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program construction. While this separation of concerns leads to reduced code size 
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1 Introduction

Abstract programming techniques support the generic definition of algorith-
mic functionality in such a way that different configurations of algorithms can
be obtained by plugging together generic components. As a result, these com-
ponents can be reused in many instances and in many different combinations.
The advantages of abstract programming are reduced code size and increased
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reusability of programs. A disadvantage is that the separation of concerns
it supports can introduce considerable computational overhead. In contrast,
code for specific problem instances can effectively intermingle logic and con-
trol to arrive at more efficient implementations than are possible generically.
The challenge of abstract programming is to maintain a high-level separa-
tion of concerns while simultaneously achieving the efficiency of intermingled
programs.

Fusion techniques mitigate the tension between modularity and efficiency
by automatically deriving intermingled efficient versions of programs from
their abstract composite versions. For example, in deforestation of functional
programs, intermediate data structures are eliminated by fusing together func-
tion compositions [6,11,17]. Fusion also enables transformation from an alge-
braic style of programming resembling mathematical specification of numeric
programs to an updating style in which function arguments are overwritten
in order to reuse memory allocated to large matrices [2,4].

Stratego [15,16] is a domain-specific language for the specification of pro-
gram transformation systems based on the paradigm of rewriting strategies.
Stratego separates the specification of basic transformation rules from that
of the strategies by means of which they are applied. Strategies that control
the application of transformation rules can be programmed using a small set
of primitive strategy combinators. These combinators support the definition
of very generic patterns of control, allowing strategies and rules to be com-
posed as necessary to achieve various program transformations. This abstract
programming style leads to concise and reusable specifications of program
transformation systems. However, due to their genericity, some strategies do
not have enough information to perform their tasks efficiently, even though
specializations of those strategies could be implemented efficiently.

In this paper we develop a fusion technique for Stratego programs that spe-
cializes the generic innermost reduction strategy to specific sets of rules. This
optimization supports abstract programming while obtaining the efficiency of
hand-written specializations. The optimization is implemented in Stratego
itself by means of local transformations. A local transformation is one that is
applied to a selected part of a program under the control of a strategy.

In conventional program optimization, transformations are applied through-
out a program. In optimizing imperative programs, complex transformations
are applied to entire programs [12]. In the style of compilation by transforma-
tion [3] — as applied, for example, in the Glasgow Haskell Compiler [14] —
a large number of small, almost trivial program transformations are applied
throughout a program to achieve large-scale optimization by accumulating
small program changes. The style of optimization that we develop in this pa-
per is a combination of these ideas: Combine a number of small transformation
steps using strategies that will apply them to specific parts of a program to
achieve the effects of complex transformations. Because the transformations
are local, special knowledge about the subject program at the point of appli-



cation can be used. This allows the application of rules that would not be
otherwise applicable.

The remainder of this paper is organized as follows. In Section 2 we ex-
plain the basics of Stratego and introduce the generic Stratego specification
of innermost reduction. We present an optimized version of this strategy in
Section 3. In Section 4 we show how the optimized specification of innermost
can be derived from the original specification. Section 5 presents the Stratego
implementation of the optimization rules from Section 4. Section 6 concludes.

2 A Generic Specification of Innermost Reduction

Stratego is a language for specifying program transformations. A key design
choice of the language is the separation of logic and control. The logic of pro-
gram transformations is captured by rewrite rules, while rewriting strategies
control the application of those rules.

In this section we describe the elements of Stratego that are relevant for this
paper. We illustrate them with a small application which simplifies expressions
over natural numbers with addition using a generic specification of innermost
reduction. A complete description of Stratego, including a formal semantics,
is given in [16].

In Stratego, programs to be transformed are expressed as first-order terms.
Signatures describe the structure of terms. A term over a signature S is either
a nullary constructor C from S or the application C(t1,...,tn) of an n-ary
constructor C from S to terms ti over S. For example, Zero, Succ(Zero), and
Plus(Succ(Zero),Zero) are terms over the signature in Figure 1.

2.1 Rewrite Rules

Rewrite rules express basic transformations on terms. A rewrite rule has the
form L : l -> r, where L is the label of the rule, and the term patterns l

and r are its left-hand side and right-hand side, respectively. A term pattern
is either a variable, a nullary constructor C, or the application C(p1,...,pn)

module peano
signature

sorts Nat
constructors
Zero : Nat
Succ : Nat -> Nat
Plus : Nat * Nat -> Nat

rules
A : Plus(Zero, x) -> x
B : Plus(Succ(x), y) -> Succ(Plus(x, y))

Fig. 1. An example Stratego module with signature and rewrite rules.



of an n-ary constructor C to term patterns pi. For example, Figure 1 shows
rewrite rules A and B that simplify sums of natural numbers. As suggested
there, Stratego provides a simple module structure that allows modules to
import other modules.

A rule L: l -> r applies to a (ground) term t when the pattern l matches
t, i.e., when l has the same top-level structure as t. Applying L to t

has the effect of transforming t to the term obtained by replacing the vari-
ables in r with the subterms of t to which they correspond. For exam-
ple, rule B transforms the term Plus(Succ(Zero),Succ(Zero)) to the term
Succ(Plus(Zero,Succ(Zero))), where x corresponds to Zero and y corre-
sponds to Succ(Zero).

In the normal interpretation of term rewriting, terms are normalized by ex-
haustively applying rewrite rules to a term and its subterms until no further
applications are possible. The term Plus(Succ(Zero),Zero), for instance,
normalizes to the term Succ(Zero) under rules A and B. But because normal-
izing a term with respect to all rules in a specification is not always desirable,
and because rewrite systems need not be confluent or terminating, more care-
ful control is often necessary. A common solution is to introduce additional
constructors into signatures and then use them to encode control by means
of additional rules which specify where and in what order the original rules
are to be applied. Programmable rewriting strategies provide an alternative
mechanism for achieving such control while avoiding the introduction of new
constructors or rules.

2.2 Combining Rules with Strategies

Figures 2 and 3 illustrate how strategies can be used to control rewriting. Fig-
ure 2 gives a generic definition of the notion of innermost normalization under
some transformation s. The innermost strategy can be instantiated with any
selection of rules to achieve normalization of terms under those rules. For in-
stance, in Figure 3 the strategy main is defined to normalize Nat terms using
the innermost strategy instantiated with rules A and B. In general, transfor-
mation rules and reduction strategies can be defined independently and can
be combined in various ways. A different selection of rules can be made, or
the rules can be applied using a different strategy. Not all rules in a specifi-
cation are required to participate in a specific normalization. In this way, it
is possible in Stratego to develop a library of valid transformation rules and
apply them in various transformations as needed.

2.3 Rewriting Strategies

A rewriting strategy is a program that transforms terms or fails at doing so.
In the case of success, the result is a transformed term or the original term.
In the case of failure, there is no result.

Rewrite rules are just strategies which apply transformations to the roots



module innermost
strategies

innermost(s) = bottomup(red(s))
bottomup(s) = rec r(all(r); s)
red(s) = rec x(s; bottomup(x) <+ id)

Fig. 2. Generic traversal strategies.

module apply-peano
imports innermost peano
strategies

main = innermost(A + B)

Fig. 3. Using Peano rules.

of terms. Strategies can be combined into more complex strategies by means
of Stratego’s strategy operators. The identity strategy id always succeeds and
leaves its subject term unchanged. The failure strategy fail always fails. The
sequential composition s1 ; s2 of strategies s1 and s2 first attempts to apply
s1 to the subject term. If that succeeds, it applies s2 to the result; otherwise it
fails. The non-deterministic choice s1 + s2 of strategies s1 and s2 attempts
to apply either s1 or s2 to the subject term, but in an unspecified order. It
succeeds if either s1 or s2 succeeds, and fails otherwise. The deterministic
choice s1 <+ s2 of strategies s1 and s2 first attempts to apply s1 to the
subject term. If s1 fails, then it attempts to apply s2 to the subject term. If
s1 and s2 both fail, then it fails as well. The recursive closure rec x(s) of
a strategy s attempts to apply to the subject term the strategy obtained by
replacing each occurrence of the variable x in s by the strategy rec x(s).

A strategy definition f(x1,...,xn) = s introduces a new strategy oper-
ator f parameterized with strategies x1,...,xn and having body s. Such
definitions cannot refer (directly or indirectly) to the operator being defined.
Instead, all recursion must be expressed explicitly by means of the recursion
operator rec.

2.4 Term Traversal

The strategy combinators just described combine strategies which apply trans-
formation rules to the roots of their subject terms. In order to apply a rule
at an internal site of a term (i.e., to a subterm), it is necessary to traverse
the term. Stratego defines several primitive operators which expose the direct
subterms of a constructor application. These can be combined with the op-
erators described above to define a wide variety of complete term traversals.
For the purposes of this paper we restrict the discussion of traversal operators
to congruence operators and the all operator.

Congruence operators provide one mechanism for term traversal in Strat-
ego. For each constructor C there is a corresponding congruence operator



C. If C is an n-ary constructor, then the corresponding congruence operator
defines the strategy C(s1,...,sn), which applies only to terms of the form
C(t1,...,tn) resulting in C(t1’,...,tn’), if each si successfully applies to
ti resulting in ti’. For example, the congruence Plus(s1,s2) applies only
to Plus terms, and it works by applying s1 to the first summand and s2 to
the second, producing Plus(t1’,t2’). If the application of si to ti fails for
any i, then the application of C(s1,...,sn) to C(t1,...,tn) also fails.

The operator all(s) applies s to each of the direct subterms ti of a con-
structor application C(t1,...,tn). It succeeds if and only if all applications
to the direct subterms succeed. The resulting term is the constructor applica-
tion C(t1’,...,tn’) where the ti’ are the results obtained by applying s to
the terms ti. Note that all(s) is the identity on constants, i.e., on construc-
tor applications without children. An example of the use of all appears in the
strategy bottomup in Figure 2. The strategy expression rec x(all(x); s)

specifies that the strategy is first applied recursively to all direct subterms of
a term, and, thereby, to all of its subterms. If that succeeds, then the argu-
ment strategy s is applied to the resulting term. This definition of bottomup
captures the generic notion of a post-order traversal over a term.

The innermost strategy in Figure 2 is defined using bottomup. The strat-
egy innermost(s) performs a bottomup traversal over a term. At each sub-
term it calls the strategy red(s) to reduce that subterm. This means that
before red(s) is applied to a term, all its subterms are normalized with re-
spect to s. The strategy red(s) then applies the transformation s to the
subject term. If that succeeds, then the result of the transformation is further
reduced by invoking a bottomup traversal, which recursively calls the red(s)

transformation at each subterm. If not, then this entails that the subject term
is in normal form, and so red(s) succeeds with id. The strategy innermost

thus captures the notion of parallel innermost reduction. Note, however, that
other specifications of innermost are possible since Stratego representations
of strategies are not, in general, unique.

3 An Optimized Specification of Innermost Reduction

Inspection of the specification for the innermost strategy in Figure 2 reveals
an inefficiency resulting from the up-and-down way in which it traverses terms.
The difficulty is that subterms which have already been normalized may be
reconsidered for normalization a number of times. Consider, for example, rule
B from Figure 1. Because of the way innermost is defined, the subterms
of the term matched by the left-hand side of B in an application of main

are already in normal form before application of the rule. In particular, the
terms matching the variables x and y are in normal form. However, after
constructing the right-hand side Succ(Plus(x,y)), the terms x and y are
completely renormalized by the occurrence of bottomup in the called strategy
red. Renormalization entails that these terms are completely traversed and



module apply-peano
strategies

main =
bottomup(rec r(
( {x: ?Plus(Zero, x); !x}
+ {x, y: ?Plus(Succ(x), y); <r> Succ(<r> Plus(x, y))}
) <+ id))

Fig. 4. Optimized strategy.

that the rules are tried at each subterm. Since the terms are in normal form,
no actual transformation is done, of course.

In the specific case of innermost normalization with the rules A and B, a
more efficient definition is the one in Figure 4. This definition completely
avoids renormalization — as is easily seen once we introduce the Stratego
constructs it uses in Section 4 — but there are (at least) two problems with
optimizations such as this one. First, it can be quite difficult to optimize
strategies by hand. Hand optimization is error-prone, especially when per-
formed on specifications of any reasonable size. Second, rules and strategies
tend to be intermingled in optimized programs. This inhibits both reuse of the
rules with other strategies and their reuse in combinations other than those
which have been “hard wired” into the optimized strategy. For these reasons,
automatic transformation of modular specifications into optimized versions is
desirable.

In the next section we justify our optimization of innermost by showing
how the optimized specification in Figure 4 can be derived automatically from
that in Figure 2. We demonstrate the technique by applying it to the specific
program innermost(A+B), but it optimizes all uses of innermost applied to
any selection of rules equally well.

4 Derivation

In this section we show how the optimized implementation of Figure 4 can be
derived from the strategy innermost(A + B) by systematic transformation.
In the next section we will formalize in Stratego the transformation rules we
use and will develop a strategy for automatically applying them in the correct
order.

The goal of the derivation is to fuse the occurrence of bottomup appearing
in the definition of the strategy red called by innermost with the right-hand
sides of the rules A and B. This avoids renormalizing the terms to which vari-
ables from the left-hand sides of these rules are bound. To achieve this, we
first desugar the rules and then inline (unfold) definitions in order to arrive
at a single expression containing the complete specification of the innermost

strategy. The bottomup strategy can then be distributed over the right-hand
sides of the rules to which innermost applies; A and B in our running example.



4.1 Desugaring Rules

In Stratego, rules are not primitives. Instead they are expressed in terms
of primitives for matching and building terms. The strategy ?t matches the
subject term against the term pattern t. The strategy !t replaces the subject
term with the term constructed by instantiating the variables in the term
pattern t with their current bindings. The construct {xs:s} delimits the scope
of the variables in the strategy s. Thus, a rule L: l -> r is just syntactic
sugar for L = {x1,...,xn:?l;!r}, where the xi are the variables occurring
in the rule. The example rules from module peano in Figure 1 thus reduce to

A = {x: ?Plus(Zero, x); !x}

B = {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y))}

4.2 Inlining Definitions

The first step of the derivation consists in inlining definitions, i.e., in replacing
each call to a strategy by the body of its definition. If f(s1,...,sn) = s is the
definition of strategy operator f, then a call f(s1,...,sn) to that operator
can be replaced by s[s1/x1,...,sn/xn], i.e., by the strategy obtained by
replacing the formal parameters of the body of f by its actual arguments. In
the case of the main strategy in module apply-peano in Figure 3, inlining
gives

(1) innermost(A + B)

By the definition of innermost this expands to

(2) bottomup(red(A + B))

By the definition of red, this in turn gives

(3) bottomup(rec r((A + B); bottomup(r) <+ id))

Finally, inlining the definitions of rules A and B gives

(4) bottomup(rec r(

( {x: ?Plus(Zero, x); !x}

+ {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y))}

); bottomup(r)

<+ id))

4.3 Sequential Composition over Choice

In the next step of the derivation we right distribute the bottomup strategy
over the nondeterministic choice strategy using the rule

(x + y); z -> (x; z) + (y; z)

This rule is not valid for all strategy expressions. Consider a term t for which
x and y both succeed, (x;z) fails, and (y;z) succeeds. Then (x + y); z will
fail if application of x is attempted. By contrast, (x;z) + (y;z) will always



succeed since (y;z) does. It is, however, the case that the rule does hold
whenever z is guaranteed to succeed; in this situation, the success or failure
of both sides of the rule is determined wholly by the success or failure of x
and y.

Since id always succeeds, r in the recursive strategy (4) is guaranteed to
succeed as well. Thus, bottomup(r) is guaranteed to succeed, and so right
distribution of bottomup(r) according to the rule is valid. This gives

(5) bottomup(rec r(

( {x: ?Plus(Zero, x); !x}; bottomup(r)

+ {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y))}; bottomup(r)

) <+ id))

4.4 Sequential Composition over Scope

Next, in order to apply bottomup(r) to the right-hand sides of the rules we
need to bring it under the scope of the rules by applying the transformation

{xs: s1}; s2 -> {xs: s1; s2}

This rule is valid if the variables in xs are not free in s2. Its application
transforms (5) into

(6) bottomup(rec r(

( {x: ?Plus(Zero, x); !x; bottomup(r)}

+ {x,y: ?Plus(Succ(x), y); !Succ(Plus(x, y)); bottomup(r)}

) <+ id))

4.5 Strategy Application

We can now apply bottomup(r) to the term built in the right-hand side of each
rule. Using the notation <s> t to denote !t; s, i.e., to denote application of
the strategy s to the instance of t determined by the current bindings, we get

(7) bottomup(rec r(

( {x: ?Plus(Zero, x); <bottomup(r)> x}

+ {x,y: ?Plus(Succ(x), y); <bottomup(r)> Succ(Plus(x, y))}

) <+ id))

4.6 Distribution of bottomup

The application of bottomup(r) to a constructor application leads to the
following derivation:

<bottomup(r)> C(t1,...,tn)

= {definition of bottomup}

<rec x(all(x); r)> C(t1,...,tn)

= {recursion}

<all(rec x(all(x); r)); r> C(t1,...,tn)



= {semantics of sequential composition and all}

<r> C(<rec x(all(x); r)>t1,..., <rec x(all(x); r)>tn)

= {definition of bottomup}

<r> C(<bottomup(r)> t1,...,<bottomup(r)> tn)

By repeatedly applying this rule, bottomup(r) is distributed over the term
constructions in the right-hand sides until variables are encountered. This
gives

(8) bottomup(rec r(

( {x : ?Plus(Zero, x); <bottomup(r)> x}

+ {x,y: ?Plus(Succ(x), y);

<r> Succ(<r> Plus(<bottomup(r)> x,<bottomup(r)> y))}

) <+ id))

4.7 Avoiding Renormalization

Finally, we use the observation that

<bottomup(r)> v -> v

if v is a variable originating in the left-hand side of a rule. That is, if vs

contains all variables occurring in l, v is in vs, and {vs:?l;!r} is a strategy,
then occurrences of <bottomup(r)>v in r can be replaced by v itself. This
observation is valid because terms matching variables from the left-hand side
of a rule are already in normal form.

Although this observation relies on non-local information, it does give rise
to a transformation which is local in the sense that it is applied only within
a single strategy, i.e., that is applied (locally) to a selected part of a program
under the control of a strategy. Using it, we arrive at the desired optimized
version of innermost(A+B):

(9) bottomup(rec r(

( {x: ?Plus(Zero, x); !x}

+ {x, y: ?Plus(Succ(x), y); <r> Succ(<r> Plus(x, y))}

) <+ id))

5 Implementation

In this section we show how the rules used in the derivation in Section 4
can be implemented in Stratego. We start by defining the abstract syntax
of Stratego programs. We then add overlays to abstract over specific pat-
terns in the abstract syntax that occur often in the rules. Next, we formalize
the rules used in the derivation as Stratego rules. Finally, we combine these
rules into a strategy that optimizes occurrences of the innermost strategy in
Stratego specifications. The optimization works for all strategies of the form
innermost(R1 + ... + Rn) with arbitrary rules Ri.



5.1 Abstract Syntax

Figure 5 defines the signature of the abstract syntax of terms and strategy
expressions in Stratego. The signature has been reduced to those constructs
that are relevant to optimizing innermost. The term

(10) Scope(["x"],

Seq(Match(Op("Plus",[Op("Zero",[]),Var("x")])),

Build(Var("x")))

over this signature is the abstract syntax representation for the body of rule
A from Figure 1 after desugaring, and

(11) Scope(["x","y"],

Seq(Match(Op("Plus",[Op("Succ",[Var("x")]),Var("y")])),

Build(Op("Succ",[Op("Plus",[Var("x"),Var("y")])]))))

is the representation for rule B.

As suggested by this signature, Stratego supports the built-in data type
String. Syntactic sugar for lists in the form [t1,...,tn] is also provided.

module stratego
signature

sorts Term
constructors

Var : String -> Term
Op : String * List(Term) -> Term

sorts SVar Strat SDef
constructors

Id : Strat
Fail : Strat
Seq : Strat * Strat -> Strat
Choice : Strat * Strat -> Strat
LChoice : Strat * Strat -> Strat
SVar : String -> SVar
Rec : String * Strat -> Strat
SDef : String * List(String) * Strat -> SDef
Call : SVar * List(Strat) -> Strat
All : Strat -> Strat
Match : Term -> Strat
Build : Term -> Strat
Scope : List(String) * Strat -> Strat
Where : Strat -> Strat

Fig. 5. Simplified abstract syntax of Stratego programs.



module strategy-patterns
overlays

Do(x) = Call(SVar(x),[])
Innermost(s, im, r, y) = Bottomup(im, Red(s, r, y))
Bottomup(r, s) = Rec(r, Seq(All(Do(r)), s))
Red(s, x, y) = Rec(x, LChoice(Seq(s, Bottomup(y, Do(x))), Id))

Fig. 6. Abstract syntax patterns for several standard traversal strategies.

5.2 Patterns in Abstract Syntax

We want to optimize certain specific patterns of strategy expressions. Since
we do not want to rely on the names chosen for those patterns by the spec-
ification writer, we need to be able to recognize the structure of patterns.
Because encoding patterns using abstract syntax expressions can lead to large
unmanageable terms, we use the Stratego overlay mechanism to abstract over
them.

An overlay gives a name (pseudo-constructor) to a complex term pattern.
The pseudo-constructor can then be used as an ordinary constructor in match-
ing and building terms. Overlays can use other overlays in their definitions,
but cannot be recursive. Overlays can be thought of as term macros. Using
overlays, we can write concise transformation rules involving complex term
patterns. Module strategy-patterns in Figure 6 defines overlays for the ab-
stract syntax patterns corresponding to the strategies innermost, bottomup,
and red from the example in Figure 2. Thus, the overlay Do("f") is an abbre-
viation of the term Call(SVar("f"),[]). The “extra” parameters in Figure 6
correspond to bound variables from Figure 2.

5.3 Transformation Rules

Figure 7 defines the rules that were used in the derivation in Section 4. The
first six rules are distribution rules for sequential composition over other op-
erators. The right distribution rules for sequential composition over deter-
ministic and non-deterministic choice are parameterized with strategies that
decide whether or not the strategy expression to be distributed is guaran-
teed to succeed. The AssociateR rule associates composition to the right.
The IntroduceApp rule defines the transformation !t; s -> <s> t. Finally,
rule BottomupOverConstructor distributes Bottomup over constructor appli-
cation. The rule uses the map strategy operator to distribute the application
of Bottomup over the list of arguments of the constructor.

As Figure 7 suggests, Stratego rules can have conditions which are intro-
duced using the keyword where. Conditional rules apply only if the conditions
in their where clauses succeed. In addition, the notation \r\ converts a rule
r into a strategy. The argument to map in BottomupOverConstructor is thus
the strategy corresponding to the local rule that transforms a term t into an
application of the same instance of Bottomup to t.



module fusion-rules
imports stratego
rules

SeqOverChoiceL :
Seq(x, Choice(y, z)) -> Choice(Seq(x, y), Seq(x, z))

SeqOverLChoiceL :
Seq(x, LChoice(y, z)) -> LChoice(Seq(x, y), Seq(x, z))

SeqOverChoiceR(succ) :
Seq(Choice(x, y), z) -> Choice(Seq(x, z), Seq(y, z))
where <succ> z

SeqOverLChoiceR(succ) :
Seq(LChoice(x, y), z) -> LChoice(Seq(x, z), Seq(y, z))
where <succ> z

SeqOverScopeR :
Seq(Scope(xs, s1), s2) -> Scope(xs, Seq(s1, s2))

SeqOverScopeL :
Seq(s1, Scope(xs, s2)) -> Scope(xs, Seq(s1, s2))

AssociateR :
Seq(Seq(x, y), z) -> Seq(x, Seq(y, z))

IntroduceApp :
Seq(Build(t), s) -> Build(App(s, t))

BottomupOverConstructor :
App(Bottomup(x, s), Op(c, ts)) ->
App(s, Op(c, <map(\ t -> App(Bottomup(x, s), t)\ )> ts))

Fig. 7. Distribution and association rules.

5.4 Strategy

Figure 8 defines the strategy fusion that combines the rules in Figure 7 into a
strategy for optimizing occurrences of the innermost strategy. It is assumed
that desugaring and inlining have already been performed prior to application
of fusion. These transformations are handled automatically by the Stratego
compiler.

The fusion strategy sequences four constituent strategies. First, an occur-
rence of the innermost strategy is recognized using the congruence operator
corresponding to the Innermost overlay. The IntroduceMark rule applies a
mark to the choice of rules to be used in the innermost normalization of terms,
and the strategy propagate-mark then propagates the mark to the argument



module fusion-strategy
imports strategy-patterns fusion-rules
signature

constructors
Mark : Strat

strategies

fusion =
Innermost(IntroduceMark,id,?r,id);
propagate-mark;
fuse-with-bottomup(?Bottomup(_, Do(r)));
alltd(BottomupToVarIsId(?Do(r)))

propagate-mark =
innermost(SeqOverChoiceL + SeqOverLChoiceL + SeqOverScopeL)

fuse-with-bottomup(succ) =
innermost(SeqOverChoiceR(succ) + SeqOverLChoiceR(succ)

+ SeqOverScopeR + AssociateR + IntroduceApp
+ BottomupOverConstructor)

rules

IntroduceMark : s -> Seq(Mark, s)

BottomupToVarIsId(isr) :
Seq(Mark, Seq(Match(lhs), Build(rhs))) ->
Seq(Match(lhs), Build(rhs’))
where <tvars> lhs => vs;

<alltd(\App(Bottomup(_,r), Var(v)) -> Var(v)
where <fetch(?v)> vs; <isr> r \)> rhs => rhs’

Fig. 8. Fusion strategy.

rules. The propagated marks make it possible to distinguish normalizing rules
from local rules in the normalizing strategy. Note that it is an additional
constructor that is used to convey information from one transformation to the
next. Although strategies often make it possible to avoid additional construc-
tors, they are sometimes still needed.

Using the pseudoconstructors Innermost, Bottomup, and Red to enhance
readability, we can express the result of applying the Innermost congruence
of fusion to the abstract syntax representation for innermost(A+B). In this
notation, innermost(A+B) is abbreviated

(12) Innermost(Choice(alpha,beta),p,w,z)

where alpha and beta are the abstract syntax representations for rules A and



B, respectively, given in (10) and (11), and p, w, and z are new auxiliary
variables corresponding to the bound variables in Figure 2. Applying the
specified Innermost overlay to (12) yields

(13) Innermost(Seq(Mark,Choice(alpha,beta)),p,w,z)

This corresponds to the strategy in (4). Applying progagate-mark to (13)

then gives

(14) Innermost(Choice(Seq(Mark,alpha),Seq(Mark,beta)),p,w,z)

which corresponds to the strategy in (5).

Next, the strategy fuse-with-bottomup distributes trailing occurrences of
Bottomup over choice, scope, build, and constructors. At this point the right-
hand sides of rules have the form of expression (8) in the previous section. In
particular, applying fuse-with-bottomup to (14) gives

(15) Bottomup(p,Rec(w,LChoice(Choice(alpha1,beta1),Id)))

where alpha1 is

(16) Scope(["x"],Seq(Mark,

Seq(Match(Op("Plus",[Op("Zero",[]),Var("x")])),

Build(App(Bottomup(z,Do(w)),Var("x")))))

and beta1 is

(17) Scope(["x","y"],Seq(Mark,

Seq(Match(Op("Plus",[Op("Succ",[Var("x")]),Var("y")])),

Build(App(Do(w),

Op("Succ",

[App(Do(w),

Op("Plus",

[App(Bottomup(z,Do(w)),Var("x")),

App(Bottomup(z,Do(w)),Var("y"))]

))]))))))

Finally, BottomupToVarIsId removes the applications of Bottomup(_,r)
to variables in the right-hand sides of marked rules provided these also occur
in their left-hand sides. The first local rule of BottomupToVarIsId uses tvars
to record those variables occurring in the left-hand side of a normalizing rule.
The second then removes applications of Bottomup(_,r) to occurrences of
these variables in the right-hand side of the normalizing rule by means of a
local traversal of that right-hand side (rhs).

The notation <s> t => t’ in the conditions of the rule BottomupToVarIsId
abbreviates !t; s; ?t’. The traversal strategy alltd used there is defined
as

alltd(s) = rec x(s <+ all(x))

It performs all outermost applications of s in the subject term by first attempt-
ing to apply s to the root of the subject term and, if this fails, recursively



attempting to apply s to each child. The argument to alltd in the rule
BottomupToVarIsId is the strategy derived from the local rule

App(Bottomup(_,r), Var(v)) -> Var(v)

where <fetch(?v)> vs; <isr> r

which removes the application of Bottomup(_,r) to Var(v). It uses the con-
dition <fetch(?v)> vs to determine whether or not the variable v to which
Bottomup(_,r) is applied appears in the left-hand side of a marked rule, i.e.,
is in the list of variables vs. The strategy isr is passed to the rule by the
fusion strategy, and indicates whether or not r is indeed the recursion vari-
able. This ensures that only the desired applications of Bottomup(_,r) are
removed.

Applying the alltd traversal specified in fusion to (15), for example,
gives

(18) Bottomup(p,Rec(w,LChoice(Choice(alpha2,beta2),Id)))

where alpha2 is

(19) Scope(["x"],

Seq(Match(Op("Plus",[Op("Zero",[]),Var("x")])),

Build(Var("x"))))

and beta2 is

(20) Scope(["x","y"],

Seq(Match(Op("Plus",[Op("Succ",[Var("x")]),Var("y")])),

Build(App(Do(w),

Op("Succ",

[App(Do(w),

Op("Plus",[Var("x"),Var("y")]))])))))

This is the final result of applying fusion to the abstract syntax representation
of innermost(A+B). It corresponds to the strategy in (9).

6 Concluding Remarks

In this paper we have shown how local transformations can be used to fuse logic
and control in optimizing abstract programs. Strategies play two important
roles in our approach. First, they appear as abstract programming devices that
are subject to optimization. Second, together with local transformation rules,
they provide a language in which automatic optimizations can be specified in
an elegant manner. Strategy-based optimization can thus be used to reduce
inefficiencies associated with the genericity of strategies as programming tools.

The optimization strategy presented in this paper is included as an experi-
mental optimization phase in the Stratego compiler (version 0.5.4). The opti-
mization still has some limitations. Only strategies of the form innermost(R1

+ ... + Rn), where the Ri are rules, are optimized. Strategies such as



innermost(rules1 + rules2), where the strategies rules1 and rules2 are
defined as rules1 = R11 + ... + R1k and rules2 = R21 + ... + R2l,
are not handled properly because the inliner currently does not inline such
definitions. This requires a generalization of the inliner. Furthermore, rules
with conditions that introduce new variables are handled, but the terms bound
to the newly introduced variables are renormalized. Based on an analysis of
the conditions this could be avoided under some circumstances.

Strategies have also been used to optimize programs which are not them-
selves defined in terms of strategies. In [6], for example, they are used to elimi-
nate intermediate data structures from functional programs. In [16], strategies
are used to build optimizers for an intermediate format for ML-like programs.
In both cases, strategies are used — as they are here — in conjunction with
small local transformations to achieve large-scale optimization effects.

Small local transformations have been dubbed “humble transformations”
in [14]. Such transformations are used extensively in optimizing compilers
based on the compilation-by-transformation idiom [8,9,1,13]. They are also
used to some degree in most compilers, although not necessarily recognizable
as rewrite rules in the implementation.

The optimization of innermost presented in this paper was inspired by
more general work on functional program optimization. In [5], an optimization
scheme for compositions of functions that uniformly consume algebraic data
structures with functions that uniformly produce substitution instances of
them is given. This scheme is generic over data structures, and has been proved
correct with respect to the operational semantics of Haskell-like languages.
Future work will involve more completely incorporating the ideas underlying
this scheme into strategy languages to arrive at more generally applicable
and provably correct optimizations of strategy-based program patterns. In
particular, we aim to see the innermost fusion technique described in this
paper as the specialization to innermost of a generic and automatable fusion
strategy which is provably correct with respect to the semantics in [16].

The importance of optimizing term traversals in functional transformation
systems is discussed in [10]. Term traversals are modelled there by fold func-
tions but, since the fold algebras under consideration are updateable, standard
fusion techniques for functional programs [17,11,18] are not immediately ap-
plicable. The fusion techniques presented here may nevertheless provide a
means of implementing optimizations which automatically shortcut recursion
in term traversals. If, as suggested in [10], shortcuts of recursion in term
traversals should be regarded as program specialization then, since special-
ization can be seen as an automated instance of the traditional fold/unfold
program optimization methodology [7], optimization of traversals should in-
deed be achievable via fold/unfold transformations. These connections are
deserving of further investigation.

Finally, measurements to evaluate the optimizations achieved by innermost

fusion and related fusion techniques are needed.
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