
Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/

Foundations For Structured Programming With GADTs

By: Patricia Johann & Neil Ghani

Abstract
GADTs are at the cutting edge of functional programming and be-come more widely used every
day. Nevertheless, the semantic foundations underlying GADTs are not well understood. In this
paper we solve this problem by showing that the standard theory of data types as carriers of
initial algebras of functors can be extended from algebraic and nested data types to GADTs. We
then use this observation to derive an initial algebra semantics for GADTs, thus ensuring that all
of the accumulated knowledge about initial algebras can be brought to bear on them. Next, we
use our initial algebra semantics for GADTs to derive expressive and principled tools analogous
to the well-known and widely-used ones for algebraic and nested data types for reasoning about,
programming with, and improving the performance of programs involving, GADTs; we christen
such a collection of tools for a GADT an initial algebra package. Along the way, we give a
constructive demonstration that every GADT can be reduced to one which uses only the equality
GADT and existential quantification. Although other such reductions exist in the literature, ours
is entirely local, is independent of any particular syntactic presentation of GADTs, and can be
implemented in the host language, rather than existing solely as a met theoretical artifact. The
main technical ideas underlying our approach are (i) to modify the notion of a higher-order
functor so that GADTs can be seen as carriers of initial algebras of higher-order functors, and (ii)
to use left Kan extensions to trade arbitrary GADTs for simpler-but-equivalent ones for which
initial algebra semantics can be derived.

Patricia Johann & Neil Ghani (2008) "Foundations For Structured Programming With
GADTs". Proceedings, Principles of Programming Languages (POPL) pp. 297-308 Version Of
Record Available At www.dl.acm.org

1. Introduction

Generalized algebraic data types, or GADTs, are at the cutting
edge of functional programming and are finding an ever-increasing
number of applications. Types are traditionally used to guarantee
that programs do not ‘go wrong’ by using data in inappropriate
ways. GADTs extend this traditional use of types, allowing them
to index, and thereby capture more sophisticated properties of,
data types. Properties of interest may include the size or shape of
data, the state of program components, or some invariant that the

data type is expected to satisfy. By encoding properties as types,
GADTs provide a means of abstracting them into a form that com-
pilers and other language tools can exploit. This makes proper-
ties of programs that would otherwise be available only dynami-
cally, if at all, statically checkable and analyzable, and thus makes
progress toward closing what Sheard calls thesemantic gapbe-
tween what the programmer knows about a program and what the
programming language allows to be stated. GADTs are especially
useful when combined with higher-kinded types, as in (extensions
of) Haskell, and with user-definable kinds, as inΩmega [Omega,
Sheard et al. (2005)]. In such settings, GADTs can represent refine-
ment types, witness types, existential types, and certain dependent
types. GADTs are closely related to several other concepts, includ-
ing first-class phantom types [Cheney & Hinze (2003)], equality-
qualified types [Sheard & Pasalic (2004)], guarded recursive types
[Xi et al. (2003)], and inductive families [Dybjer (1994)]. They can
even be regarded as a variant of dependent types [McBride (2004),
Xi & Pfenning (1999)] in which the distinction between types and
values is maintained.

It is widely accepted that a good theory of data types requires
principled foundations in order to provide expressive tools for
structured programming with them. One of the most successful
foundations for algebraic data types — such as the natural numbers,
lists, trees — is that ofinitial algebra semantics. In initial algebra
semantics, every data type is seen as the carrier of the initial algebra
of a functor. The value of initial algebra semantics lies not only
in its theoretical clarity, but also in that it supports principled
structured programming techniques for data types including:

• Combinatorswhich uniformly produce, uniformly consume,
and otherwise capture commonly-occurring type-independent
programming idioms for data types. Among the most significant
of these are thebuild combinator, which uniformly produces
structures of a given data type; the structured recursion com-
binatorfold, which uniformly consumes structures of a given
data type; and themap combinator, which applies a specified
function to all data in a structure of a given data type.

• Church encodingsfor data types, which represent structures
of data types as functions in the Girard-Reynolds polymorphic
lambda calculus, the core formal calculus on which many func-
tional languages are based. In addition to being interesting in
their own right, Church encodings are the key to definingbuild
combinators. Indeed, thebuild combinator for each data type
derives from the isomorphism between that data type and its
Church encoding.

• fold/build fusion rules, also derived from the isomorphisms
between data types and their Church encodings, that can be
used to improve the performance of modularly constructed pro-
grams which manipulate data of those types. Such a rule re-
places a call to thebuild combinator for a given data type
which is immediately followed by a call to thefold combi-
nator for that type with an equivalent computation that does not

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

staffbl
Typewritten Text

construct the intermediate structure introduced bybuild and
immediately consumed byfold. Local program transforma-
tions [Gill et al. (1993), Johann (2002), Svenningsson (2002)]
based onfold/build rules can result in order-of-magnitude
increases in program efficiency. They also open the way for de-
veloping a so-calledalgebra of fusion.

• Generic programmingtechniques based on the observation that
initial algebra semantics allows us to derive asingle generic
fold combinator, asinglegenericbuild combinator, and asin-
gle genericfold/build rule — each of which can be special-
ized to any particular data type of interest.

Despite their ubiquity and utility, the semantic foundations of
programming with GADTs are not well understood. In particular,
there is currently no known initial algebra semantics for GADTs.
From a theoretical standpoint, it is unsettling to think that our un-
derstanding of data types in terms of initial algebras of functors is
limited to algebraic and nested data types [Bird & Meertens (1998)],
and not applicable to more advanced ones such as GADTs. But the
lack of an initial algebra semantics for GADTs is also problematic
from a programmer’s point of view, since it forestalls the principled
derivation offolds, builds, fold/build fusion rules, and other
tools for structured programming with GADTs. Thus, for both the-
oretical and practical reasons, the time has come to ask whether or
not an initial algebra semantics for GADTs can be given.

This paper provides an affirmative answer to this question for
covariant GADTs. The covariance restriction is very mild: it is the
natural analogue of the standard restrictions to covariant algebraic
data types and covariant nested data types which appear in the
literature, and is also satisfied by virtually all GADTs which arise
in practice. Moreover, covariance is central to the derivation of
initial algebra semantics for algebraic and nested data types, since
initial algebras of functors are taken, and functors are, by their very
nature, covariant. The covariance restriction is similarly central
to the derivation of initial algebra semantics for GADTs.1 We
therefore speak simply of GADTs below, and leave the covariance
restriction implicit.

With this understanding, we derive initial algebra packages for
GADTs in any language which also supports universal and exis-
tential type quantification. We use categorical tools as our main
technical devices, and use Haskell to illustrate and make these cat-
egorical techniques more accessible to the programming languages
community. We offer two kinds of results:

• For those languages supporting formal parametric models, our
results can be read as formal theorems about GADTs and their
semantics. This is because the existence of a parametric model
entails that existentially quantified types are interpreted as co-
ends, that left Kan extensions are definable, and that initial al-
gebras exist for all functors interpreting type constructors in the
underlying language. The canonical candidate for a parametric
model is the category of PERs [Bainbridge et al. (1990)].

• For languages not supporting formal parametric models, we
use category theory as a heuristic to guide the derivation initial
algebra packages for GADTs. In this case, no formal proofs are
claimed for the initial algebra packages, and all results about
initial algebra packages must be verified independently.

As mentioned above, irrespective of the target language, we
use Haskell to illustrate our categorical ideas. We stress, however,
that we do not claim the existence of a parametric model for full
Haskell. The existence of such a model is a standard assumption in
the literature, but this assumption becomes increasingly speculative

1 We do, however, expect the standard techniques for dealing with mixed
variance algebraic and nested data types to scale to mixed variance GADTs.

as Haskell is extended by more and more features. Thus, although
we use Haskell to illustrate our ideas, we presently regard full
Haskell as being in the second group of languages discussed above.

In the remainder of this paper we assume that we have at our dis-
posal a parametric model in the form of a categoryC whose objects
interpret the types of the target language and whose morphisms in-
terpret its functions. Our first major result is

THEOREM1. Given a parametric model, every GADT has an ini-
tial algebra semantics.

Theorem 1 is significant both theoretically and practically. On
the one hand, it entails that GADTs can be understood entirely
in terms of initial algebras and thereby extends the semantics of
algebraic types to cover GADTs. This is advantageous, since it
ensures that all of our knowledge about initial algebras can be
brought to bear on GADTs. On the other hand, Theorem 1 is the
key to structured programming with GADTs since it can be used to
derive from every GADT, directly from its declaration, a collection
of tools for structured programming with data of that type. Indeed,
in Section 5 we use the initial algebra semantics of GADTs to give
fold andbuild combinators, Church encodings, andfold/build
rules for GADTs, and to show that these constructs are worthy of
the names, i.e., that they have properties analogous to those of the
corresponding constructs for algebraic and nested data types. If we
call such a collection of tools aninitial algebra package, then a
second contribution of this paper is to show that

THEOREM2. Every GADT has an initial algebra package.

Note that this result holds even when no parametric model exists.
The difficulty in deriving initial algebra semantics for GADTs

is two-fold. The first issue is that, although the interpretation of a
GADT is most naturally a functorC → C, such an interpretation
turns out not actually to be possible. It is therefore not clear how
to model GADTs as carriers of initial algebras of higher-order
functors(C → C) → C → C. Our solution to this problem lies
in modeling GADTs as carriers of initial algebras of higher-order
functors(|C|→ C) → |C|→ C, where|C|is the discrete category
derived fromC. The second issue is that an arbitrary GADTG
has data constructors whose return types are not of the formG a
for some type variablea, but rather are of the formG (h a).
(The possible presence of a non-identityh is what distinguishes
GADTs from nested types.) We solve this second problem by
using left Kan extensions to show how to trade a GADT whose
data constructors have return types of the formG (h a) for an
equivalent one all of whose constructors have return types of the
form G a. An initial algebra semantics for any GADT can be
derived from the initial algebra semantics of the equivalent GADT
obtained by transforming all of its constructors in this way.

This paper is a follow-up paper to [Johann & Ghani (2007a),
Johann & Ghani (2007b)], which derive initial algebra semantics
for nested data types. Those papers view nested data types as car-
riers of initial algebras of higher-order Haskell functors mapping
Haskell functors to Haskell functors. They also use Kan extensions
to establish the expressiveness of the resultingfold and build
combinators for nested data types. There are thus similarities with
this paper, but note that i) GADTs are interpreted here as carri-
ers of initial algebras of higher-order functors which map functors
with discrete domains to functors with discrete domains, rather than
functors with possibly nondiscrete domains to functors with possi-
bly nondiscrete domains, and ii) Kan extensions are used in this pa-
per to derive initial algebra semantics for GADTs rather than to es-
tablish their expressiveness. As a result, this paper is related only in
spirit to [Johann & Ghani (2007a), Johann & Ghani (2007b)], via
their shared use of functor categories and Kan extensions. But as

with those papers, the ideas in this one can be understood even if
one has no prior knowledge of Kan extensions.

In the course of our development we also give a constructive
derivation of a third fundamental result, namely

THEOREM 3. Every GADT can be reduced to one involving only
the equality GADT and existential quantification.

Like Theorem 2, Theorem 3 does not require a parametric model.
Yet in the presence of one it ensures that we can reason about
GADTs by reasoning about the equality GADT and about existen-
tial quantification. Although this result is implicit in the literature
(see, e.g., [Sulzmann & Wang (2005), Sulzmann & Wang (2004)]),
our reduction has the benefit of being local to the particular GADT
under consideration, and so does not require manipulation of the
entire host language. It therefore is not impacted by the addition
or deletion of other language features. Furthermore, our reduction
is independent of any particular syntactic presentation of GADTs.
And it is easily implemented in Haskell, rather than existing solely
as a metatheoretical artifact.

We make several other important contributions as well. First,
we execute our program for deriving initial algebra semantics and
packages for GADTs in a generic style by parameterizing our
GADTs over the types occurring in them. While this incurs a cer-
tain notational overhead, the inconvenience is outweighed by hav-
ing a singlegenericfold combinator,a singlegenericbuild op-
erator, anda singlegenericfold/build rule, each of which can
be specialized to any particular GADT of interest. Secondly, while
the theory of GADTs has previously been developed only for syn-
tactically defined classes of GADTs, our development is not re-
stricted to a particular syntactic definitional format for GADTs, but
rather is based on the semantic notion of the carrier of the ini-
tial algebra of a (in this case, higher-order) functor. Thirdly, this
paper provides a compelling demonstration of the practical ap-
plicability of Kan extensions, and thus has the potential to ren-
der them more accessible to functional programmers. Finally, we
give a complete implementation of our ideas in Haskell, available
at http://www.cs.nott.ac.uk/~nxg. This demonstrates their
practical applicability, makes them more accessible, and provides a
partial guarantee of their correctness via the Haskell type-checker.
This paper can therefore be readbothas abstract mathematicsand
as providing the basis for experiments and practical applications.

The remainder of this paper is organized as follows. In Section 2
we introduce GADTs, use Haskell (for which our abstract category
C interprets the kind*) as a target language to show that GADTs are
not obviously functorsC → C, and discuss the difficulty this poses
for deriving initial algebra semantics for them. In Section 3 we
show that GADTs from a restricted class are semantically carriers
of initial algebras of higher-order functors(|C|→ C) → |C|→
C (although, as just noted,not necessarily higher-order functors
(C → C) → C → C). We then use this observation to derive initial
algebra semantics for such GADTs. In Section 4 we recall the
derivation of initial algebra packages of structured programming
tools for inductive types and recap the well-known categorical ideas
which underlie them. In Section 5 we instantiate these ideas in
the relevant category to derive initial algebra packages for GADTs
from our restricted class. In Section 6 we extend our derivation to
all (covariant) GADTs. We derive initial algebra packages for some
GADTs from the literature in Section 7. In Section 8 we conclude
and indicate our next step in this line of research.

2. The Problem
2.1 GADTs

Syntactically, GADTs are generalizations of algebraic data types.
An algebraic data typeis a data type with the property that all

applications of its type constructor which occur in its declaration
have precisely the same type variables as arguments.2 Consider, for
example, the data type of lists, realizable in Haskell as

data List a = Nil | Cons a (List a)

This declaration introduces the data constructorsNil :: List a
andCons :: a -> List a -> List a. The type variables ap-
pearing in the declaration of an algebraic data type are implicitly
universally quantified; algebraic data types and their data construc-
tors are thus polymorphic in general. Since every application of the
type constructorList in the declaration ofList a — and thus in
the types ofNil andCons — is of the formList a for the same
type variablea, theList data type is indeed algebraic.

GADTs relax the restriction on the types of data constructors
of algebraic data types. Data constructors for a GADT can both
take as arguments, and return as results, data whose types involve
type instances of the GADT other than the one being defined. (By
contrast, data constructors of nested types can take as arguments,
but cannotreturn as results, data whose types involve instances of
the nested type other than the one being defined.) For example, the
following Haskell declaration defines the GADTTerm:

data Term a where
Const :: a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
App :: Term (a -> b) -> Term a -> Term b

As is customary, the types of the data constructors of this GADT
are given explicitly. The data constructorPair takes as input data
of the instancesTerm a andTerm b, and returns as its result data
of the instanceTerm (a,b) of the Term GADT. Similarly, App
takes as input data of the instancesTerm (a -> b) andTerm a
of the GADT, and return data of the instanceTerm b. Although
it is not illustrated by this example, a single data constructor for a
GADT can simultaneously take as inputandreturn as its result data
of new instances of that GADT as well. As for algebraic and nested
data types, all of the type variables appearing in the types of the
data constructors of a GADT are implicitly universally quantified,
so that the type parametera in the expressionTerm a is a “dummy”
parameter used only to give the kind of the GADT type constructor
Term. Using Haskell’s kind syntax, we could have instead written
the above declaration asdata Term :: * -> * where

2.2 Are GADTs Haskell Functors?

The goal of this paper is to show that GADTs have initial algebra
semantics. To have an initial algebra semantics, a GADTG must
have an interpretation as the initial algebra of a functor (see Sec-
tion 4.2). SinceG is a type constructor, it is natural to try to model
it as a functorC → C which is the carrier of the initial algebra of a
functor(C → C) → C → C. The first question which arises is thus
whether or not every GADT can be interpreted as a functorC → C.

To answer this question, consider the situation in Haskell, where
the categoryC interprets the Haskell kind*. Functors are imple-
mented in Haskell as type constructors supportingfmap functions,
as captured by the built-in type class

class Functor f where
fmap :: (a -> b) -> f a -> f b

The functionfmap is expected to satisfy the functor laws

fmap id = id
fmap (f . g) = fmap f . fmap g

stating thatfmap preserves identities and composition. But satisfac-
tion is not enforced by the compiler: it is the programmer’s respon-

2 There are different uses of the wordalgebraicin the literature. We use this
definition consistently in this paper.

sibility to ensure that thefmap function for each Haskell functor,
i.e., instance of Haskell’sFunctor class, behaves appropriately.

If G is to be a Haskell functor then it must support anfmap
operation. Establishing thatTerm is a Haskell functor, for example,
would require a declaration

instance Functor Term where
fmap :: (d -> e) -> Term d -> Term e

The clause for terms of the formPair x ywould havef :: (b,c)
-> e and fmap f (Pair x y) :: Term e. Keeping in mind
that fmap should change the data in a term while preserving its
structure, we should have

fmap f (Pair x y) = Pair u v

for some appropriately typedu andv. But it is not clear how to
achieve this sincee cannot be guaranteed to have a tuple structure.
Even if e wereguaranteed to be of the form(b’, c’), we’d then
havef :: (b,c) -> (b’,c’), but still no way to produce data
of typeTerm (b’,c’) from only f :: (b,c) -> (b’,c’) and
x :: b andy :: c. The problem stems from the fact thatf is not
guaranteed to be a pair of functions. So it is not clear how to treat
an arbitrary GADT in Haskell as a Haskell functor. It is thus not
clear how to treat GADTs semantically as functors in general.

3. The Key Ideas
3.1 Recovering Functoriality

The above considerations lead us to try to model a GADTG as a
functor C′ → C for a categoryC′ distinct from the categoryC.
A natural candidate forC′ is the category whose objects model
the (inhabited) types ofG. For theFin GADT from Example 1
in Section 7, for instance, the inhabited types are essentially the
natural numbers. But for some GADTs, such asTerm, the inhabited
types will be all types. So a simpler and more uniform approach is
always to take the objects ofC′ to be those ofC.

At first glance this seems to have gotten us nowhere, but we have
not yet fully specified the categoryC′. In addition to specifying
the objects ofC′, we must also specify its morphisms. Since the
only functions between types that we know for sure can be lifted to
functions between GADTs parameterized over those types are the
identity functions, we simply takeC′ to have as morphisms only
the identities. That is, we take the categoryC′ to be the discrete
category derived fromC. Writing |C|for this category, we observe
that every function from the objects of|C|to C is trivially a functor
|C|→ C. We now turn our attention to showing that every GADT
can be modeled as the carrier of the initial algebra of a functor
(|C|→ C) → |C|→ C.

3.2 Basic GADTs and Higher-order Functors

To keep syntactic overhead to a minimum, and to highlight the key
ideas underlying of our approach, we make some simplifying as-
sumptions in this section about the syntax of GADTs. We show
how to extend our approach to GADTs which do not satisfy these
assumptions in Section 6. On the other hand, to emphasize that our
approach is generic over all GADTs, as discussed in the introduc-
tion, our notation explicitly parameterizes GADTs over the types
from which they are constructed.

We say a GADTG f h is basicif it has the form

data G f h a where
GCon :: f (G f h) a -> G f h (h a)

The covariance restriction mentioned in the introduction is captured
by the requirement thatG does not appear inh, and thatf is an
instance of the higher-order functor class which we now discuss. A
higher-order functormaps functors to functors, and maps between

functors to maps between functors, i.e., natural transformations to
natural transformations. In particular, higher-order functors on*
can be implemented in Haskell by the following analogue of the
built-in Functor class:

class HFunctor f where
ffmap :: Functor g => (a -> b) -> f g a -> f g b
hfmap :: Nat g h -> Nat (f g) (f h)

That a higher-order functor maps functors to functors is captured
by the requirement that anHFunctor — i.e., an instance of the
HFunctor class — supports anffmap function; that a higher-
order functor maps natural transformations to natural transforma-
tions is captured by the requirement that anHFunctor supports an
hfmap function. The type of natural transformations can be given
in Haskell by

type Nat g h = forall a. g a -> h a

A parametric interpretation of theforall quantifier ensures that a
function of typeNat g h can be thought of as a uniform family of
maps fromg to h, so that the relevant naturality squares commute.
While not explicit in the class definition above, the programmer is
expected to verify that ifg is a Haskell functor, thenf g is also a
Haskell functor. Moreover, like thefmap functions for functors, the
hfmap functions are expected to preserve identities and composi-
tion — here for natural transformations.

An example of a basic GADT is the following alternative pre-
sentation of the GADTFin of finite sets from Example 1 in Sec-
tion 7. Here,Either is the standard Haskell type for disjunctions,
f g a is Either Unit (g a), h a is S a, andG f h is BFin.

data BFin a where
BFinCon :: Either Unit (BFin a) -> BFin (S a)

Now, if G f h is to be interpreted as the carrier of the initial
algebra of a higher-order functor(|C|→ C) → |C|→ C, then in
order forG f h and its data constructorGCon to be well-kinded we
should have in Haskell:

h :: |*| -> |*|
f :: (|*| -> *) -> |*| -> *
G f h :: |*| -> *

We can tailor theHFunctor class above to accommodate higher-
order functors of kind(|*| -> *) -> |*| -> *. This amounts
to eliminating theffmap function from the class definition, since
every functor necessarily maps identities to identities. When work-
ing with GADTs, we therefore use the following specialized ver-
sion of theHFunctor class:

class HFunctor f where
hfmap :: Nat g h -> Nat (f g) (f h)

3.3 Initial Algebra Semantics for Basic GADTs

We seek to derive from the syntax ofG f h a higher-order functor
(|C|→ C) → |C|→ C such that the carrier of its initial algebra
interpretsG f h.

In a parametric model, the interpretation of the typef (G f h) a
-> G f h (h a) of GCon is isomorphic to the interpretation of the
typeLan h (f (G f h)) a -> G f h a, where

data Lan h g c = forall b. Lan (Eql (h b) c, g b)

is the Haskell representation of theleft Kan extension[MacLane (1971)]
of g alongh, andEql is theequality GADT

data Eql a b where
Refl :: Eql a a

The use ofEql in the definition of Lan reflects the fact that,
in Haskell, the domain ofh is the discrete category|*|. Con-

structing an element of typeG f h c requires usingGCon, and
thus finding a typeb such thath b = c and giving an element
of f (G f h) b to which GCon can be applied. The interpre-
tation of G f h c is therefore isomorphic to the interpretation
of exists b. (h b = c, f (G f h) b). Writing this type as
Lan h (f (G f h)) c captures this observation precisely —
once we remember that existential type quantification is written
using top-level universal type quantification in Haskell.

From this it follows that the interpretation ofG f h is the carrier
of the initial algebra of the higher-order functor interpretingK f h,
whereK f h is defined by

K f h g a = Lan h (f g) a

Unfortunately, we cannot simply use this specification in a Haskell
type synonym, since this would render the partial application
K f h unavailable for computations. We therefore make the fol-
lowing data type declaration instead:

data K f h g a = forall b. HFunctor f =>
K (Eql (h b) a, f g b)

We can verify thatK f h is indeed anHFunctor by observing that
it is the composition off, which is anHFunctor by assumption,
andLan h, which is anHFunctor as shown here:

instance HFunctor (Lan h) where
hfmap k (Lan (p, v)) = Lan (p, k v)

Composition ofHFunctors can be coded in Haskell using

newtype (HFunctor g, HFunctor h) =>
HComp g h k a = HComp (g (h k) a)

The following instance declaration shows that the composition of
two HFunctors is again anHFunctor:

instance (HFunctor g, HFunctor h) =>
HFunctor (g ‘HComp‘ h) where

hfmap k (HComp t) = HComp (hfmap (hfmap k) t)

We can instantiate this declaration forLan h andf to show that
their composition is anHFunctor. But unfortunately, this causes a
proliferation ofHComp type and data constructors throughout our
code. To avoid this — and thus purely for cosmetic reasons —
we give anHFunctor instance declaration for the composition of
Lan h andf directly. We have

instance HFunctor f => HFunctor (K f h) where
hfmap k (K (p, v)) = K (p, hfmap k v)

Thehfmap on the right-hand side of the definition in the instance
declaration is the one forf.

SinceG f h is inductively defined, we can see that the interpre-
tation ofG f h is the carrier of the initial algebra of the interpre-
tation ofK f h by establishing that the interpretation ofG f h is
isomorphic to the interpretation of the type

data NG f h a where
NGCon :: K f h (NG f h) a -> NG f h a

This follows from the isomorphism between the interpretation of
forall c. Lan h g c -> f c and the interpretation offorall c.
g c -> f (h c) which holds for allh, g, and f. This isomor-
phism can be coded in Haskell as

toLan :: (forall c. g c -> f (h c)) ->
Lan h g c -> f c

toLan s (Lan (Refl, v)) = s v

fromLan :: (forall c. Lan h g c -> f c) ->
g c -> f (h c)

fromLan s t = s (Lan (Refl, t))

For our left Kan extensionK, toLan andfromLan specialize to the
following functions giving an isomorphism between the interpreta-
tion of forall c. K f h g c -> k c and the interpretation of
forall c. f g c -> k (h c):

toK :: HFunctor f => (forall c. f g c -> k (h c))
-> K f h g c -> k c

toK s (K (Refl, v)) = s v

fromK :: HFunctor f => (forall c. K f h g c -> k c)
-> f g c -> k (h c)

fromK s t = s (K (Refl, t))

Thus, giving data appropriate for input toGCon is equivalent to giv-
ing data appropriate for input toNGCon. Since the data constructors
of these types contain exactly the same information, they generate
exactly the same GADT.

In light of the above, we can writeG f h asMu (K f h) where

newtype Mu f a = In (f (Mu f) a)

represents the carrier of the initial algebra of the interpretation of
f. SinceG f h is interpreted as the carrier of the initial algebra of
the interpretation ofK f h, it admits an initial algebra semantics.

4. Semantic Foundations of Initial Algebra
Packages

In this section we first recall the derivation of initial algebra pack-
ages for inductive types from [Ghani et al. (2003)], and then recap
the well-known categorical ideas which underlie it. In the next sec-
tion we show how to instantiate these same ideas in our higher-
order setting to derive initial algebra packages for GADTs.

4.1 Initial Algebra Packages for Inductive Types

An inductive data typeis a data type which can be interpreted
as the carrier of the initial algebra of a functor, and aninductive
data structureis a data structure of inductive type. It is well known
[Ghani et al. (2005), Ghani et al. (2003), Takano & Meijer (1995)]
that every inductive type has an associated initial algebra package.
If f is a Haskell functor, then the associated inductive typeM f and
its associatedfold andbuild combinators can be implemented
generically in Haskell by3

newtype M f = Inn (f (M f))

fold :: Functor f => (f a -> a) -> M f -> a
fold h (Inn k) = h (fmap (fold h) k)

build :: Functor f =>
(forall b. (f b -> b) -> b) -> M f

build g = g Inn

As usual, the type of the polymorphic function argument tobuild
gives the Church encoding forM f. Thesebuild andfold com-
binators can be used to produce and consume inductive data struc-
tures of typeM f. Moreover, iff is any Haskell functor,h is any
function of any typef a -> a, andg is any function of closed type
forall b. (f b -> b) -> b, then the followingfold/build
rule for M f eliminates from computations structures of typeM f
which are produced bybuild and immediately consumed byfold:

fold h (build g) = g h

The familiar initial algebra package for list types [Gill et al. (1993)]
is an instance of this scheme, as are the corresponding packages

3 Unfortunately, we cannot use the same fixed point operator here as in
Section 3. This is becausef is not anHFunctor in this case, which is
problematic because Haskell lacks proper polymorphic kinding.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr c n xs = case xs of [] -> n

z:zs -> c z (foldr c n zs)

-- Church encoding
forall b. (a -> b -> b) -> b -> b

buildL :: (forall b. (a -> b -> b) -> b -> b) -> [a]
buildL g = g (:) []

-- fold/build rule
foldr c n (buildL g) = g c n

Figure 1. Generic initial algebra package for list types.

foldT :: (a -> b) -> (b -> b -> b) -> Tree a -> b
foldT l b t = case t of

Leaf x -> l x
Branch t1 t2 -> b (foldT l b t1)

(foldT l b t2)

-- Church encoding
forall b. (a -> b) -> (b -> b -> b) -> b

buildT :: (forall b. (a -> b) ->
(b -> b -> b) -> b) -> Tree a

buildT g = g Leaf Branch

-- fold/build rule
foldT l b (buildT g) = g l b

Figure 2. Generic initial algebra package forTree.

for algebraic data types given in [Johann (2002)]. The former is
given in Figure 1, while the initial algebra package for the non-list
algebraic data type

data Tree a = Leaf a | Branch (Tree a) (Tree a)

of trees over data of typea is given in Figure 2.
It is the fact that inductive types are interpreted by carriers of

initial algebras of functors that makes it possible to define initial
algebra packages for them. In particular, this is what ensures that
their folds are true folds, that their Church encodings really en-
code them, and that theirfold/build rules truly are correct. It’s
what allows us to program with, and reason about programs involv-
ing, inductive types. Section 4.2 explains the theory underlying this
assertion and, at the same time, develops the semantic foundations
for our derivation of initial algebra packages for GADTs; note that
the material in Section 4.2.2 may be new even to those familiar with
initial algebra semantics. Readers without the required background
in category theory or whose main focus is not on the categorical
foundations of initial algebra packages for advanced data types can
safely omit this section and other categorical discussions in the pa-
per since all of the relevant category-theoretic constructs used in
this paper are implemented in Haskell. Readers who choose to do
this will miss some of the motivations for the theory of GADTs,
and some of the connections between the theory of inductive types
and the theory of GADTs developed in this paper, but will miss no
necessary facts. We stress that we do not attempt a complete recon-
struction of all of category theory here, but instead introduce only
those concepts that form the basis of our initial algebra approach to
deriving principled programming tools for GADTs.

4.2 The Fundamental Theory

The key idea underlying initial algebra packages is the idea of
initial algebra semantics. Within the paradigm of initial algebra
semantics, every data type is interpreted as the carrierµF of the
initial algebra of a suitable functorF : C → C for some suitable
categoryC. In more detail, suppose we have fixed a categoryC.
An algebra for a functorF : C → C (or, simply, anF -algebra)
is a pair(A, h) whereA is an object ofC andh : FA → A is
a morphism ofC. Here,A is called thecarrier of the algebra and
h is called itsstructure map. As it turns out, theF -algebras for a
given functorF themselves form a category. In the category ofF -
algebras, a morphism betweenF -algebras(A,h) and(B, g) is a
mapf : A→ B such that the following diagram commutes:

FA
F f //

h

��

FB

g

��
A

f // B

We call such a morphism anF -algebra homomorphism.
Now, if the category ofF -algebras has an initial object — called

an initial algebra for F , or, more simply, aninitial F -algebra—
then Lambek’s Lemma ensures that the structure map of this ini-
tial F -algebra is an isomorphism, and thus that its carrier is a fixed
point ofF . If it exists, the initialF -algebra is unique up to isomor-
phism. We write(µF, in) for the initialF -algebra comprising the
fixed pointµF and the isomorphismin : F (µF) → µF .

4.2.1 Folds

The standard interpretation of a type constructor is a functorF ,
and the standard interpretation of the inductive type it defines
is the carrier of the initial algebra ofF . Initiality ensures that
there is a uniqueF -algebra homomorphism from the initialF -
algebra to any otherF -algebra. The map underlying thisF -algebra
homomorphism is exactly thefold for µF . Thus if (A, h) is any
F -algebra, thenfold h : µF → A makes the following diagram
commute:

F (µF)
F (fold h) //

in

��

FA

h

��
µF

fold h // A

From this diagram, we see thatfold : (FA → A) → µF → A
and thatfold h satisfiesfold h (in t) = h (F (fold h) t).
This justifies the definition of thefold combinator given in Sec-
tion 4.1. Furthermore, the uniqueness of the mediating morphism
ensures that, for every algebrah, the map fold h is defined
uniquely. This provides the basis for the correctness offold fu-
sion for inductive types, which derives from the fact that ifh
and h′ are F -algebras andψ is an F -algebra homomorphism
from h to h′, thenψ . fold h = fold h′. But note thatfold
fusion [Bayley (2001), Blampied (2000), Bird & Paterson (1998),
Bird & Paterson (1999), Martin et al. (2004)] is distinct from, and
inherently simpler than, thefold/build fusion in this paper.

4.2.2 Church Encodings, builds, and fold/build Fusion Rules

Although the above discussion shows thatfold combinators for in-
ductive types can be derived entirely from, and understood entirely
in terms of, initial algebra semantics, regrettably the standard initial
algebra semantics does not provide a similar principled derivation
of the build combinators or the correctness of thefold/build
rules. In fact,build has been regarded as a kind of optional “add-
on” which is not a fundamental part of the basic infrastructure for

programming with inductive types. The practical consequence of
this is that thebuild combinators have been largely overlooked,
treated as poor relatives of their correspondingfold combinators,
and regarded as unworthy of fundamental study.

This situation was rectified in [Ghani et al. (2003)], where the
standard initial algebra semantics was extended to support not
only fold combinators for inductive types, but also Church encod-
ings andbuild combinators for them. Indeed, [Ghani et al. (2003)]
considers the initialF -algebra to be not only the initial object of
the category ofF -algebras, but also the limit of the forgetful func-
tor from the category ofF -algebras to the underlying categoryC
as well. We now summarize this result and its consequences, which
we later apply to derive our combinators for GADTs.

If F is a functor onC, then theforgetful functorUF mapsF -
algebras to objects inC by forgetting theF -algebra structure. That
is,UF maps anF -algebra(A,h) to its carrierA, and maps anF -
algebra homomorphismf : A → B betweenF -algebras(A,h)
and(B, g) to the morphismf : A → B in C. If C is an object
in C, then aUF -cone forC comprises, for everyF -algebra(A, h),
a morphismν(A,h) : C → A in C such that, for everyF -algebra
mapf : A→ B, we haveν(B,g) = f ◦ ν(A,h).

(A,h)
f // (B, g)

C

ν(A,h)

bbEEEEEEEE

ν(B,g)
<<zzzzzzzz

We write (C, ν) for this cone, and callC its vertexand the mor-
phismν(A,h) theprojectionfrom C to A. A UF -cone with vertex
C can be thought of as having the type∀x.(Fx→ x) → C → x.
A UF -cone morphismg : (C, ν) → (D, µ) betweenUF -cones
(C, ν) and(D, µ) is a morphismg : C → D in C such that for
anyF -algebra(A,h), we haveµ(A,h) ◦ g = ν(A,h). A UF -limit
is aUF -cone to which there is a uniqueUF -cone morphism, called
themediating morphism, from any otherUF -cone. When they ex-
ist, UF -limits are unique up to isomorphism. Moreover, no extra
structure is required of eitherF or C for theUF -limit to exist — it
simply comprises the carrier of the initialF -algebra together with
the family ofF -algebra-indexedfold functions.

In [Ghani et al. (2003)], the characterization of the initialF -
algebra as both the above limitandthe initial object in the category
of F -algebras is called theextended initial algebra semantics. As
shown there, an initialF -algebra has a different universal property
as a limit from the one it inherits as an initial object. This alternate
universal property ensures:

• For eachF -algebra, the projection from the vertex of theUF -
limit (i.e., from µF) to the carrier of thatF -algebra defines
fold : (Fx→ x) → µF → x.

• The unique mediating morphism from the vertexC of a
UF -cone to the vertexµF of the UF -limit defines build :
(∀x. (Fx → x) → C → x) → C → µF to bebuild g =
g in. This justifies the definition of thebuild combinator given
in Section 4.1.

• Correctness of thefold/build rule follows from the fact that
fold h . build g = g h, i.e., thatfold afterbuild is a projection
after a mediating morphism fromC to µF , and is thus equal
to the projection fromC to the carrier ofh. TakingC to be
the unit type proves the correctness, relative to the underlying
semantics, of thefold/build rule given in Section 4.1.

The extended initial algebra semantics thus shows that, given
a parametric interpretation of universal quantification of types,
there is an isomorphism between the interpretation of the type
c -> M f and the interpretation of itsgeneralized Church en-

coding forall x. (f x -> x) -> c -> x. The term “gener-
alized” reflects the presence of the parameterc, which is absent in
other Church encodings [Takano & Meijer (1995)], but is essential
to the derivation ofbuild combinators for GADTs. Choosingc to
be the unit type gives the usual isomorphism between the interpre-
tation of an inductive type and the interpretation of its usual Church
encoding. This isomorphism comprises preciselyfold (up to order
of arguments) andbuild for the interpretation of that type. Writing
fold ′ m h for fold h m we have

fold ′ :: µF → ∀x.(Fx→ x) → x
build :: (∀x.(Fx→ x) → x) → µF

From this we see that correctness of thefold/build rule for
inductive types codes one half of the requirement thatbuild and
fold ′ are mutually inverse. A parametric model guarantees the
existence of the interpretation of the Church encoding of a type
constructor, which, by this isomorphism, guarantees the existence
of the initial algebra for the interpretation of that type constructor.
Genericbuild combinators and Church encodings for inductive
types are given in [Takano & Meijer (1995)], but that paper does
not show how to derivebuilds for fixed points of higher-order
functors or how to interpret GADTs as such fixed points. Indeed, it
doesn’t even mention GADTs.

5. Initial Algebra Packages for Basic GADTs
In this section we give Haskell implementations of the initial alge-
bra packages for basic GADTs derived from the initial algebra se-
mantics developed for them in Section 3. From Section 3 we have
that the interpretation of the basic GADT

data G f h a where
GCon :: f (G f h) a -> G f h (h a)

is isomorphic to the interpretation of

data NG f h a where
NGCon :: K f h (NG f h) a -> NG f h a

which is the carrier of the initial algebra of the interpretation of
K f h, where

data K f h g a = forall b. HFunctor f =>
K (Eql (h b) a, f g b)

Instantiating the fundamental theory we get thefold combinator

foldNG :: (HFunctor f, Functor h) =>
Nat (K f h a) a -> Nat (NG f h) a

foldNG m (NGCon u) = m (hfmap (foldNG m) u)

the generalized Church encoding

(forall a. Nat (K f h a) a -> Nat c a)

and thebuild combinator

buildNG :: HFunctor f => (forall a. Nat (K f h a) a
-> Nat c a) -> Nat c (NG f h)

buildNG g = g NGCon

for NG f h. Here, the instance ofhfmap in the definition offoldNG
is the one for theHFunctor K f h. We have thefold/build rule

foldNG m . buildNG g = g m

for NG f h. If we define

toNG :: HFunctor f => G f h a -> NG f h a
toNG (GCon t) = NGCon (K (Refl, hfmap toNG t))

fromNG :: (HFunctor f, Functor h) =>
NG f h a -> G f h a

fromNG = foldNG (toK GCon)

foldG :: HFunctor f => (forall a. f x a -> x (h a))
-> Nat (G f h) x

foldG m (GCon t) = m (hfmap (foldG m) t)

-- generalized Church encoding
forall y. (forall a. f y a -> y (h a)) -> Nat c y

buildG :: HFunctor f =>
(forall y. (forall a. f y a -> y (h a))

-> Nat c y) -> Nat c (G f h)
buildG g = g GCon

-- fold/build rule
foldG m . buildG g = g m

Figure 3. Generic initial algebra package for GADTs.

then we have thattoNG andfromNG are Haskell codings of mutual
inverses. We can therefore use these functions to derive from the
initial algebra package forNG f h the one forG f h given in
Figure 3. The derivation is based on the following definitions:

foldG :: HFunctor f => (forall a. f x a -> x (h a))
-> Nat (G f h) x

foldG m t = foldNG (toK m) (toNG t)

buildG :: HFunctor f =>
(forall y. (forall a. f y a -> y (h a))

-> Nat c y) -> Nat c (G f h)
buildG g = fromNG . (buildNG g’)

where g’ k = g (fromK k)

The instance ofhfmap in the definition offoldG is the one for
f. Note thatfoldG terminates since it is structurally recursive.
Unwinding these definitions justifies the definitions in Figure 3.

6. More General GADTs
We have seen how a basic GADT, i.e., a GADT of the form

data G f h a where
GCon :: f (G f h) a -> G f h (h a)

can be reduced to a data typeNG f h using only existentials and
theEqlGADT. We considered this special case first to highlight the
basic ideas underlying our approach to initial algebra semantics for
GADTs, as well as to avoid the cumbersome notation associated
with arbitrary GADTs. In this section we show how the basic
syntactic restriction can be lifted, and thus how our approach can
be extended to arbitrary GADTs. Below, the covariance restriction
entails thatG does not appear in anyhi, and that anyfi is a higher-
order functor. The initial algebra package for theTerm GADT from
Section 2.1 appears in Section 7 below. There are four independent
dimensions along which basic GADTs can be generalized.

6.1 GADTs with Non-Unary Data Constructors

If we have a GADT of the form

data G f1 f2 h a where
GCon :: f1 (G f1 f2 h) a -> f2 (G f1 f2 h) a ->

G f1 f2 h (h a)

then we can curryGCon to derive a data constructor which takes
one tupled argument. The above GADT is thus equivalent to:

data G’ f1 f2 h a where
GCon’ :: PrHFunctor f1 f2 (G’ f1 f2 h) a ->

G’ f1 f2 h (h a)

wherePrHFunctor f1 f2 is the higher-order functor given by

newtype PrHFunctor f1 f2 g a =
PrHFunctor (f1 g a, f2 g a)

It is easy to check thatPrHFunctor f1 f2 is anHFunctor. Thus
we can reduce a GADT whose data constructor takes several inputs
to one whose data constructor takes only a single input. An example
of a GADT with a non-unary data constructor isTerm.

6.2 GADTs with More Than One Data Constructor

The presence of the different functorsh1 andh2 in the codomain
types of the data constructorsGCon1 and GCon2 of a GADT
G f1 f2 h1 h2 of the form

data G f1 f2 h1 h2 a where
GCon1 :: f1 (G f1 f2 h1 h2) a ->

G f1 f2 h1 h2 (h1 a)
GCon2 :: f2 (G f1 f2 h1 h2) a ->

G f1 f2 h1 h2 (h2 a)

entails that it is not possible to reduce a GADT with two data
constructors to a GADT with one data constructor. Nevertheless,
we can still show that a GADT with more than one data constructor
can be reduced to a GADT using only existentials and theEql
GADT, and also derive an initial algebra semantics for it.

The basic idea is to treat each data constructor individually.
That is, we use the same technique as we used for single data
constructor GADTs to convert the type of each data constructor
of a GADTG f1 f2 h1 h2 into a type whose codomain is of the
form G f1 f2 h1 h2 a, and thus avoid the nesting of functors in
the data constructors’ codomain types. Concretely, we transform
the GADTG f1 f2 h1 h2 into the following equivalent GADT:

data NG f1 f2 h1 h2 a where
NGCon1 :: K f1 h1 (NG f1 f2 h1 h2) a ->

NG f1 f2 h1 h2 a
NGCon2 :: K f2 h2 (NG f1 f2 h1 h2) a ->

NG f1 f2 h1 h2 a

The return types of the data constructors ofNG f1 f2 h1 h2 are
the same, and this GADT uses only existentials and theEql GADT.
The two data constructors can now be bundled into one in the usual
way, so that the interpretation ofNG f1 f2 h1 h2 is the carrier of
the initial algebra of the higher-order functor interpreting

newtype SumKs f1 f2 h1 h2 g a
= Inl (K f1 h1 g a) | Inr (K f2 h2 g a)

It is not hard to check thatSumKs f1 f2 h1 h2 is indeed an
HFunctor. We can therefore derive an initial algebra semantics,
and hence an initial algebra package, forNG f1 f2 h1 h2. Us-
ing toK and fromK, we can derive one for the original GADT
G f1 f2 h1 h2 as well. An example of a GADT with more than
one data constructor is theFin GADT from Example 1 below.

6.3 GADTs with More Than One Type Parameter

Consider a GADTG f h1 h2 a b

data G f h1 h2 a b where
GCon :: f (G f h1 h2) a b ->

G f h1 h2 (h1 a b) (h2 a b)

with two type parameters. In Haskell, the kinds ofh1, h2, f, and
G f h1 h2 are

h1, h2 :: |*| -> |*| -> |*|
f :: (|*| -> |*| -> *) -> |*| -> |*| -> *
G f h1 h2 :: |*| -> |*| -> *

We can treat this GADT by rewriting the type ofGCon in terms
of the typeK representing left Kan extensions and theEql GADT,

althoughKmust be generalized to take two type arguments as input.
This yields the definition

data BiK f h1 h2 g a b = forall c1 c2.
BiHFunctor f => BiK (Eql (h1 c1 c2) a,

Eql (h2 c1 c2) b, f g c1 c2)

whereBiHFunctor is the generalization

class BiHFunctor f where
mhfmap :: MNat g h -> MNat (f g) (f h)

type MNat f g = forall c1 c2. f c1 c2 -> g c1 c2

of the HFunctor class to two type parameters which is required
to capture the structure off here. It is not hard to see that
BiK f h1 h2 is an instance of theBiHFunctor class:

instance BiHFunctor f =>
BiHFunctor (BiK f h1 h2) where

mhfmap k (BiK (p, q, v)) = BiK (p, q, mhfmap k v)

The key universal property of the form of Kan extension captured
by BiK is that there is an isomorphism between the interpretation
of the type

forall a b. f g a b -> g (h1 a b) (h2 a b)

and the interpretation of the type

forall a b. BiK f h1 h2 g a b -> g a b

The GADTG f h1 h2 a b is thus equivalent to the GADT

data NG f h1 h2 a b where
NGCon :: BiK f h1 h2 (NG f h1 h2) a b ->

NG f h1 h2 a b

for which an initial algebra semantics is easily given, since the
interpretation ofNG f h1 h2 is the carrier of the initial algebra of
the interpretation ofBiK f h1 h2. An example of a GADT with
more than one type parameter is theExpr GADT from Example 3.

6.4 GADTs Whose Data Constructors Have More Than One
Type Parameter

Consider a GADT of the form

data G f h a where
GCon :: f (G f h) a b -> G f h (h a b)

where the Haskell kinds ofh, f, andG f h are

h :: |*| -> |*| -> |*|
f :: (|*| -> *) -> |*| -> |*| -> *
G f h :: |*| -> *

Without loss of generality, we may assume that the number of type
variables appearing in the domain typef (G f h) a b of GCon
is the same as the number appearing inGCon’s return type. We can
treat a GADTG f h of this form by rewriting the type ofGCon
in terms of the data typeK representing left Kan extensions and the
Eql GADT, althoughK must be generalized to allowh to take more
than one type argument as input. This yields the definition

data VK f h g a = forall c1 c2. VHFunctor f =>
VK (Eql (h c1 c2) a, f g c1 c2)

whereVHFunctor is the generalization

class VHFunctor f where
vhfmap :: Nat g h -> MNat (f g) (f h)

of theHFunctor class which allowsf to return a type constructor
parameterized over two type variables. It is not hard to see that
VK f h is an instance of theVHFunctor class:

instance VHFunctor f => HFunctor (VK f h) where
hfmap k (VK (p, v)) = VK (p, vhfmap k v)

The key universal property of the form of Kan extension captured
by VK is that there is an isomorphism between the interpretation of
the type

forall a b. f g a b -> g (h a b)

and the interpretation of the type

forall a. VK f h g a -> g a

The GADTG f h a is thus equivalent to the GADT

data NG f h a where
NGCon :: VK f h (NG f h) a -> NG f h a

for which an initial algebra semantics is easily given, as the inter-
pretation ofNG f h is the carrier of the initial algebra of the in-
terpretation ofVK f h. An example of a (single parameter) GADT
whose data constructor has more than one type parameter isTerm.4

In summary, our techniques extend from basic GADTs to
GADTsG’ of the form

G f1 ... fk h11 ... h1n ... hk1 ... hkn

wheren is the number of type argumentsG’ takes, andG’ is given
as a list of data constructors with types of the form

fi G’ ai1 ... airi ->
G’ (hi1 ai1 ... airi) ... (hin ai1 ... airi)

As discussed above, any constructor taking several arguments can
be exchanged for a constructor taking exactly one argument.

Thus for every data constructor of every GADT there is an
appropriate Kan extension which can be used to trade that data
constructor for one based on existentials and theEql GADT, and
from which an initial algebra semantics for the original GADT
can be derived. Thus, the proliferation of different codings of Kan
extensions, which seems a drawback at first, simply reflects the fact
that Haskell does not have a proper polymorphic system of kinds. If
it did, then only one polykinded Kan extension would be required
and we would be able to present the general case from the start
rather than a special case followed by a sketch of the general case.

7. Examples
In this section we show how to derive initial algebra packages for
some familiar GADTs.

EXAMPLE 1. Consider the GADT of finite sets [Sheard et al. (2005)]
given by

data Z
data S a

data Fin a where
Fz :: Fin (S a)
Fs :: Fin a -> Fin (S a)

Note thatFin Z is empty. This GADT is equivalent to the GADT

4 An alternative way to handle a data constructor such asApp which has
more type variables in its domain type than in its return type is to wrap the
“extra” type variables in the domain type in an existential quantifier. This
is justified by observing that a type of the formforall b. f b -> g,
wheref is a type parameterized overb andg is a type in whichb does not
appear, is equivalent to the type(exists b. f b) -> g. Combined with
the tupling described in Section 6.1, this allows us to trade, for example, the
App data constructor for the equivalent data constructorApp :: exists
b. (Term (b -> a), Term b) -> Term a in whose domain type only
the type variables appearing in the return type of the constructor appear free.

foldFin :: (forall a. f (S a)) ->
(forall a. f a -> f (S a)) -> Nat Fin f

foldFin z s Fz = z
foldFin z s (Fs t) = s (foldFin z s t)

-- generalized Church encoding
forall f. (forall a. f (S a)) ->
(forall a. f a -> f (S a)) -> Nat c f

buildFin :: (forall f. (forall a. f (S a)) ->
(forall a. f a -> f (S a)) ->

Nat c f) -> Nat c Fin
buildFin g = g Fz Fs

-- fold/build rule
foldFin z s . (buildFin g) = g z s

Figure 4. Initial algebra package forFin.

data NFin a where
NFz :: Lan S One a -> NFin a
NFs :: Lan S NFin a -> NFin a

which has initial algebra package

foldNFin :: (forall a. Lan S One a -> f a) ->
(forall a. Lan S f a -> f a) ->

Nat NFin f
foldNFin z s (NFz k) = z k
foldNFin z s (NFs t) = s (hfmap (foldNFin z s) t)

buildNFin :: (forall f.
(forall a. Lan S One a -> f a) ->
(forall a. Lan S f a -> f a)
-> Nat c f) -> Nat c NFin

buildNFin g = g NFz NFs

foldNFin z s . (buildNFin g) = g z s

The definitions offoldG andbuildG in Section 5 can be instanti-
ated to give the initial algebra package in Figure 4 relative toFin.

EXAMPLE 2. Consider again the GADTTerm [Sheard et al. (2005)]

data Term a where
Const :: a -> Term a
Pair :: Term b -> Term c -> Term (b,c)
App :: Term (b -> a) -> Term b -> Term a

from Section 2.1. This GADT is equivalent to

newtype Fst a b = Fst a
newtype HProd g a b = HProd (g a, g b)
newtype Prod a b = Prod (a, b)
data HL f a b = HL (f (b -> a), f b)

data NTerm a where
NConst :: a -> NTerm a
NPair :: VK HProd Prod NTerm a -> NTerm a
NApp :: VK HL Fst NTerm a -> NTerm a

whereVK is defined as in Section 6.4. Note thatHProd andHL are
instances of theVHFunctor class:

instance VHFunctor HProd where
vhfmap k (HProd (u,v)) = HProd (k u, k v)

instance VHFunctor HL where

foldTerm :: (forall a. a -> f a) ->
(forall a b. f a -> f b -> f (a,b)) ->
(forall a b. f (b -> a) -> f b -> f a) ->
Nat Term f

foldTerm c p a (Const v) = c v
foldTerm c p a (Pair u v) = p (foldTerm c p a u)

(foldTerm c p a v)
foldTerm c p a (App t u) = a (foldTerm c p a t)

(foldTerm c p a u)

-- generalized Church encoding
forall f. (forall a. a -> f a) ->

(forall a b. f a -> f b -> f (a,b)) ->
(forall a b. f (b -> a) -> f b -> f a) ->

Nat c f

buildTerm :: (forall f.
(forall a. a -> f a) ->
(forall a b. f a -> f b -> f (a,b)) ->
(forall a b. f (b -> a) -> f b -> f a) ->

Nat c f) -> Nat c Term
buildTerm g = g Const Pair App

-- fold/build rule
foldTerm c p a . (buildTerm g) = g c p a

Figure 5. Initial algebra package forTerm.

vhfmap k (HL (u,v)) = HL (k u, k v)

The GADTNTerm has initial algebra package

foldNTerm :: (forall a. a -> f a) ->
(forall a. VK HProd Prod f a -> f a) ->
(forall a. VK HL Fst f a -> f a) ->

Nat NTerm f
foldNTerm c p a (NConst v) = c v
foldNTerm c p a (NPair t) =

p (hfmap (foldNTerm c p a) t)
foldNTerm c p a (NApp t) =

a (hfmap (foldNTerm c p a) t)

buildNTerm :: (forall f.
(forall a. a -> f a) ->
(forall a. VK HProd Prod f a -> f a) ->
(forall a. VK HL Fst f a -> f a) -> Nat c f) ->

Nat c NTerm
buildNTerm g = g NConst NPair NApp

foldNTerm c p a . (buildNTerm g) = g c p a

The definitions offoldG and buildG from Section 5 can be in-
stantiated to give the initial algebra package in Figure 5 relative to
Term.

EXAMPLE 3. Consider the GADT of polynomial expressions with
variables of typea and coefficients of typeb given by

data Expr a b where
Var :: a -> Expr a b
IConst :: Int -> Expr a Int
RConst :: Float -> Expr a Float
PProd :: Expr a b -> Expr a b -> Expr a b
SIMul :: Expr a b -> Int -> Expr a b
SRMul :: Expr a b -> Float -> Expr a Float

This GADT is equivalent to the GADT

data NExpr a b where
NVar :: a -> NExpr a b
NIConst :: MK HInt Fst KInt NExpr a b ->

NExpr a b
NRConst :: MK HFloat Fst KFloat NExpr a b ->

NExpr a b
NPProd :: H2Prod NExpr a b -> NExpr a b
NSIMul :: H2ProdInt NExpr a b -> NExpr a b
NSRMul :: MK H2ProdFloat Fst KFloat NExpr a b ->

NExpr a b

whereBiK is as defined in Section 6.3 and

newtype KInt a b = KInt Int
newtype KFloat a b = KFloat Float

data HInt g a b = HInt Int
data HFloat g a b = HFloat Float
data H2Prod g a b = H2Prod (g a b, g a b)
data H2ProdInt g a b = H2ProdInt (g a b, Int)
data H2ProdFloat g a b = H2ProdFloat (g a b, Float)

Note thatHInt, HFloat, H2Prod, H2ProdInt, andH2ProdFloat
are instances of theBiHFunctor class from Section 6.3. Indeed,

instance BiHFunctor HInt where
mhfmap s (HInt t) = (HInt t)

instance BiHFunctor HFloat where
mhfmap s (HFloat t) = (HFloat t)

instance BiHFunctor H2Prod where
mhfmap s (H2Prod (u,v)) = H2Prod (s u, s v)

instance BiHFunctor H2ProdInt where
mhfmap s (H2ProdInt (u,v)) = H2ProdInt (s u, v)

instance BiHFunctor H2ProdFloat where
mhfmap s (H2ProdFloat (u,v)) = H2ProdFloat (s u, v)

The GADTNExpr has initial algebra package

foldNExpr :: (forall a b. a -> f a b) ->
(forall a b. BiK HInt Fst KInt f a b -> f a b) ->
(forall a b. BiK HFloat Fst KFloat f a b ->

f a b) ->
(forall a b. H2Prod f a b -> f a b) ->
(forall a b. H2ProdInt f a b -> f a b) ->
(forall a b. BiK H2ProdFloat Fst KFloat f a b ->

f a b) -> NExpr a b -> f a b

foldNExpr v i r p si sr (NVar t) = v t
foldNExpr v i r p si sr (NIConst t) =

i (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NRConst t) =

r (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NPProd t) =

p (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NSIMul t) =

si (mhfmap (foldNExpr v i r p si sr) t)
foldNExpr v i r p si sr (NSRMul t) =

sr (mhfmap (foldNExpr v i r p si sr) t)

buildNExpr :: (forall f.
(forall a b. a -> f a b) ->
(forall a b. BiK HInt Fst KInt f a b -> f a b) ->
(forall a b. BiK HFloat Fst KFloat f a b ->

f a b) ->

foldExpr :: (forall a b. a -> f a b) ->
(forall a. Int -> f a Int) ->
(forall a. Float -> f a Float) ->
(forall a b. f a b -> f a b -> f a b) ->
(forall a b. f a b -> Int -> f a b) ->
(forall a b. f a b -> Float -> f a Float) ->
forall a b. Expr a b -> f a b

foldExpr v i r p si sr (Var t) = v t
foldExpr v i r p si sr (IConst t) = i t
foldExpr v i r p si sr (RConst t) = r t
foldExpr v i r p si sr (PProd t u) =

p (foldExpr v i r p si sr t)
(foldExpr v i r p si sr u)

foldExpr v i r p si sr (SIMul t n) =
si (foldExpr v i r p si sr t) n

foldExpr v i r p si sr (SRMul t n) =
sr (foldExpr v i r p si sr t) n

buildExpr :: (forall f.
(forall a b. a -> f a b) ->
(forall a. Int -> f a Int) ->
(forall a. Float -> f a Float) ->
(forall a b. f a b -> f a b -> f a b) ->
(forall a b. f a b -> Int -> f a b) ->
(forall a b. f a b -> Float -> f a Float) ->

MNat c f) -> MNat c Expr
buildExpr g = g Var IConst RConst PProd SIMul SRMul

-- fold/build rule
foldExpr v i r p si sr . (buildExpr g) =
g v i r p si sr

Figure 6. Initial algebra package forExpr.

(forall a b. H2Prod f a b -> f a b) ->
(forall a b. H2ProdInt f a b -> f a b) ->
(forall a b. BiK H2ProdFloat Fst KFloat f a b ->

f a b) -> MNat c f) -> MNat c NExpr
buildNExpr g =
g NVar NIConst NRConst NPProd NSIMul NSRMul

foldNExpr v i r p si sr . buildNExpr g =
g v i r p si sr

The definitions in Section 5 give the initial algebra package in
Figure 6 relative to the original GADTExpr.

8. Conclusion and Future Work
In this paper we have shown that the standard view of data types as
carriers of initial algebras of functors can be extended from alge-
braic and nested data types to GADTs. We have used this observa-
tion to derive an initial algebra semantics and initial algebra pack-
ages for GADTs and, thereby, to provide expressive and principled
tools for reasoning about, programming with, and improving the
performance of programs involving, GADTs. We have also given
a constructive demonstration that every GADT can be reduced to
one which involves only the equality GADT and existential quan-
tification. Our reduction is local, independent of any particular syn-
tactic presentation of GADTs, and implementable in the host lan-
guage. Our approach to initial algebra semantics for GADTs is
based on an interpretation of them as carriers of initial algebras
of higher-order functors which map functors with discrete domains
to functors with discrete domains, rather than functors with pos-
sibly nondiscrete domains to functors with possibly nondiscrete

domains, and on the use of left Kan extensions as a restructuring
device. Our use of left Kan extensions here is reminiscent of their
use in [Johann & Ghani (2007a), Johann & Ghani (2007b)] to de-
rive initial algebra semantics for nested data types.

The foundations of GADTs and other advanced inductive con-
structions have been considered from the type-theoretic perspec-
tive; see, e.g., [Pfenning & Paulin-Mohring (1990)], which consid-
ers inductive types in the Calculus of Constructions. This work
gives fold combinators for GADTs, as well as Church encod-
ings which are essentially the special case of our generalized
Church encodings obtained by taking the parameterc to be the
constantly1-valued type constructor. The importance of gener-
alised Church encodings is discussed in [Johann & Ghani (2007a),
Johann & Ghani (2007b)]. The relationship between our work and
that of Pfenning and Paulin-Mohring is the subject for future re-
search, but we see our categorical approach as complementary
to their type-theoretic one. Also, our use of left Kan extensions
to trade GADT constructors for simpler nested type constructors
provides a clean and concise derivation of the folklore result stat-
ing that the essence of GADTs is existential quantification cou-
pled with the equality GADT. Our treatment of the foundations of
GADTs as GADTs, rather than as embedded within more general
type theories, is fundamental to our results.

Our main direction for future work involves extending the re-
sults of this paper from GADTs, which are indexed by types, to
styles of indexed programming which allow more general indices.
This paper and [Johann & Ghani (2007a), Johann & Ghani (2007b)]
together make clear that the fundamental structure underlying the
algebra of nested data types and GADTs is captured by functorial
composition and its adjoints, namely left and right Kan extensions.
The mathematical basis for generalizing this structure to encom-
pass other forms of indexing is clear. We will therefore consider
indexed programming in the context of fibrations.

Acknowledgments
Patricia Johann is supported in part by NSF grant CCF-0700341.
Neil Ghani is supported in part by EPSRC grant EP/C511964/2.

References
[Bainbridge et al. (1990)] E. S. Bainbridge, P. J. Freyd, A. Scedrov and P.

J. Scott. Functorial polymorphism.Theoretical Computer Science70(1)
(1990), pp. 35–64.

[Bayley (2001)] I. Bayley. Generic Operations on Nested Datatypes. Ph.D.
Dissertation, Univ. of Oxford, 2001. Athttp://web.comlab.ox.
ac.uk/oucl/research/areas/ap/papers/bayley-thesis.pdf

[Blampied (2000)] P. Blampied. Structured Recursion for Non-uniform
Data-types. Ph.D. Dissertation, Univ. of Nottingham, 2000. At
http://www.cs.nott.ac.uk/Research/fop/blampied-thesis
.pdf

[Bird & Meertens (1998)] Bird, R. and Meertens, L. Nested datatypes.
Proc., Mathematics of Program Construction, pp. 52–67, 1998.

[Bird & Paterson (1998)] R. Bird and R. Paterson. de Bruijn notation as a
nested datatype.Journal of Functional Programming9(1) (1998), pp.
77–91.

[Bird & Paterson (1999)] R. Bird and R. Paterson. Generalised folds for
nested datatypes.Formal Aspects of Computing11(2) (1999), pp. 200–
222.

[Cheney & Hinze (2003)] J. Cheney and R. Hinze. First-class phan-
tom types. Athttp://www.informatik.uni-bonn.de/~ralf/
publications/Phantom.pdf

[Dybjer (1994)] P. Dybjer. Inductive Families.Formal Aspects of Comput-
ing 6(4), pp. 440–465, 1994.

[Gill et al. (1993)] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short
cut to deforestation. Proceedings, Functional Programming Languages
and Computer Architecture, pp. 223–232, 1993.

[Ghani et al. (2005)] N. Ghani, P. Johann, T. Uustalu, and V. Vene.
Monadic augment and generalised short cut fusion. Proceedings,
International Conference on Functional Programming, pp. 294–305,
2005.

[Ghani et al. (2003)] N. Ghani, T. Uustalu, and V. Vene. Build, augment
and destroy. Universally. Proceedings, Asian Symposium on Program-
ming Languages, pp. 327–347, 2003.

[Johann & Ghani (2007a)] P. Johann and N. Ghani. Initial algebra seman-
tics is enough! Proceedings, Typed Lambda Calculus and Applications,
pp. 207–222, 2007.

[Johann & Ghani (2007b)] P. Johann and N. Ghani. Programming with
Nested Types. Submitted, 2007.

[Johann (2002)] P. Johann. A generalization of short-cut fusion and its
correctness proof.Higher-order and Symbolic Computation15 (2002),
pp. 273–300.

[MacLane (1971)] MacLane, S. Categories for the Working Mathemati-
cian. Springer-Verlag, 1971.

[Martin et al. (2004)] C. Martin, J. Gibbons, and I. Bayley. Disciplined
efficient generalised folds for nested datatypes.Formal Aspects of
Computing16(1) (2004), pp. 19–35.

[McBride (2004)] C. McBride. Epigram: Practical programming with de-
pendent types. Proceedings, 5th International Summer School on Ad-
vanced Functional Programming, 2004. Athttp://www.e-pig.org/
downloads/epigram-notes.pdf

[Omega] The Omega Download Page.http://web.cecs.pdx.edu/
~sheard/Omega/index.html

[Pfenning & Paulin-Mohring (1990)] F. Pfenning and C. Paulin-Mohring.
Inductively defined types in the Calculus of Constructions. Proceedings,
Mathematical Foundations of Programming Semantics, pp. 209-228,
1990.

[Sheard et al. (2005)] T. Sheard, J. Hook, and N. Linger. GADTs + exten-
sible kinds = dependent programming. Athttp://www.cs.pdx.edu/
~sheard/papers/GADT+ ExtKinds.ps

[Sheard & Pasalic (2004)] T. Sheard and E. Pasalic. Meta-programming
with built-in type equality. Proceedings, Logical Frameworks and Meta-
languages, 2004. Athttp://homepage.mac.com/pasalic/p2/
papers/LFM04 .pdf

[Sulzmann & Wang (2004)] M. Sulzmann and M. Wang. A systematic
translation of guarded recursive data types to existential types. At
http://www.comp .nus.edu.sg/~sulzmann/research/ms.html

[Sulzmann & Wang (2005)] M. Sulzmann and M. Wang. Translating
generalized algebraic data types to System F. Manuscript, 2005. At
http://www.comp. nus.edu.sg/~sulzmann/manuscript/simple
-translate-gadts. ps

[Svenningsson (2002)] J. Svenningsson. Shortcut fusion for accumulating
parameters & zip-like functions. Proceedings, International Conference
on Functional Programming, pp. 124–132, 2002.

[Takano & Meijer (1995)] A. Takano and E. Meijer. Shortcut deforestation
in calculational form. Proceedings, Functional Programming Languages
and Computer Architecture, pp. 306–313, 1995.

[Xi et al. (2003)] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype
constructors. Proceedings, Principles of Programming Languages, pp.
224–235, 2003.

[Xi & Pfenning (1999)] H. Xi and F. Pfenning. Dependent types in
practical programming. Proceedings, Principles of Programming
Languages, pp. 214–227, 1999.

