK k)

buildG ::

The instance ohfmap in the definition offoldG is the one for
f. Note thatfoldG terminates since it is structurally recursive.
Unwinding these definitions justifies the definitions in Figure 3.

6. More General GADTs
We have seen how a basic GADT, i.e., a GADT of the form

data G £ h a where
GCon :: f (Gf h) a->Gfh (ha)

can be reduced to a data type f h using only existentials and
theEql GADT. We considered this special case first to highlight the

basic ideas underlying our approach to initial algebra semantics for

wherePrHFunctor f1 £2 is the higher-order functor given by

newtype PrHFunctor f1 f2 g a =
PrHFunctor (f1 g a, f2 g a)

Itis easy to check th@rHFunctor f1 f2is anHFunctor. Thus

we can reduce a GADT whose data constructor takes several inputs
to one whose data constructor takes only a single input. An example
of a GADT with a non-unary data constructorTisrm.

6.2 GADTSs with More Than One Data Constructor

The presence of the different functars andh2 in the codomain
types of the data constructo®on1 and GCon2 of a GADT
G f1 £2 h1 h2 of the form

data G £f1 £2 hl h2 a where

GConl :: f1 (G f1 f2 hl h2) a ->

G £f1 £2 hl h2 (hl a)
GCon2 :: f2 (G f1 f2 hl h2) a ->

G £f1 £2 hl h2 (h2 a)

a GADT with two data
constructors to a GADT with one data constructor. Nevertheless,
we can still show that a GADT with more than one data constructor
can be reduced to a GADT using only existentials and Be
GADT, and also derive an initial algebra semantics for it.

The basic idea is to treat each data constructor individually.
That is, we use the same technique as we used for single data
constructor GADTSs to convert the type of each data constructor
ofa GADTG f1 f2 hi h2into atype whose codomain is of the
formG f£1 f2 hil h2 a, and thus avoid the nesting of functors in
the data constructors’ codomain types. Concretely, we transform
the GADTG f1 f2 h1l h2 into the following equivalent GADT:

data NG f1 f2 hl h2 a where

NGConl :: K f1 hl (NG f1 £2 hl h2) a —>
NG f1 £f2 hl h2 a

NGCon2 :: K £2 h2 (NG f1 £f2 hl h2) a —>
NG f1 £f2 hl h2 a

The return types of the data constructorsiéf £1 £2 hil h2 are

the same, and this GADT uses only existentials an@&1eGADT.

The two data constructors can now be bundled into one in the usual
way, so that the interpretation ®& £1 £2 hi h2 isthe carrier of

the initial algebra of the higher-order functor interpreting

newtype SumKs f1 f2 hl h2 g a
=Inl (K f1 hl g a) | Inr (K f2 h2 g a)

GADTSs, as well as to avoid the cumbersome notation associatedlt is not hard to check thatumKs f1 £2 hi h2 is indeed an

with arbitrary GADTSs. In this section we show how the basic

HFunctor. We can therefore derive an initial algebra semantics,

syntactic restriction can be lifted, and thus how our approach can and hence an initial algebra package, §6r £1 £2 hi h2. Us-
be extended to arbitrary GADTSs. Below, the covariance restriction ing tokK and fromk, we can derive one for the original GADT

entails that: does not appear in amy, and that anyi is a higher-
order functor. The initial algebra package for tteem GADT from

Section 2.1 appears in Section 7 below. There are four independen

dimensions along which basic GADTs can be generalized.

6.1 GADTSs with Non-Unary Data Constructors
If we have a GADT of the form

data G f1 f2 h a where
GCon :: f1 (G f1 f2 h) a —> f2 (G f1 f2 h) a ->
G f1 f2 h (h a)

then we can curniCon to derive a data constructor which takes
one tupled argument. The above GADT is thus equivalent to:

data G’
GCon’

f1 f2 h a where
:: PrHFunctor f1 f2 (G’ f1 f2 h) a ->
G’ f1 f2 h (h a)

G f1 £2 h1l h2 as well. An example of a GADT with more than
one data constructor is tlfen GADT from Example 1 below.

t6.3 GADTs with More Than One Type Parameter

ConsideraGADTG £ hl h2 a b

data G £ hl h2 a b where
GCon :: f (G £ hl h2) a b —>
G f hl h2 (h1 a b) (h2 a b)

with two type parameters. In Haskell, the kindsidf, h2, £, and
G £ hl1 h2are

hil, h2 :: [*| => [*] => [|*]

£ oo (%] => %] => %) => |*x| => [|*| => *

G f hl h2 :: |x] => |*x] -> %

We can treat this GADT by rewriting the type G€on in terms
of the typeK representing left Kan extensions and #a GADT,

althoughk must be generalized to take two type arguments as input.
This yields the definition

data BiK f hl h2 g a b = forall cl c2.
BiHFunctor f => BiK (Eql (hl c1 c2) a,
Eql (h2 c1 c2) b, £ g cl c2)

whereBiHFunctor is the generalization
class BiHFunctor f where
mhfmap :: MNat g h -> MNat (f g) (f h)
type MNat f g = forall cl1 c2. f c1 c2 -> g cl c2

of the HFunctor class to two type parameters which is required
to capture the structure of here. It is not hard to see that
BiK f hl h2is an instance of thBiHFunctor class:

instance BiHFunctor f =>
BiHFunctor (BiK f h1 h2) where
mhfmap k (BiK (p, q, v)) = BiK (p, q, mhfmap k v)

The key universal property of the form of Kan extension captured
by BiK is that there is an isomorphism between the interpretation
of the type

forall ab. £f gab ->g (bl a b) (h2 a b)

and the interpretation of the type

forall a b. BiK f h1 h2 gab ->gab

The GADTG £ hl h2 a bisthus equivalent to the GADT

data NG £ hl h2 a b where
NGCon :: BiK f hl h2 (NG f hl1 h2) a b ->
NG f hi1 h2 a b

for which an initial algebra semantics is easily given, since the
interpretation olNG £ h1 h2 is the carrier of the initial algebra of
the interpretation oBiK £ h1 h2. An example of a GADT with
more than one type parameter is Bxpr GADT from Example 3.

6.4 GADTs Whose Data Constructors Have More Than One
Type Parameter
Consider a GADT of the form

data G £ h a where
GCon :: f (Gf h) ab->Gfh (hab)

where the Haskell kinds af, £, andG f h are

hoto x| => x| => |*|
£f oo (%] => %) => [x| => [*| -> %
Gfh :: [*x] -> =%

Without loss of generality, we may assume that the number of type
variables appearing in the domain type(G £ h) a b of GCon

is the same as the number appearingdnn’s return type. We can
treat a GADTG £ h of this form by rewriting the type o&Con

in terms of the data typi representing left Kan extensions and the
Eql GADT, althoughk must be generalized to allawto take more
than one type argument as input. This yields the definition

data VK £ h g a

forall cl1 c2. VHFunctor f =>
VK (Eql (h c1 c2) a, £ g cl c2)

whereVHFunctor is the generalization

class VHFunctor f where
vhfmap :: Nat g h -> MNat (f g) (f h)

of theHFunctor class which allowg to return a type constructor

instance VHFunctor f => HFunctor (VK f h) where
hfmap k (VK (p, v)) = VK (p, vhfmap k v)

The key universal property of the form of Kan extension captured
by VK is that there is an isomorphism between the interpretation of
the type

forall ab. £fgab->g (hab

and the interpretation of the type

forall a. VK f hga ->ga

The GADTG £ h aisthus equivalent to the GADT

data NG f h a where
NGCon :: VK £ h (NG f h) a -> NG f h a

for which an initial algebra semantics is easily given, as the inter-
pretation ofNG £ h is the carrier of the initial algebra of the in-
terpretation oK £ h. An example of a (single parameter) GADT
whose data constructor has more than one type param@erms’

In summary, our techniques extend from basic GADTs to
GADTsG’ of the form

G f1 ... fk hil ... hin ... hkl ... hkn

wheren is the number of type argumer@s takes, and:’ is given

as a list of data constructors with types of the form

fi G’
GJ

ail ... airi ->
(hil ail ... airi) (hin ail ... airi)

As discussed above, any constructor taking several arguments can
be exchanged for a constructor taking exactly one argument.

Thus for every data constructor of every GADT there is an
appropriate Kan extension which can be used to trade that data
constructor for one based on existentials andede GADT, and
from which an initial algebra semantics for the original GADT
can be derived. Thus, the proliferation of different codings of Kan
extensions, which seems a drawback at first, simply reflects the fact
that Haskell does not have a proper polymorphic system of kinds. If
it did, then only one polykinded Kan extension would be required
and we would be able to present the general case from the start
rather than a special case followed by a sketch of the general case.

7. Examples

In this section we show how to derive initial algebra packages for
some familiar GADTSs.

ExAamMPLE 1. Consider the GADT of finite sets [Sheard et al. (2005)]
given by

data Z

data S a

data Fin a where
Fz :: Fin (S a)
Fs :: Fin a -> Fin (S a)

Note thatFin Z is empty. This GADT is equivalent to the GADT

4An alternative way to handle a data constructor suclm@swhich has
more type variables in its domain type than in its return type is to wrap the
“extra” type variables in the domain type in an existential quantifier. This
is justified by observing that a type of the forferall b. £ b -> g,
wheref is a type parameterized overandg is a type in whichb does not
appear, is equivalent to the tygexists b. £ b) -> g. Combined with

the tupling described in Section 6.1, this allows us to trade, for example, the
App data constructor for the equivalent data construstgr :: exists

parameterized over two type variables. It is not hard to see thaty. (Term (b -> a), Term b) -> Term ainwhose domain type only

VK f his an instance of théHFunctor class:

the type variables appearing in the return type of the constructor appear free.

foldFin :: (forall
(forall
foldFin z s Fz

foldFin z s (Fs t)

. f (8 a) —>

fa->f (Sa))->Nat Fin f
z
s (foldFin z s t)

e o

-- generalized Church encoding

forall f. (forall a. £ (S a)) ->
(forall a. f a -> f (S a)) -> Nat ¢ f

buildFin :: (forall f. (forall a. f (S a)) —>

(forall a. f a > f (S a)) —>
Nat ¢ f) -> Nat c Fin

buildFin g = g Fz Fs

-- fold/build rule
foldFin z s . (buildFin g) = g z s

Figure 4. Initial algebra package fafin.

data NFin a where
NFz :: Lan S One a -> NFin
NFs :: Lan S NFin a -> NFin

o

which has initial algebra package

foldNFin :: (forall a. Lan S One a -> f a) —>
(forall a. Lan S f a -> f a) —>
Nat NFin f
foldNFin z s (NFz k) = z k
foldNFin z s (NFs t) = s (hfmap (foldNFin z s) t)
buildNFin :: (forall f.
(forall a. Lan S One a -> f a) ->
(forall a. Lan S f a -> f a)
-> Nat ¢ f) -> Nat c NFin
buildNFin g = g NFz NFs

foldNFin z s . (buildNFin g) = g z s

The definitions of01dG andbuildG in Section 5 can be instanti-
ated to give the initial algebra package in Figure 4 relativertm.

EXAMPLE 2. Consider again the GADTerm [Sheard et al. (2005)]

data Term a where

Const :: a -> Term a
Pair : Term b -> Term ¢ -> Term (b,c)
App :: Term (b -> a) -> Term b -> Term a

from Section 2.1. This GADT is equivalent to

newtype Fst a b = Fst a
newtype HProd g a b = HProd (g a, g b)
newtype Prod a b = Prod (a, b)

data HL f a b

HL (f (b -> a), f b)

data NTerm a where

NConst :: a -> NTerm a
NPair :: VK HProd Prod NTerm a -> NTerm a
NApp : VK HL Fst NTerm a -> NTerm a

whereVK is defined as in Section 6.4. Note thi®rod and HL are
instances of th#HFunctor class:

instance VHFunctor HProd where
vhfmap k (HProd (u,v)) = HProd (k u, k v)

instance VHFunctor HL where

foldTerm :: (forall a. a -> f a) ->
(forall ab. fa->fb->f (a,b)) >
(forall a b. £ (b ->a) >fb->fa) —>
Nat Term f
foldTerm ¢ p a (Const v) =c v
foldTerm ¢ p a (Pair u v) = p (foldTerm c p a u)
(foldTerm c p a v)
foldTerm ¢ p a (App t w) = a (foldTerm c p a t)
(foldTerm c p a u)

-- generalized Church encoding
forall f. (forall a. a -> f a) —>
(forall ab. fa->fb->f (a,b)) >
(forall ab. £f (b >a) >fb->fa) —>
Nat c £

buildTerm :: (forall f.
(forall a. a —> f a) —>
(forall ab. fa->fb->f (a,b)) —>
(forall ab. £f (b ->a) ->fb->fa) —>
Nat ¢ f) -> Nat c Term
buildTerm g = g Const Pair App

-- fold/build rule
foldTerm ¢ p a . (buildTerm g) = g c p a

Figure 5. Initial algebra package faferm.

vhfmap k (HL (u,v)) = HL (k u, k v)
The GADTNTerm has initial algebra package

foldNTerm :: (forall a. a -> f a) —>
(forall a. VK HProd Prod f a -> f a) ->
(forall a. VK HL Fst f a -> f a) ->
Nat NTerm f

foldNTerm ¢ p a (NConst v) = c v
foldNTerm c p a (NPair t) =

p (hfmap (foldNTerm c p a) t)
foldNTerm c p a (NApp t) =

a (hfmap (foldNTerm c p a) t)

buildNTerm :: (forall f.
(forall a. a —> f a) —>
(forall a. VK HProd Prod f a -> f a) ->
(forall a. VK HL Fst f a -=> f a) -> Nat c f) —>
Nat c NTerm
buildNTerm g = g NConst NPair NApp

foldNTerm ¢ p a . (buildNTerm g) = g c p a

The definitions ofoldG and buildG from Section 5 can be in-
stantiated to give the initial algebra package in Figure 5 relative to
Term.

ExamMPLE 3. Consider the GADT of polynomial expressions with
variables of typea and coefficients of typegiven by

data Expr a b where

Var :ta > Expr ab

IConst Int -> Expr a Int

RConst :: Float -> Expr a Float

PProd :: Expr a b -> Expr a b -> Expr a b
SIMul :: Expr a b -> Int -> Expr a b

SRMul :: Expr a b -> Float -> Expr a Float

This GADT is equivalent to the GADT

data NExpr a b where

NVar ::a -> NExpr a b

NIConst :: MK HInt Fst KInt NExpr a b ->
NExpr a b

NRConst :: MK HFloat Fst KFloat NExpr a b ->
NExpr a b

NPProd :: H2Prod NExpr a b -> NExpr a b

NSIMul :: H2ProdInt NExpr a b -> NExpr a b

NSRMul :: MK H2ProdFloat Fst KFloat NExpr a b ->

NExpr a b

whereBiK is as defined in Section 6.3 and

newtype KInt a b = KInt Int

newtype KFloat a b = KFloat Float

data HInt g a b = HInt Int

data HFloat g a b = HFloat Float

data H2Prod g ab=H2Prod (g ab, gahb)
data H2ProdInt g a b = H2ProdInt (g a b, Int)

data H2ProdFloat g a b = H2ProdFloat (g a b, Float)
Note thatdiInt, HFloat, H2Prod, H2ProdInt, andH2ProdFloat

are instances of thBiHFunctor class from Section 6.3. Indeed,

instance BiHFunctor HInt where
mhfmap s (HInt t) = (HInt t)

instance BiHFunctor HFloat where
mhfmap s (HFloat t) = (HFloat t)

instance BiHFunctor H2Prod where
mhfmap s (H2Prod (u,v)) = H2Prod (s u, s v)

instance BiHFunctor H2ProdInt where
mhfmap s (H2ProdInt (u,v)) = H2ProdInt (s u, v)

instance BiHFunctor H2ProdFloat where

mhfmap s (H2ProdFloat (u,v)) = H2ProdFloat (s u, v)

The GADTNExpr has initial algebra package

foldNExpr :: (forall a b. a -> f a b) —>
(forall a b. BiK HInt Fst KInt f a b -> f a b) ->
(forall a b. BiK HFloat Fst KFloat f a b ->
f ab) —>
(forall a b. H2Prod f a b -> f a b) ->
(forall a b. H2ProdInt f a b -> f a b) —>
(forall a b. BiK H2ProdFloat Fst KFloat f a b —>
fab) > NExpr ab ->fab

vt

foldNExpr v i r p si sr (NVar t)
foldNExpr v i r p si sr (NIConst t)

i (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NRConst t) =

r (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NPProd t) =

p (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NSIMul t) =

si (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NSRMul t) =

sr (mhfmap (foldNExpr v i r p si sr) t)

buildNExpr :: (forall f.
(forall a b. a -> f a b) ->
(forall a b. BiK HInt Fst KInt f a b -> f a b) ->
(forall a b. BiK HFloat Fst KFloat f a b ->
f ab) —>

foldExpr :: (forall a b. a -> f a b) ->
(forall a. Int -> f a Int) ->
(forall a. Float -> f a Float) ->
(forall ab. fab->fab->fab) —>
(forall ab. f ab->Int ->f ab) >
(forall a b. f a b -> Float -> f a Float) —>
forall a b. Expr ab ->f ab

foldExpr v i r p si sr (Var t) vt

foldExpr v i r p si sr (IConst t) =1t

foldExpr v i r p si sr (RConst t) =71 t

foldExpr v i r =

p (foldExpr v i r p si sr t)

(foldExpr v i r p si sr u)
foldExpr v i r p si sr (SIMul t n)
si (foldExpr v i r p si sr t) n
foldExpr v i r p si sr (SRMul t n)

sr (foldExpr v i r p si sr t) n

P
p
p si sr (PProd t w)
v
v
p

buildExpr :: (forall f.
(forall a b. a -> f a b) ->
(forall a. Int -> f a Int) ->
(forall a. Float -> f a Float) ->
(forall ab. fab->fab->fab) —>
(forall a b. fab->Int ->f ab) —>

(forall a b. £ a b -> Float -> f a Float) —->
MNat ¢ f) -> MNat ¢ Expr
buildExpr g = g Var IConst RConst PProd SIMul SRMul

-- fold/build rule
foldExpr v i r p si sr .
gvirpsisr

(buildExpr g) =

Figure 6. Initial algebra package fa@xpr.

(forall a b. H2Prod f a b -> f a b) ->
(forall a b. H2ProdInt f a b -> f a b) —>
(forall a b. BiK H2ProdFloat Fst KFloat f a b ->
f a b) -> MNat ¢ f) -> MNat c NExpr
buildNExpr g =

g NVar NIConst NRConst NPProd NSIMul NSRMul

foldNExpr v i r p si sr .
gvirpsisr

buildNExpr g =

The definitions in Section 5 give the initial algebra package in
Figure 6 relative to the original GADExpr.

8. Conclusion and Future Work

In this paper we have shown that the standard view of data types as
carriers of initial algebras of functors can be extended from alge-
braic and nested data types to GADTs. We have used this observa-
tion to derive an initial algebra semantics and initial algebra pack-
ages for GADTs and, thereby, to provide expressive and principled
tools for reasoning about, programming with, and improving the
performance of programs involving, GADTs. We have also given
a constructive demonstration that every GADT can be reduced to
one which involves only the equality GADT and existential quan-
tification. Our reduction is local, independent of any particular syn-
tactic presentation of GADTSs, and implementable in the host lan-
guage. Our approach to initial algebra semantics for GADTSs is
based on an interpretation of them as carriers of initial algebras
of higher-order functors which map functors with discrete domains
to functors with discrete domains, rather than functors with pos-
sibly nondiscrete domains to functors with possibly nondiscrete

domains, and on the use of left Kan extensions as a restructuring[Dybjer (1994)] P. Dybjer. Inductive FamilieSormal Aspects of Comput-

device. Our use of left Kan extensions here is reminiscent of their ing 6(4), pp. 440-465, 1994.

use in [Johann & Ghani (2007a), Johann & Ghani (2007b)] to de- [Gill et al. (1993)] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short

rive initial algebra semantics for nested data types. cut to deforestation. Proceedings, Functional Programming Languages
The foundations of GADTs and other advanced inductive con- and Computer Architecture, pp. 223-232, 1993.

structions have been considered from the type-theoretic PErspecighani et al. (2005)] N. Ghani, P. Johann, T. Uustalu, and V. Vene.

tive; see, e.g., [Pfenning & Paulin-Mohring (1990)], which consid- Monadic augment and generalised short cut fusion. Proceedings,

ers inductive types in the Calculus of Constructions. This work International Conference on Functional Programming, pp. 294—305,

gives fold combinators for GADTS, as well as Church encod- 2005.

ings which are essentifa”y the Sp‘?Cial case of our generalized [Ghani et al. (2003)] N. Ghani, T. Uustalu, and V. Vene. Build, augment
Church encodings obtained by taking the parametén be the and destroy. Universally. Proceedings, Asian Symposium on Program-
constantly 1-valued type constructor. The importance of gener- ming Languages, pp. 327-347, 2003.
alised Church e_ncodings is discuss_ed in [Johann & Ghani (2007a), Johann & Ghani (2007a)] P. Johann and N. Ghani. Initial algebra seman-
Johann & Gh‘_"m' (2007D)]. _The rel"_"t'or_'Sh'p betw_een our work and [tics is enough!(Procee)liings, Typed Lambda Calculus andgAppIications,
that of Pfenning and Paulin-Mohring is the subject for future re- pp. 207-222, 2007.
search, but we see our categorical approach as Complemema%]ohann & Ghani (2007b)] P. Johann and N. Ghani. Programming with
to their type-theoretic one. Also, our use of left Kan extensions Nested T Submi

. ypes. Submitted, 2007.
to trade GADT constructors for simpler nested type constructors o])
provides a clean and concise derivation of the folklore result stat- [Johann (2002)] P. Johann. A generalization of short-cut fusion and its
ing that the essence of GADTSs is existential quantification cou- Corrze%”%sosoprom'gher'order and Symbolic Computatidrb (2002),
pled with the equality GADT. Our treatment of the foundations of Pp. &/ 5=300.
GADTs as GADTsrather than as embedded within more general [MacLane (1971)] MacLane, S. Categories for the Working Mathemati-
type theories, is fundamental to our results. cian. Springer-Verlag, 1971.

Our main direction for future work involves extending the re- [Martin et al. (2004)] C. Martin, J. Gibbons, and |. Bayley. Disciplined
sults of this paper from GADTSs, which are indexed by types, to efficient generalised folds for nested datatypestrmal Aspects of
styles of indexed programming which allow more general indices. ~ Computingl6(1) (2004), pp. 19-35.

This paper and [Johann & Ghani (2007a), Johann & Ghani (2007b)][McBride (2004)] C. McBride. Epigram: Practical programming with de-
together make clear that the fundamental structure underlying the pendent types. Proceedings, 5th International Summer School on Ad-
algebra of nested data types and GADTSs is captured by functorial vanced Functional Programming, 2004.1ttp: //www.e-pig.org/
composition and its adjoints, namely left and right Kan extensions. ~ downloads/epigram-notes.pdf

The mathematical basis for generalizing this structure to encom- [Omega] The Omega Download Page.tp://web.cecs.pdx.edu/

pass other forms of indexing is clear. We will therefore consider = ~sheard/Omega/index.html

indexed programming in the context of fibrations. [Pfenning & Paulin-Mohring (1990)] F. Pfenning and C. Paulin-Mohring.
Inductively defined types in the Calculus of Constructions. Proceedings,

Acknowledgments Mathematical Foundations of Programming Semantics, pp. 209-228,
1990.

Patricia Johann is supported in part by NSF grant CCF-0700341.

; e ; [Sheard et al. (2005)] T. Sheard, J. Hook, and N. Linger. GADTSs + exten-
Neil Ghani is supported in part by EPSRC grant EP/C511964/2. sible kinds = dependent programming.¥itp: //www.cs.pdx.edu/

“sheard/papers/GADT+ ExtKinds.ps

References [Sheard & Pasalic (2004)] T. Sheard and E. Pasalic. Meta-programming
[Bainbridge et al. (1990)] E. S. Bainbridge, P. J. Freyd, A. Scedrov and P. with built-in type equality. Proceedings, Logical Frameworks and Meta-
J. Scott. Functorial polymorphisritheoretical Computer Scien@®(1) languages, 2004. Alittp://homepage.mac.com/pasalic/p2/
(1990), pp. 35-64. papers/LFM04 .pdf
[Bayley (2001)] I. Bayley. Generic Operations on Nested Datatypes. Ph.D. [Sulzmann & Wang (2004)] M. Sulzmann and M. Wang. A systematic
Dissertation, Univ. of Oxford, 2001. Atittp://web.comlab.ox. translation of guarded recursive data types to existential types. At
ac.uk/oucl/research/areas/ap/papers/bayley-thesis.pdf http://www.comp .nus.edu.sg/ sulzmann/research/ms.html
[Blampied (2000)] P. Blampied. Structured Recursion for Non-uniform [Sulzmann & Wang (2005)] M. Sulzmann and M. Wang. Translating
Data-types. Ph.D. Dissertation, Univ. of Nottingham, 2000. At generalized algebraic data types to System F. Manuscript, 2005. At
http://www.cs.nott.ac.uk/Research/fop/blampied-thesis http://www.comp. nus.edu.sg/ sulzmann/manuscript/simple
.pdf -translate-gadts. ps
[Bird & Meertens (1998)] Bird, R. and Meertens, L. Nested datatypes. [Svenningsson (2002)] J. Svenningsson. Shortcut fusion for accumulating
Proc., Mathematics of Program Construction, pp. 52—-67, 1998. parameters & zip-like functions. Proceedings, International Conference
[Bird & Paterson (1998)] R. Bird and R. Paterson. de Bruijn notation as a on Functional Programming, pp. 124-132, 2002.
nested datatypelournal of Functional Programming(1) (1998), pp. [Takano & Meijer (1995)] A. Takano and E. Meijer. Shortcut deforestation
77-91. in calculational form. Proceedings, Functional Programming Languages
[Bird & Paterson (1999)] R. Bird and R. Paterson. Generalised folds for and Computer Architecture, pp. 306-313, 1995.
nested datatypesormal Aspects of Computintl(2) (1999), pp. 200— [Xietal. (2003)] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
222. constructors. Proceedings, Principles of Programming Languages, pp.
[Cheney & Hinze (2003)] J. Cheney and R. Hinze. First-class phan- 224-235, 2003.
tom types. Athttp://www.informatik.uni-bonn.de/ ralf/ [Xi & Pfenning (1999)] H. Xi and F. Pfenning. Dependent types in
publications/Phantom.pdf practical programming. Proceedings, Principles of Programming

Languages, pp. 214-227, 1999.

