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ABSTRACT 

PREDICTING OCCUPIED ZONE TEMPERATURE USING SIMPLIFIED MODELING METHODS 

 

Philip William Howard 

B.S., Appalachian State University 

M.S., Appalachian State University  

Chairperson: Dr. Jeff Ramsdell 

 Due to the expected level of thermal stratification that is present in buildings which are 

subject to high levels of infiltration during the heating season, the well mixed modeling 

approach may not be the most appropriate method for modeling interior conditions and energy 

use in structures with low levels of insulation and poor air sealing. A simplified modeling 

method known as the Three-Node Displacement Ventilation RoomAir Model was developed by 

da Graça (2003) for predicting levels of thermal stratification present in buildings that utilize 

displacement ventilation systems (DV). This paper examines the level of thermal stratification 

in a building with no forced air that is subject to high levels of infiltration during the heating 

season, and the ability of the Three-Node Displacement Ventilation RoomAir Model to 

accurately model the thermal stratification therein. It was found that the levels of thermal 

stratification in the test building were such that the well mixed modeling approach is not 

appropriate. However, the Three-Node Displacement Ventilation RoomAir Model was also 

found to be inappropriate for modeling the conditions set forth in this research due to the 

methods for predicting temperature distribution utilized in the model. It was concluded that 
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another method for modeling thermal stratification in loosely constructed buildings during the 

heating season should be developed. 



vi 

Acknowledgments 

 This research would not have been possible without the support of my thesis 

committee. I will be forever grateful for all the encouragement, understanding, and motivation 

that they, and many other faculty and staff at Appalachian State University, have shown me over 

the course of my education. My time at Appalachian State is one that I will forever cherish. 

Thank you.  



vii 

Table of Contents 

Abstract ............................................................................................................................................................................. iv 

Acknowledgments………………………………………………………………………………………………………………vi 

List of Tables……………………………………………………………………………………………………………………… ix 

List of Figures ................................................................................................................................................................... x 

Chapter 1: Introduction ............................................................................................................................................. 1 

Purpose of the Study .................................................................................................................................................. 4 

Research Questions .................................................................................................................................................... 5 

Hypothesis ..................................................................................................................................................................... 5 

Limitations of the Study ........................................................................................................................................... 6 

Significance of the Study .......................................................................................................................................... 7 

Chapter 2: Review of Literature ............................................................................................................................ 8 

Thermal Stratification ............................................................................................................................................... 8 

Displacement Ventilation Systems ...................................................................................................................... 9 

Modeling Thermal Stratification in Displacement Ventilation Systems ............................................ 10 

EnergyPlus™ RoomAir Models ............................................................................................................................ 16 

Validating Building Energy Models ................................................................................................................... 22 

Chapter 3: Research Methods .............................................................................................................................. 27 

Test Structure ............................................................................................................................................................. 27 

Experimental Design ............................................................................................................................................... 28 

    Measurement Apparatus ........................................................................................................................................ 30 

Temperature sensor network. ........................................................................................................................ 30 

Zone heater. ............................................................................................................................................................ 34 



viii 

Simulated infiltration/exfiltration. ............................................................................................................... 35 

OpenStudioⓇ/EnergyPlus™ Model of the Test Building ......................................................................... 37 

Data Analysis Procedures ...................................................................................................................................... 38 

Research Question 1 Data Analysis Procedure ............................................................................................. 38 

Research Questions 2 & 3 Data Analysis Procedure .................................................................................. 40 

Chapter 4: Results ....................................................................................................................................................... 43 

Research Question 1 Results ................................................................................................................................ 43 

Research Question 2 Results ................................................................................................................................ 57 

Research Question 2 & 3 Results ........................................................................................................................ 67 

Chapter 5: Discussion and Conclusion ............................................................................................................ 74 

References ........................................................................................................................................................................ 78 

Vita……………………………………………………………………………………………………………………………………..81 



ix 

List of Tables 

Table 1 Temperature 1M Average Maximum ...................................................................................................... 44 

Table 2 Temperature 2M Average Maximum ...................................................................................................... 45 

Table 3 Temperature 3M Average Maximum ...................................................................................................... 46 

Table 4 Medium Strand Temperatures Average Minimum ............................................................................ 49 

Table 5 Medium Strand Temperatures Overall Average ................................................................................. 50 

Table 6 Temperatures Used in the Gradients Shown in Figure 22 ............................................................... 55 

Table 7 Temperature 2M Average Max .................................................................................................................. 62 

Table 8 Color-coding scheme for model predicted neutral heights ............................................................. 69 

Table 9 Heat gain vs airflow for 1280 ft3 .............................................................................................................. 70 

Table 10 Heat gain vs airflow for 2119 ft3 ........................................................................................................... 71 

Table 11 Heat gain vs airflow for 2119 ft3 ........................................................................................................... 72 

 

  



x 

List of Figures 

Figure 1. Comparison of recorded interior temperatures to those predicted by EnergyPlus™ 

simulation using AMY data (Ramsdell et al., 2012, p. 1025). ........................................................................ 3 

Figure 2. “Typical temperature, concentration and salinity profiles” (Mateus & da Graça, 2015).

 ............................................................................................................................................................................................... 23 

Figure 3. Exterior temperature profile over the course of experimentation. ....................................... 29 

Figure 4. Temperature sensor network and radiant heater. ....................................................................... 31 

Figure 5. Temperature sensor network and custom blower door. ........................................................... 32 

Figure 6. Temperature sensor network in section view. ............................................................................... 33 

Figure 7. Temperature sensor network in plan view and location of radiant heater. ...................... 34 

Figure 8. Custom blower door and Minneapolis Duct Blasters. ................................................................. 36 

Figure 9. Three-dimensional volumetric weighting method. ...................................................................... 42 

Figure 10. 15 ACH@50 Temperature gradient average maximum strand 1M. .................................... 45 

Figure 11. 15 ACH@50 Temperature gradient average maximum strand 2M. .................................... 46 

Figure 12. 15 ACH@50 Temperature gradient average maximum strand 3M. .................................... 47 

Figure 13. 15 ACH@50 Temperature gradient average maximum. .......................................................... 49 

Figure 14. 15 ACH@50 temperature gradient average minimum. ............................................................ 50 

Figure 15. 15 ACH@50 Temperature gradient overall average. ................................................................ 51 

Figure 16. 5 ACH@50 Temperature gradient average minimum. ............................................................. 52 

Figure 17. 5 ACH@50 Temperature gradient average maximum. ............................................................ 52 

Figure 18. 5 ACH@50 Temperature gradient overall average. ................................................................... 53 

Figure 19.  5 ACH@50 Temperature gradient average maximum. ........................................................... 53 

file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523370
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523370
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523370
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523370
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523371
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523371
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523377
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523377
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523378
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523378
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523379
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523379
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523380
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523380
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523381
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523381
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523382
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523382
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523383
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523383
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523384
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523384
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523385
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523385
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523386
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523386
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523387
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523387


xi 

Figure 20. Baseline temperature gradient overall average. ......................................................................... 54 

Figure 21. Baseline temperature gradient average minimum. ................................................................... 54 

Figure 22.  5 ACH@50 Temperature gradient outdoor temperatures cold vs warm. ....................... 56 

Figure 23.Temperature gradient average maximum across treatments. ............................................... 57 

Figure 24. Stratified model output using simple heater configuration. .................................................. 58 

Figure 25. Temperature Profile from customized heater input. ................................................................ 60 

Figure 26. Building elevation with radiant heater. .......................................................................................... 62 

Figure 27. Occupied zone test building vs well mixed model vs occupied model. .............................. 64 

Figure 28. Occupied zone test building vs occupied zone model. .............................................................. 65 

Figure 29. Occupied zone test building vs well-mixed model. .................................................................... 66 

Figure 30. Well-mixed building temperature average vs well-mixed model. ....................................... 67 

 

file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523388
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523388
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523389
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523389
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523390
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523390
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523391
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523391
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523392
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523392
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523394
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523394
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523395
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523395
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523396
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523396
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523397
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523397
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523398
file:///C:/Users/elect/Desktop/Thesis%20Paper/Grad%20School%20thesis%20edits/New%20Working%20Thesis%20Final%2015.docx%23_Toc25523398


  1 

 

CHAPTER 1: INTRODUCTION 

According to the Population Reference Bureau (2018), by 2050 the number of people on 

the planet will have increased from the current estimated world population of 7.6 billion 

people, to around 9.9 billion people, which is a 29% increase. It is estimated that 97% of this 

growth will occur in developing nations (Walker, 2016). This means that there is likely going to 

be a large increase in the need for housing in these same areas. According to a study done by 

Daioglou, Van Ruijven, and Van Vuuren (2012), residential energy use accounts for 

approximately 35% of the global total. While residential energy use in developing nations is 

substantially lower than residential energy use in developed nations, considering that the 

majority of population growth will occur in developing nations, residential energy in these 

nations will continue to account for a larger portion of the global residential energy use as time 

moves on. For this reason, it is crucial that residential development is approached in a way that 

is more sustainable and energy efficient than it has been in the past.  

Internationally, it is a historically common approach to view housing affordability solely 

in terms of economic viability, with little or no regard to sustainability or life cycle costs 

(Mulliner, Smallbone & Maliene, 2013). As more research is being done on building 

performance and energy use, tools and bodies of knowledge have been developed that might 

aid in building higher performing, and more energy efficient buildings. One such tool is Building 

Energy Modeling (BEM) Software. These softwares can predict a building’s occupancy comfort, 

energy use, and many other things, using applicable historic on-site weather data. One example 

of such a BEM software is EnergyPlus™.  
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EnergyPlus™ is a program that allows the user to perform energy analysis while 

simulating thermal loads, all based on user inputs that coincide with a buildings construction 

types and systems (U.S. Department of Energy, 2018a). This study examined the use of 

EnergyPlus™ for the purpose of modeling low income housing in developing countries, and 

investigating methods for validating these models based on sparsely monitored test houses, in 

order to make energy efficiency suggestions for existing and future homes. 

This research is a continuation of a long-term study begun in 2011 by Ramsdell, Delarm 

Neri, Jacobs, & Verster (2012), at the University of the Free State in South Africa. Ramsdell and 

his colleagues focused on housing built through a government subsidized housing program in 

South Africa known as the Reconstruction Development Program (RDP) (Ramsdell et al., 2012). 

In the first phase of this study, the research team set out to show that it is possible, through 

simple and cost-effective efficiency upgrades, to drastically reduce a building’s heating energy 

use in colder months, and to improve occupant comfort year-round (Ramsdell et al., 2012). This 

was done through the use of BEM software, by modeling the test houses as built, and comparing 

these models to those same houses as modeled with a number of simple energy efficiency 

upgrades (Ramsdell et al., 2012). Furthermore, the researchers conducted life cycle cost 

analyses to show the payback period in energy savings of each efficiency measure. The results 

from the first phase of the study show that there is the potential for a large reduction in energy 

use with the implementation of the suggested building efficiency measures (Ramsdell et al., 

2012). The majority of the efficiency measures also showed a financial benefit over the 

proposed 30-year lifespan of the building (Ramsdell et al., 2012).   

In the second phase of this study, HOBO® data loggers were installed in the houses that 

were modeled in the first phase, in order to record interior and exterior conditions including 

temperature and relative humidity, so as to compare actual conditions to those present in the 

models. Upon comparison of the measured interior temperatures versus the predicted interior 
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temperatures produced by the BEM, a relatively close correlation between the two was found, 

except for in the cold months of the year (Ramsdell et al., 2012). Upon further investigation into 

the inner workings of how EnergyPlus™ models the conditions in question, it was found that the 

model assumes that the air in the thermal zones is well mixed, which may not be the case for 

the zone conditions in the houses being monitored in South Africa. This may account for some 

of the discrepancies in actual temperatures compared to those that the model predicted, based 

on where the HOBO data loggers were placed in relation to heat sources. 

 

Figure 1. Comparison of recorded interior temperatures to those predicted by EnergyPlus™ 
simulation using AMY data (Ramsdell et al., 2012, p. 1025). 

 

The HOBO data loggers were installed in each house at a wall height of approximately 

seven feet. The houses which were examined in this study were all constructed with the 

following features: “concrete strip footings, masonry walls of clay brick or concrete block, 

pitched roof with corrugated metal or concrete tile roofing, concrete floor with ceramic tile or 



  4 

 

no finish, timber or steel” (Ramsdell et al., 2012, p. 4). Given the loose nature of the construction 

of the houses studied, and the position of the loggers relative to the heat source in each house, 

one might suspect that these houses are subject to high levels of thermal stratification, and that 

the data loggers were placed in an area where the average temperature did not coincide with 

the well-mixed average zone temperatures that the EnergyPlus™ model assumes. Given the 

discrepancies between the collected data and the outputs from the EnergyPlus™ model, it would 

be difficult to make meaningful energy conservation recommendations regarding the 

construction methods and assemblies used, when the recommendations are based on a model 

that does not accurately depict temperatures felt by the occupant or realistic heating energy use 

and heater run times. Considering this, it was necessary to find a method for modeling these 

structures in the software that accounted for thermal stratification, which might give a more 

accurate picture of temperatures felt by the occupants in these structures, and the amount of 

heat energy required to maintain a certain heating setpoint.  

In EnergyPlus™ there are input objects that allow for the examination of non-uniform 

zone air temperatures, a feature known as Room Air Models (U.S. Department of Energy 

[USDOE], 2018a). These inputs were designed to model air temperature distributions in 

displacement ventilation systems, in conjunction with other air-side controls (OpenStudio, 

2018). In the model, however, when there are no mechanical ventilation systems as inputs, the 

model will simply generate outputs for the temperatures at three different node heights 

(USDOE, 2018a). The specifics of how these measures are programmed and implemented will 

be discussed in detail later in this paper.   

Purpose of the Study 

The purpose of this study was to develop a method for validating energy models for 

buildings with no forced air, that utilize simple construction techniques, and that are sparsely 

monitored, in order to make suggestions for energy efficiency improvements for low income 
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residences in both developed and developing nations. If there is good agreement between the 

baseline energy model and measured data, then it will be possible to make better predictions 

about energy use based on existing construction techniques. If accurate predictions can be 

made for energy use and the occupied zone temperatures in residential buildings constructed 

with inefficient air sealing and insulation methods, then suggestions can be made about 

methods for increasing building energy efficiency and thereby occupant comfort. It might also 

be possible to show that up-front costs in building components and techniques are justified by 

the overall reduction in residential energy use that they may afford. If any amount of future 

energy use can be avoided through efficiency measures, then it may be possible to avoid some 

percentage of future production of greenhouse gases, in turn mitigating some of the effects of 

climate destabilization.  

Research Questions 

1. Is there thermal stratification in buildings with loosely constructed envelopes and no 

centralized forced air system in the heating season? 

2. To what degree of accuracy does the Room Air Model predict actual temperature 

measurements in buildings with loosely constructed envelopes in which there is no 

centralized forced air system?  

3. To what degree of accuracy does the Room Air Model’s predicted temperatures match the 

interior zone temperature data that has been collected in the previously-cited South Africa 

research? 

Hypothesis 

 The EnergyPlus™ Three-Node Displacement Ventilation RoomAir Model will predict the 

temperature profiles in the test building used in this study with approximately 10% error.  
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Limitations of the Study 

 One limitation of the study was the use of the Three-node Displacement Ventilation 

(DV) RoomAirModel in EnergyPlus™, which is the only simplified modeling method available to 

examine multiple temperature gradients over a building’s height. This measure is intended for 

use in models that are simulating buildings that utilize a ducted ventilation strategy, whether 

mechanical or natural, known as displacement ventilation. The energy models examined in this 

study simulated homes that have no duct work, and as such are provided fresh air only by the 

natural air changes that are a result of loose construction and fenestrations.  

Another limitation to this study was the fact that the houses that were modeled in South 

Africa were sparsely monitored, and thus we had to assume they were subject to high levels of 

thermal stratification. A test building that was available for use was modeled in the 

experimental portion of this research, but the construction assemblies used in the building are 

considerably different than those used in the houses in South Africa. In the test building it was 

necessary to simulate thermal stratification through manipulation of air changes and heat 

sources in the building. While the building construction assemblies present in the test building 

were very different from those used in the houses in South Africa, if the modeling approach is 

accurate in its predicted interior conditions of the building in question, then the approach 

should be applicable to other buildings that are subject to high levels of infiltration.  

The last limitation was that the only heat gain that was placed in the building was an oil-

filled radiant heater. In the DV RoomAir Model in EnergyPlus™, the gains that are examined are 

typical of an office setting, and a consistent heat gain input is needed for the model to function 

as intended. This will be further discussed later in this paper. 
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Significance of the Study 

 This study was intended to add to the existing body of knowledge regarding building 

energy modeling methods; more specifically, modeling homes with loosely constructed 

envelopes and poorly executed insulation. Previous studies have been done on validating the 

use of the Room Air Model in EnergyPlus™, but as was stated previously, the buildings 

examined in these studies had ducted ventilation systems. To the author’s knowledge, there 

have not been, as of yet, any studies that examined thermal stratification in loosely constructed 

buildings. It is the hope of the author that this research will provide some insight into the 

modeling of buildings using more rudimentary methods, and anyone interested in methods for 

reducing energy use and improving occupant comfort in low income residences.  
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CHAPTER 2: REVIEW OF LITERATURE 

Thermal Stratification 

 According to Linden (1999), air flow in buildings is generated naturally through the 

forces of wind acting on the outside of the building, and through buoyancy that is a result of 

temperature differences between the outside and the inside of the building. These buoyancy 

forces can lead to thermal stratification in the interior of the buildings. The presence of this 

thermal stratification in the building’s interior can lead to very different air flow patterns than 

those seen in buildings with well-mixed air (Linden, 1999).  

In the case of buildings that are utilizing natural ventilation for conditioning the interior 

of the space, the amount of thermal stratification in the space is dependent upon the location of 

the ventilation openings (Linden, 1999). If there is a single opening located high in the space, 

there will be an exchange of cool air coming into the space, while warm air exits the space. The 

incoming cool air will descend into the space, mixing with the existing air in the space as it falls 

(Linden, 1999).  

In spaces that have two openings for ventilation, one high and one low, warm air will 

exit the space through the upper opening, while cool air will enter through the opening located 

lower in the space. When used deliberately for conditioning a space, this method is known as 

displacement ventilation, and is characterized by high levels of thermal stratification (Linden, 

1999).  

This method can be used to effectively maintain occupant comfort in buildings with well 

executed air sealing during the cooling season. However, during the heating season, buildings 

with poorly executed air sealing can be subject to this phenomenon as well. One of the 
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predictions made in this paper is that due to the loosely constructed envelopes of the buildings 

in the South Africa research conducted by Ramsdell et al. (2012), during the heating season 

much of the heat generated in the spaces by heating appliances is escaping through the upper 

portion of the building’s envelope, drawing in cold air from lower portions of the building’s 

envelope and resulting in high levels of thermal stratification, leading to a low level of occupant 

comfort in the occupied zone in the space. 

According to Linden (1999), when the space inside a building is warmer than the 

exterior ambient temperature, there is a height in the space at which the internal pressure is 

equal to the exterior air pressure. This height is known as the neutral level (Linden, 1999). 

Below this level the pressure is lower than the ambient pressure, and above this level the 

pressure is higher than ambient pressure. This pressure difference is what drives airflow in and 

out of openings in the building, with air flowing out of the building’s openings at heights higher 

than the neutral level, and in through openings lower than the neutral level (Linden, 1999). 

Displacement Ventilation Systems 

 Displacement ventilation (DV) is a ventilation technique that uses low velocity 

conditioned air introduced at or near floor level, which minimizes mixing of air in the space, and 

induces a vertical temperature gradient (American Society of Heating, Refrigerating and Air-

Conditioning Engineers [ASHRAE], 2019). As ventilation air enters the space it is entrained into 

convective thermal plumes that have been generated through the effects of buoyancy and heat 

gains from equipment and occupants in the space (ASHRAE, 2019). As a thermal plume rises, it 

begins to expand as air surrounding the plume is entrained, generating what is commonly 

referred to as a top hat profile (ASHRAE, 2019). According to the ASHRAE Handbook HVAC 

Applications Guide (2019), the velocity and growth of the thermal plume are directly related to 

the size of the heat gain, and the ambient temperature around the load. As the air rises in these 

thermal plumes, it is then displaced by cooler fresh ventilation air below (ASHRAE, 2019).  
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There is a height at which the plume will begin to expand and mix with other thermal 

plumes in the space, forming a clearly definable layer between an upper mixed zone and a 

lower occupied zone (ASHRAE, 2019). It is in the upper mixed zone where the warm stale air is 

removed through the exhaust along with pollutants generated by the occupants (ASHRAE, 

2019). The layer between the upper mixed zone, and the lower occupied zone is referred to as 

the neutral level (Linden, 1999). The neutral level, or neutral height, is determined based on the 

relationship between the velocity of the incoming air , and the size of heat gains in the space 

(ASHRAE, 2019).  

To avoid cooling the occupants, the incoming ventilation air is introduced at rates 

somewhere between 40-70 ft/min, and generally above 60 ℉, rates that are slower and warmer 

than those seen in typical HVAC systems (ASHRAE, 2019). Because of this, DV systems are 

typically more energy efficient than more commonly used HVAC systems (ASHRAE, 2019). 

Modeling Thermal Stratification in Displacement Ventilation Systems  

There are four different methods for modeling thermal stratification in zones that utilize 

displacement ventilation: multilayer plume equation-based models, nodal models, semi-

empirical experimentally based models, and computational fluid dynamics (CFD) (da Graça, 

2003). The use of CFD to model these systems is very computationally expensive and requires a 

high level of expertise to produce models that are accurate (da Graça, 2003). In a nodal model 

produced by Rees and Haves (2001), the use of pre-calculated rates for airflow produced 

through experimentation and CFD, followed by the mathematical application of energy 

conservation to the model, were shown to be successful in predicting air flow and temperature 

profiles. However, this approach does not model thermal plumes in the space, which are 

essential to the successful design of displacement ventilation (DV) systems (Rees & Haves, 

2001). Although semi-empirical experimentally based models have provided a great deal of 

insight into the evaluation of the fundamental mechanisms behind displacement ventilation 
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systems, they are lacking in their capability to model complex room geometries and real-world 

scenarios (Mundt, 1996).       

The mathematical models used in the energy modeling software that is examined in this 

paper are an extension of mathematical models that were developed to simulate the physical 

principles of DV systems by Linden, Lane-Serff, and Smeed (1990), and Morton, Taylor, and 

Turner (1956). The multi-layer plume equation-based models examined in these works, as was 

stated previously, only examine plume flows, which is the driving force behind the principles of 

DV systems (Linden et al., 1990; Morton et al., 1956). The scenario that was modeled in the 

previously mentioned works was for a single plume in a zone with adiabatic walls, making this 

model somewhat limited in its applicability to real world scenarios (Linden et al., 1990; Morton 

et al., 1956). The model produced by da Graça (2003) was an attempt to overcome the 

limitations inherent to this particular model, creating something that is applicable for zones 

with non-adiabatic walls that house multiple thermal plumes. 

In their work Empty Filing Boxes: The Fluid Mechanics of Natural Ventilation, Linden et 

al. (1990) used scaled models and salt water to simulate the effects of buoyancy on air flows in 

a naturally ventilated structure by varying water density levels through changes in water 

salinity. This work showed that in a constantly ventilated adiabatic box housing a single plume, 

two layers formed (Linden et al., 1990). The lower layer that formed had a similar air 

temperature and density to the fluid entering the box, and the upper layer had a similar 

temperature and density to the fluid leaving the box (Linden et al., 1990). This work also 

showed that the dividing point of the two different density layers of fluid in the space occurred 

where the flow rate of the plume was equal to the flow rate of the incoming fluid (Linden, et al., 

1990). The ability to be able to predict this height is the most important aspect of modeling 

thermal stratification in DV systems, because when this interface between the warmer upper 
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mixed layer and the cooler lower layer occurs in the occupied zone, the cooling capabilities of 

the system are diminished or altogether lost (da Graça, 2003).   

There are a number of factors that play a part in maintaining the desired height of the 

neutral level in a zone. When the heat flux generating a thermal plume is increased by an order 

of magnitude, it can have the effect of reducing the neutral height by one third (da Graça, 2003). 

This is important to note when attempting to model zones that have a high heating load, in 

which a heater will be cycling on and off according to interior conditions, as was being done in 

this study. Similarly, when the incoming air flow rate is reduced by half, it can again reduce the 

level of the neutral height by one third (da Graça, 2003). This is another important issue to note 

regarding the models in this experiment, in which the only air flow was from infiltration and 

inter-zone airflow. In the design of DV systems, these variables need to be in a relatively precise 

range in relation to one another in order to maintain the simplicity and energy efficiency of the 

system (da Graça, 2003). The conditions used in the experimental procedures of this study for 

these two factors, size of the heat gains in the space and the amount of air flow, are what led to 

the inconclusive results that will be discussed later in this paper.  

Linden and Cooper (1996) found that the modeling approach for scenarios in which 

there is a single plume is also applicable in scenarios where there are multiple plumes of equal 

strength, due to the fact that in both scenarios two layers are generated, with the largest 

variations in temperature taking place between the lower and upper layer. In the work by da 

Graça (2003), scenarios with multiple equal strength plumes, as well as multiple variable 

strength plumes, were examined. It was found that when there are multiple plumes of varying 

strength, a separate layer is formed in the space for each of the plumes that are present (da 

Graça, 2003). Under these circumstances, the methods for predicting the transition between 

layers was still found to be applicable, occurring at the point where the plume flow rate for each 

plume matched the flow rate of the incoming air. It was further discovered that when multiple 
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plumes are present, the flow from equal strength plumes is always higher than that of unequal 

plumes at a given height (da Graça, 2003). For the sake of modeling, it was necessary to find a 

method that is simple and the most widely applicable. For this reason, da Graça (2003) 

examined the outcome of applying the mathematical model for multiple equal strength plumes, 

to scenarios in which the plumes were of varying strengths. It was found that when modeling 

two and three asymmetric plumes, the model results were conservative (da Graça, 2003). The 

results from the model showed an underestimation of the height at which the neutral level is 

located, as well as an underestimation of the temperature transition, with the largest 

temperature changes occurring higher than what the model predicted (da Graça, 2003). In 

another scenario in which nine symmetric plumes were present, with one larger plume, it was 

found that the model was overly conservative (da Graça, 2003). The model results showed that 

the largest temperature change took place lower than what was observed, leading potential 

designers to believe that the largest plume would play a role in the temperature in the occupied 

zone (da Graça, 2003). This led da Graça (2003) to conclude that in scenarios where there are 

multiple plumes of equal strength, and one larger plume, the equal plume method is not 

appropriate, but the two plume method is applicable when the larger plume, as well as all of the 

smaller plumes grouped into one, are used. 

The doctoral dissertation by da Graça (2003) also advised on a number of scenarios in 

which the multilayer plume equation-based model should not be used, which will be discussed 

later in this paper. It is up to the user to determine the appropriateness of the modeling method 

being applied in a given instance. The conditions under which other methods of modeling 

should be used follow:   

• When heat flux from internal gains is matched by heat flux in the lower layer from the 

floor or the walls (da Graça, 2003). 
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• When buoyancy flows driven by the ceiling, the floor, or the walls are of the same order 

of magnitude as the plume driven flows from internal gains (da Graça, 2003). 

• When there is positive or negative buoyancy from the floor, which can disrupt internal 

gain driven plume flow, even when it is the dominant source of flow (da Graça, 2003). 

• When there is enough heat flow across the ceiling construction assembly to the exterior 

that the uppermost region of the mixed layer becomes significantly cooler than the rest 

of the mixed region (da Graça, 2003). 

 

Another factor that introduces additional complexity into the problem of modeling DV 

systems is the distribution of gains in the space. For the sake of simplicity, all internal gains that 

produce plumes are viewed as having a point source of origin at the floor level (da Graça, 2003). 

In situations where an occupant has multiple pieces of equipment at their desk (computers, task 

lighting, etc.) all within .5 m of one another, based off of experiments performed by Kaye and 

Linden (2003), it is reasonable to view the occupant and the surrounding pieces of equipment 

as a single source of plume generation. Using this approach, the modeler can divide the total of 

the convective gains in the occupied zone by the total occupants in that same space in order to 

find the average power of the gains in each plume (da Graça, 2003).  

The last thing that is important to take into consideration when modeling internal gains 

in a space is how the gains are distributed vertically (da Graça, 2003). According to da Graça 

(2003), “whenever the thermal plumes are the sole buoyancy sources in a room the heat in 

these sources is totally convected into the upper warm layer” (da Graça, 2003, p. 196). 

However, it is typical in real world scenarios for there to be other factors that will impede 100% 

of the heat in a thermal plume from reaching the upper mixed layer. Some of the factors listed 

by da Graça (2003) include: plume interference from furniture, interference from wall driven 

layers that are negatively buoyant, and floor driven positive buoyancy (da Graça, 2003). One 
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will often find in an office setting that there are sources of heat gain in a space located under 

furniture, such as the tower for a desktop computer. In this instance, the plume flow generated 

by heat gain from the computer is disturbed by the desk, and as such part of the heat generated 

by the computer must be accounted for in the occupied zone when attempting to model heat 

and airflow in the space (da Graça, 2003). 

For this reason, da Graça developed a means of accounting for the convective gains from 

the thermal plumes in the lower layer by incorporating a fraction of the total gains into the 

energy balance for the occupied zone. In the model this fraction of gains is denoted by FRg (da 

Graça, 2003). This value will be between one and zero. In instances where a large open space in 

which the gains are primarily from people and equipment rather than solar gain, this value 

should be on the lower end, somewhere close to zero (da Graça, 2003). In a small room in which 

there are many objects and pieces of furniture, this value will be considerably higher (da Graça, 

2003). The FRg is multiplied by the heat gain in the calculation, and then incorporated into the 

calculation for the occupied sub-zone temperature (da Graça, 2003). 

In a later study performed by Mateus and da Graça (2015) on the validation of the 

methods reviewed here, multiple model runs were performed with the value for the fraction of 

heat gains in the occupied zone varying between zero and one, in order to obtain a best fit for 

this value. The authors found that a value of 0.4 led to the lowest percentage of error (Mateus & 

da Graça, 2015). The value found here was the same as that found in a study performed using 

CFD simulations for a concert hall by the same authors (Mateus & da Graça, 2015). When 

applying this value to the models examined in this study, the results led to more unexpected 

outcomes, which are likely a result of a combination of other inputs in the model. This issue will 

be discussed later in this paper.   
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EnergyPlus™ RoomAir Models 

The methods developed for modeling thermal stratification and neutral height in DV 

systems that have been reviewed in this paper were implemented in the energy modeling 

software EnergyPlus™, in the model group referred to as RoomAir Models (U.S. Department of 

Energy, 2018a). The single node fully mixed method of modeling room air temperature that is 

typically used in energy simulation software was adapted to a three-node model which allows 

the user to examine temperature profiles in DV systems with a first order of precision accuracy 

(U.S. Department of Energy, 2018a). A framework was developed by Griffith and Chen (2004) in 

order to couple building load and energy calculations to building energy models that are 

intended to examine complex air flows in thermal zones. This framework was altered for use in 

EnergyPlus™ in order to examine building energy use on an annual basis rather than just an 

hourly one, and to perform load and energy use calculations based on present mean air 

temperature, rather than on the temperature setpoint (U.S. Department of Energy, 2018a). The 

resultant formula examines heat transfer from gains inside and outside of the building, and 

across the building envelope, in order to determine the temperature of surfaces inside the zone 

at each time step (U.S. Department of Energy, 2018a). 

𝑇𝑠𝑖,𝑗
=

𝑇𝑠𝑜𝑖,𝑗
𝑌𝑖,𝑜+∑𝑛𝑧

𝑘=1 𝑇𝑠𝑜𝑖,𝑗−𝑘
𝑌𝑖,𝑘−∑𝑛𝑧

𝑘=1 𝑇𝑠𝑖,𝑗−𝑘
𝑍𝑖,𝑘+∑

𝑛𝑞
𝑘=1 Φ𝑖,𝑘𝑞"𝑘𝑖𝑖,𝑗−𝑘

+𝑇𝑎𝑖,𝑗
ℎ𝑐𝑖,𝑗

+𝑞"𝐿𝑊𝑆+𝑞"𝐿𝑊𝑋+𝑞"𝑆𝑊+𝑞"𝑠𝑜𝑙

𝑍𝑖,𝑜+ℎ𝑐𝑖,𝑗

 (1) 

Where: 

Ts represents the inside face temperature 

i represents the subscript for individual surfaces 

j represents the current time step 

k represents the time history steps 

Tso represents the outside face temperature 

Yi represents the cross CTF coefficients 
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Zi represents the inside CTF coefficients 

𝜑I represents the flux CTF coefficients 

q”ki represents the conduction heat flux through the surface 

hci represents the surface convection heat transfer coefficient 

Ta represents the near-surface air temperature 

q”LWS represents the longwave radiation heat flux from equipment in the zone 

q”LWX represents the net long wavelength radiation flux exchange between zone surfaces 

q”SW represents the net short wavelength radiation flux to surface from lights 

q”sol represents the absorbed direct and diffuse solar radiation 

 

As was mentioned earlier, the UCSD DV model was developed by da Graça (2003), in order 

to create a method of modeling displacement ventilation systems in spaces with complex 

geometries, housing multiple plumes, with non-adiabatic walls. The assumptions of the model 

produced by da Graça (2003) are as follows: 

• All plumes generated in the space are equal in strength (da Graça, 2003). 

• All plumes are viewed as located in the floor of the zone, and as “point sources of 

buoyancy” (da Graça, 2003, p. 200). 

• Convective currents generated by surfaces in the zone are not taken into consideration 

(da Graça, 2003). 

• “Heat transfer from each individual surface is evaluated using natural convection 

correlations” (da Graça, 2003, p. 200). 

• Each room surface is coupled to its corresponding subzone, and when there are multiple 

zones in which a surface is located, a weighted area is used to account for heat transfer 

into the zone (da Graça, 2003). 
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• The plume buoyancy flux in the zone is modeled by adding all of the internal gains that 

are in the occupied zone together and dividing by the number of plumes (da Graça, 

2003).  

 

In order to characterize the stratification in a zone, the model predicts three 

temperatures that correspond with the three different levels that form in a zone served by a DV 

system: 

1. The temperature in the floor zone, noted by Tfloor, which accounts for any heat 

transferred from the floor into the incoming supply air. 

2. The temperature in the occupied zone, noted by Toc, representing the temperatures 

experienced by the zone occupants.  

3. The temperature in the upper mixed zone, noted by Tmx, which corresponds with the 

temperature in the zone where pollutants and warm air are mixed above the occupants, 

as well as the exhaust air. 

 

The model begins by calculating �̇�, which is the sum of all the internal convective heat 

gains located in the occupied zone, and then dividing this value among the number of plumes in 

the zone. According to the U.S. Department of Energy EnergyPlus™ 9.2 Input Output Reference 

(2018a), the heat gains listed in the occupied zone are as follows: people, electric equipment, 

task lighting, hot water equipment, gas equipment, steam equipment, other equipment, and 

baseboard heat (U.S. Department of Energy, 2018b). Gains in the mixed zone are also taken into 

consideration in the calculations and include: high temperature radiant heaters, general lights, 

and tubular daylighting devices (U.S. Department of Energy, 2018b).  The calculations for 

convective heat transfer in the zone are as follows: 
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�̇�ocz = �̇�oc,conv + �̇�tl,conv + �̇�eleq,conv + �̇�gaseq,conv + �̇�otheq,conv + �̇�hw,conv + �̇�stmeq,conv + �̇�bb,conv (2) 

�̇�mxz = �̇�gl,conv + �̇�ltp + �̇�htrad,conv 

(3) 

�̇�tot,conv = �̇�ocz +�̇�mxz 
(4) 

Where: 

�̇�ocz is the total heat gain in the occupied zone 

�̇�oc,conv is the general convective heat gain in the occupied zone 

�̇�tl,conv is the heat gain from task lighting 

�̇�eleq,conv is the heat gain from electric equipment 

�̇�gaseq,conv is the heat gain from gas equipment 

�̇�otheq,conv is the heat gain from other equipment 

�̇�hw,conv is the heat gain from hot water equipment 

�̇�stmeq,conv is the heat gain from steam equipment 

�̇�bb,conv is the heat gain from baseboard heating 

�̇�mxz is the total heat gain from the mixed zone 

�̇�gl,conv is the heat gain from general lighting 

�̇�ltp is the heat gain from tubular lighting devices 

�̇�htrad,conv is the heat gain from high temperature radiant heaters 

 

Next the model calculates the supply air flow rate which is denoted by �̇� (U.S. 

Department of Energy, 2018a). The air flow rate into the zone considers all of the following: 

infiltration, supply air, inter-zone flow, and ventilation air (U.S. Department of Energy, 2018a). 

The calculations for the supply air flow rate are as follows, where MCP is the rate of mass flow 
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multiplied by the specific heat capacity of air, and MCPT represents the rate of mass flow 

multiplied by specific heat times the air temperature:  

MCPzone=MCPi + MCPvent + MCPmix 

(5)  

MCPsys = ∑ inlets �̇�iCp,i 
(6) 

MCPtot = MCPzone + MCPsys 

(7) 

MCPTzone = MCPTi + MCPTvent + MCPTmix 

(8) 

MCPTsys = ∑ inlets �̇�iCp,iTi 

(9) 

MCPTtot = MCPTzone + MCPTsys 

(10) 

Where: 

�̇�i is the mass flow rate  

Cp is the specific heat 

 

 The user is required to input the number of occupants, Nocc, the number of plumes per 

occupant, Nplumesperpers, and the percentage of the internal convective heat gains that remain in 

the occupied zone, Frgains, not to be taken into consideration in the thermal plumes in the zone. 

These inputs are represented by the following equations: 

Nplumes = Nocc ∙ Nplumesperperson (11) 

�̇�plumes = (1 – Frgains) ∙ �̇�tot,conv 

(12) 

�̇�perplume = �̇�plumes/Nplumes 

 (13) 
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 Using the aforementioned user inputs, the model then makes its initial estimate of the 

neutral height in the zone, or the height of the boundary layer Frhb, which is calculated as a 

fraction of the total ceiling height. Here MCPtot is converted to a volumetric flow rate using 

1/(𝜌 ∗  𝑐𝜌𝑎𝑖𝑟)= 0.000833 (U.S. Department of Energy, 2018a). 

𝐹𝑟ℎ𝑏 = (
24.55

𝐻𝑐𝑒𝑖𝑙
) (

0.000833 × 𝑀𝐶𝑃𝑡𝑜𝑡

𝑁𝑝𝑙𝑢𝑚𝑒𝑠 × �̇�
𝑝𝑒𝑟𝑝𝑙𝑢𝑚𝑒

1
3

)

3
5

 

 

(14) 

 Following the initial estimate of the boundary layer height, the iterative solver 

calculates the heat transfer coefficient, and a temperature for each surface in the zone, taking 

into consideration the subzone in which each surface is located (U.S. Department of Energy, 

2018a). Once the heat transfer from the surfaces in each subzone can be coupled with the air 

flows and heat gains in that subzone, the model recalculates the boundary layer height, 

followed by the three subzone temperatures (U.S. Department of Energy, 2018a). 

The calculations in the iterative solver initially assume that the air in the zone is thermally 

stratified when the Three Node DV RoomAir Model is applied (U.S. Department of Energy, 

2018a). In the model there are checks in place to verify that the RoomAir Model was 

appropriately applied given the specified heat gains and air flows in the zone, and that the air in 

the zone is in fact thermally stratified (U.S. Department of Energy, 2018a). If one of the 

following conditions is true, then the model will perform the zone calculations again with the 

assumption that the air in the zone is well mixed: 

• If the temperature in the mixed subzone is less than the temperature in the occupied 

subzone. 

o (Tmx < Toc) 

• If the total air flow rate MCPtot, in the zone is less than or equal to 0.  
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o (MCPtot≤ 0) 

• If the height of the boundary layer, Hfr*Hceil,is less than the total height of the floor zone 

and the occupied zone when added together, Hfl,top+Δzocc,min.  

o (Hfr*Hceil < Hfl,top+Δzocc,min) 

 

It should be noted that the minimum necessary change in height of the occupied zone is 

0.2 meters, and the top of the floor zone is located at 0.2 meters. 

  The checks noted here will be discussed further in this paper, as some of the inputs from 

the experimental portion of this research which were used in the model were found not to be 

ideal in terms of the methods used in the model for calculating zone conditions.  

Validating Building Energy Models 

 Displacement ventilation systems are designed to remove internal gains that are both 

radiative and convective. This means that the surfaces in a space that is being modeled also play 

a large role in the calculations due to the fact that they are being heated through radiative heat 

transfer, which in turn transfer heat to the air in the space. Because of this, the vertical 

temperature profile has a smoother transition than one might see in the profile from 

experiments that examine salinity concentration or CO2 distribution (Mateus & da Graça, 2015). 



  23 

 

 

According to Mateus and da Graça (2015), “Most DV application cases have a 

coincidence between heat and pollutant sources, resulting in a mixed layer region that contains 

the indoor pollutants and, therefore, should be kept above the occupants head height” (p. 50). 

Examination of the distribution profile of contaminant concentration shows a much more 

visible change in the gradient at the neutral height level compared to the gradient around the 

neutral height as seen in temperature profiles (Mateus & da Graça, 2015). This means that 

experiments that examine both contaminant distribution and temperature profiles can be used 

to verify the plume theory developed by Morton et al. (1956), which is the basis for the methods 

used to predict the neutral height in the EnergyPlus™ RoomAir Model for displacement 

ventilation (Mateus & da Graça, 2015).  

The method created for defining the neutral height based on air temperature and 

pollution distribution profiles by Mateus and da Graça (2015) seeks to locate the neutral height 

by finding the height in the room above which the temperature gradient is much smaller than in 

Figure 2. “Typical temperature, concentration and salinity profiles” 
(Mateus & da Graça, 2015). 

 



  24 

 

the rest of the room, based on the fact that in the lower occupied layer of the space the 

temperature increase is always much higher than in the upper mixed portion of the room 

(Mateus & da Graça, 2015). The method begins by assigning the average temperature gradient 

over the total height of the room the notation NTG, or normalized temperature gradient 

(Mateus & da Graça, 2015). This is equal to: 

𝑁𝑇𝐺 =
𝑇𝑧𝑐𝑒𝑖𝑙𝑖𝑛𝑔 − 𝑇𝑧𝑓𝑙𝑜𝑜𝑟

𝑍𝑐𝑒𝑖𝑙𝑖𝑛𝑔 − 𝑍𝑓𝑙𝑜𝑜𝑟
 

Where: 

Tzceiling is the temperature at the ceiling 

Tzfloor is the temperature at the floor 

Zceiling is the height at the ceiling 

Zfloor is the height of the floor node 

(15) 

 

Next, “all experimental temperature profiles are discretized using one hundred points 

spaced equally between the floor and ceiling; and a rolling average smoothing, with a ±0.1 m 

vertical averaging interval, is also applied to avoid false results due to local inflections in the 

experimental profiles” (Mateus & da Graça, 2015, p. 55). The method used by Mateus and da 

Graça (2015) then checks the temperature profiles to identify places in which the gradient is 

less than NTG by a factor which is produced with the following calculation: 

(1 + 𝐶NH) x 
𝑇𝑧𝑡𝑜𝑡𝑎𝑙−𝑇𝑧0

𝑧𝑡𝑜𝑡𝑎𝑙−𝑧0
 > 

𝑇𝑧+1− 𝑇𝑧

(𝓏+1)−𝓏
 

 

(16) 

Where: 

CNH is the neutral height in the contaminant profile 

Tztotal is the overall temperature change 

Tz0 is the initial temperature 
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Ztotal is the total change in height 

Z0 is the initial height 

Tz is a temperature at a given height 

Z is a given height 

 

The value that was used for the coefficient is Cnh =.3. To quantify the discrepancies 

found between the prediction of neutral heights between the methods, Mateus and da Graça 

(2015) use the following equations: 

Bias(m) = htemp.profile – hcontaminants 

(17) 

Error (%) = 100% x |
ℎtemp.profile−ℎcontaminants

ℎtemp.profile
| 

(18) 

Where: 

h is the neutral height 

 

After applying this method to a set of data gathered from previous studies that 

examined temperature profiles and contaminant distribution in displacement ventilation 

systems, an error of below 10% was found, while the average bias was very low at 4cm (Mateus 

& da Graça, 2015). Mateus and da Graça (2015) go on to use the previous method to evaluate 

the accuracy of calculating the neutral height using the mathematical model that was developed 

based off of the plume flow theory developed by Morton et al. (1956). When comparing the 

experimental neutral heights with those calculated using the mathematical model, it was found 

that the average error was 14%, with a correlation coefficient (R2) of .69 (Mateus & da Graça, 

2015). 

Mateus and da Graça (2015) then go on to compare the model developed for the 

prediction of the temperatures in the three zones; mixed, occupied, and floor, to the measured 
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data in nine different cases from three studies. The predictions from the models were compared 

to the experimental data using the following methods for determining average error: 

Avg. Diff. (K) = 
∑9

𝑖=1 |𝑆𝑖𝑚𝑖−𝑀𝑒𝑎𝑠𝑖|

9
 

(19) 

Avg. Bias (K) = 
∑9

𝑖=1 |𝑆𝑖𝑚𝑖−𝑀𝑒𝑎𝑠𝑖|

9
 

(20) 

Avg. Error (%) = 
 100%

9
 x ∑9

𝑖=1 x |
𝑆𝑖𝑚𝑖− 𝑀𝑒𝑎𝑠𝑖

𝑀𝑒𝑎𝑠.max −𝑀𝑒𝑎𝑠.𝑚𝑖𝑛 
| 

 

(21) 

 According to Mateus and da Graça (2015), given the simplifications and assumptions 

that are made in the model, and the fact that in many of the studies experiments are performed 

in a nearly adiabatic test chamber, the results of the comparison are favorable. It was found that 

there was an average error of 5% in the simulations overall, which is roughly a 17% reduction 

in error from the model that does not account for mixing of inflow air with the room air (Mateus 

& da Graça, 2015). The largest errors were found at the floor level node at 6% (Mateus & da 

Graça, 2015).
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CHAPTER 3: RESEARCH METHODS 

 This was a quasi-experimental study in which the dependent variables were the interior 

temperature, the degree to which there was thermal stratification present in the test building, 

and how well these matched the modeled results. The independent variable was the amount of 

heat and air flow introduced into the sample building to achieve thermal stratification and in 

turn provide the inputs for the BEM.  

Once all thermal stratification experiments were conducted in the test structure, models 

of the building were run, and graphical representations were produced to compare different 

temperature profiles from the measured data to the temperature profiles produced by the 

modeling software. 

Test Structure 

The test building used in this experiment is located behind Katherine Harper Hall at 

Appalachian State University. The building was constructed using a shed roof design, with all 

building construction assemblies meeting or exceeding local code requirements. The building 

footprint measures 20’ by 8’ (Boyes, 2017). The foundation of the building consists of a set of 

CMU piers, and as such the floor is slightly elevated and exposed to exterior conditions, resting 

at approximately 2’ off the ground (Boyes, 2017). The exterior of the south-facing wall is 9’ tall, 

while the exterior of the north-facing wall is 7’ tall (Boyes, 2017). This results in interior wall 

heights of approximately 8’ and 6,’ respectively. The north-facing wall was constructed with 2x6 

studs located at two feet on center. The east and west walls were constructed using 2x4 studs 

located at 16” on center. The entrance door to the interior of the test building is positioned in 

the approximate center of the east-facing wall. The south-facing wall is a 2x4 double stud wall 
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which allows for an insulated cavity measuring 7.5” thick. The sheathing on the test building 

consists of 7/16” oriented strand board (OSB), with a layer of weather resistant barrier on all 

sides. The interior of the building is gypsum board on the walls and ceiling, and OSB on the 

floor. 

Each of the walls in the test building is insulated with densely packed cellulose, which 

was performed using a method referred to as drill-and-fill (Boyes, 2017). According to the study 

performed by Boyes (2017), the cellulose was installed at a density of three pounds per square 

foot, which is around the minimum density to be considered dense packed cellulose. 

Experimental Design 

 The purpose of this experiment was to simulate high levels of infiltration in a building 

during the heating season. The test building used in this experiment has an envelope that was 

very well constructed, meaning the building is well insulated and tightly sealed. For this reason, 

it was necessary to introduce a measurable amount of air into the building that correlated with 

a particular number of air changes per hour when measured at a 50 pascal (ACH@50) pressure 

difference between the inside and outside of the house. To do this, a custom blower door was 

built that would accommodate two Minneapolis Duct Blasters; one in the bottom of the door to 

introduce air flow into the building, and one in the top of the door to expel air from the building.  

This experiment was conducted from early March to late April, 2019, during a period of 

time in which the weather conditions ranged from typical late winter weather to typical spring 

weather in the mountains, with temperatures ranging from 70 ℉ during the day to 20 ℉ at 

night.  In this way we were able to examine the effects of thermal stratification in a building 

over a variety of exterior temperatures. 
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A small radiant heater was used in the experiment, and sized so that the heat source 

would not overwhelm the interior of the test structure, theoretically allowing the potential for 

thermal stratification to take place. A network of temperature sensors, depicted in Figures 4 

and 5, was hung from the ceiling on the interior of the building in order to measure the interior 

temperature profiles. To capture the exterior temperature profiles, a Vantage Vue weather 

station was set up adjacent to the building. There were three different treatments used in the 

experiment: (1) a baseline in which there was no air flow in the building, (2) one in which the 

air flow introduced into the building coincided with 5 ACH@50, and (3) one in which the 

airflow into the building coincided with 15 ACH@50. To allow for steady state conditions to 

develop, and to capture interior conditions that evolved with changing exterior weather 

conditions, each treatment that was applied was allowed to run between 12 and 48 hours.    
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Figure 3. Exterior temperature profile over the course of experimentation. 
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Measurement Apparatus 

 Temperature sensor network. 

 In order to record the interior temperatures in the test shed over the course of the 

experiment, 42 Dallas 18B20 temperature sensors were hung at varying increments so that an 

accurate depiction of the temperature profiles in the room could be captured, taking into 

consideration the location of variables that would affect the temperature profile. These 

variables included location of the windows, the door, air inlet and outlet, any envelope 

penetrations, and the heat source. There were ten strands of temperature sensors in all. Nine of 

these strands were arranged in the space to capture the overall temperature profile. The last 

strand of temperature sensors was mounted on the interior of the blower door in order to 

capture the temperature of the cold air coming in from the exterior of the building, and the 

other to capture the temperature of the air after being heated as it exited the interior of the 

building. Images of the sensor network can be seen in Figures 4 and 5. 
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Figure 4. Temperature sensor network and radiant heater. 
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Figure 5. Temperature sensor network and custom blower door. 

 

The nine strands of temperature sensors were arranged in three rows of three. Three 

different lengths of strand were used: one short, one medium, and one long. This was done in 

order to account for the change in ceiling height from one side of the interior to the other, 

because as was mentioned earlier, the building was constructed using a shed roof design. The 

short strands of temperature sensors were located along the shorter north-facing wall. Each of 

the short strands had three temperature sensors on it: one approximately 4” from the floor, one 



  33 

 

at approximately 48”, and one approximately 4” from the ceiling. The medium length strands of 

sensors were hung approximately 18” inches away from the south facing wall. These strands 

had seven temperature sensors on them: one at approximately 4” from the floor, one at 

approximately 48”, and five sensors beginning at approximately 72” and continuing at 6” 

intervals up to the ceiling, the last terminating at approximately 4” from the ceiling. The 

location for the medium length temperature sensors is where it was estimated that the 

transition between the occupied zone and the mixed zone (or the interface height) would be 

most visible in the temperature profile based on the size of the space and location of factors that 

would affect the temperature readings such as windows and the door. The longest strands of 

temperature sensors were hung along the south-facing wall. Each of these strands had three 

temperature sensors on it: one at approximately 4” from the floor, one at approximately 48”, 

and one at approximately 4” from the ceiling.  Graphical representations for the method used to 

structure the placement and naming method for the sensors can be seen in Figures 6 and 7. 

 

Figure 6. Temperature sensor network in section view. 
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Figure 7. Temperature sensor network in plan view and location of radiant heater. 

 

To capture the data that all of the sensors were collecting, the sensors were tied 

together at a breadboard that was hooked to a raspberry pi. The coding that was used for the 

readout of the data was done in Python. Three different Python modules were used for the data 

readout: one to record the time stamp, one to record the temperature reading, and one for 

export to a CSV file.  

Zone heater. 

 The heater that was used in the earlier data collection in the experiment was a 

Honeywell Model HZ-709-WM. This heater has a rating of 12.5 Amps and operates on a 

standard 120 Volt outlet (ManualsLib, 2006). This heater utilizes electric resistance heating 

coils, which in turn heat oil inside the housing of the heater. The heater has three different 

heating elements, which operate in three different modes, depending on the setting of the 

heater (ManualsLib, 2006). The heater elements are rated as follows: small 600W, medium 

900W, high or combined 1500 W. For this experiment, the heater was set to its highest setting, 
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1500 W. The heater is equipped with a digital display and controls that shows the room 

temperature, as well as the temperature setpoint on the heater. The heater has an automatic 

setting in which the desired temperature can be input and the heater will cycle on and off to 

maintain the desired setpoint. This was the setting under which the heater was operated for the 

purposes of this experiment. Unfortunately, about halfway through data collection for this 

experiment, the thermostat on the heater failed and a substitute heater was needed. The data 

collected from the run during which the heater failed was not used in the results. 

The substitute heater that was used was a DeLonghi radiant heater, model EW6507L. 

This heater has the same basic setup, two electric resistance coils that are used to heat oil inside 

the heater housing (ManualsLib, 2004). However, this heater is not equipped with a digital 

display to control the temperature setpoint. This DeLonghi heater has two switches that can be 

used separately for a low or medium setting, or together for a high setting. The high setting was 

used in this experiment. Because this heater has no digital temperature control, a separate 

temperature controller was wired to the heater in order to maintain a consistent temperature 

setpoint in the space during the remaining data collection in the experiment. The temperature 

controller that was used was an Inkbird ITC-1000F. 

Simulated infiltration/exfiltration. 

 In order to simulate the infiltration and exfiltration in a loosely constructed envelope, 

two Minneapolis Duct Blasters were attached to a custom-made blower door assembly. A 

picture of the door can be seen in Figure 8. 
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Figure 8. Custom blower door and Minneapolis Duct Blasters. 

 

The blower door constructed for the purposes of this experiment used the same 

dimensions as the pre-hung door that was initially installed on the test building. The 

dimensions are as follows: 80” tall, 36” wide, and 1.63” thick. The door had three holes cut 

through it, each with an approximate diameter of 11”, for attaching the flange of the duct blaster 

duct termination to the door. The upper hole is approximately 10” to the center from the top of 

the door. The bottom hole is approximately 10” to the center from the bottom of the door. The 

door frame was made using pressure treated pine 2x4s cut to the appropriate dimensions. The 

frame was sheathed with ¼” plywood on the inside and ½” pressure treated plywood on the 
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exterior. The door was insulated using a layer of ¾” extruded polystyrene foam, as well as low 

expansion polyurethane spray foam to seal any remaining voids.   

The smallest ring available with the duct blaster that was used for this experiment was a 

number three, which would not restrict the airflow enough to reach the desired number of air 

changes at the lowest setting available on the duct blaster fan. The lowest air flow that is 

achievable with the duct blaster, according to the reading on the DG-700, is 22 cfm. For this 

reason, it was necessary to create custom duct blaster rings. This was done using the existing 

rings and covering the hole of the duct blaster ring with a piece of foam core board, with the 

appropriately sized hole cut out in the center. Using a Lawrence Berkeley Laboratory Factor 

(LBL) of 20 in order to convert ACH @ 50 pascals to natural air changes per hour (ACHn), it was 

determined that a flow of 13.3 cfm would be needed to achieve 15 ACH@50, and a flow of 4.43 

cfm would be needed to achieve 5 ACH@50.  

Using the fan affinity laws that state there is a direct relationship between the diameter 

of an air flow orifice, and the corresponding mass that can flow through that inlet given a 

constant pressure difference, it was determined that the corresponding diameters that were 

needed to achieve the desired flow of 4.44 cfm for an ACH of 5, and 13.3 cfm for an ACH of 15, 

were .78” and 1.65” respectively (Fan Affinity Laws, 2003). 

OpenStudioⓇ/EnergyPlus™ Model of the Test Building 

The parameters used for the OpenStudioⓇ model of the test building that was used in 

this experiment are the same as described in the previously-given description of the physical 

building.  

In order to produce accurate results in the model, it was necessary to create a custom 

EnergyPlus™ weather file (EPW). To do this a weather file from Boone, N.C. was used, and the 

existing data for portions of time during which the experiment was being conducted were 

overwritten using the data that was collected from the Vantage Vue weather station. The 
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parameters that were overwritten were the dry bulb temperature and the humidity. This was 

done using the application called Elements. In this program you can alter one variable such as 

dry bulb temperature keeping two other variables constant that you may want to also alter 

later, and the remaining variables will be changed based on the inputs according to the values 

on the psychrometric chart. In this way a weather file with actual data for temperature and 

relative humidity from the time period during the experiment was created, while the remaining 

values on the weather file were realistic in accordance with their interrelationship with the 

altered variables on the psychrometric chart. 

It was discovered that the radiant convective electric baseboard heater that is in the 

HVAC component section of OpenStudioⓇ is not the same as the baseboard heater that is 

accounted for in the internal gains of the Three-Node DV model. For this reason, OpenStudioⓇ 

was unable to account for a scalable baseboard heater that is controlled by a thermostat tied to 

the interior temperatures in the building model zone. For this reason, it was necessary to revert 

to using only the EnergyPlus™ interface, which allows for more customizable user inputs.  

The baseboard heater that is in the EnergyPlus™ Three-Node DV model internal gains section is 

controlled by a thermostat that is tied to the exterior temperatures in the model. Through the 

use of the EnergyPlus™ Energy Management System (EMS), it was possible to create additional 

components in the model that allowed for this baseboard heater to be scalable in terms of 

allowable power input, as well as being controlled by a thermostat that is directly tied to the 

interior temperatures in the models.  

Data Analysis Procedures 

Research Question 1 Data Analysis Procedure 

Once the temperature data and associated air flows were gathered from the test 

building, the temperature profiles in the data were then examined in order to gain an 

understanding of the air temperature distribution in the space. First, the temperature change 
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per inch in the vertical direction was examined for each of the sensor strands in order to 

identify the possible location of the neutral height. As is noted by Mateus & da Graça (2015), the 

greatest temperature change happens in the occupied zone. Above the neutral height, the 

temperature gradient goes to zero, meaning that this zone is well mixed, and the temperature of 

the air is consistent throughout (Mateus & da Graça, 2015). This is also where the highest 

temperatures can be found (Mateus & da Graça, 2015). Following this logic, it should be 

possible to locate the neutral height by finding the highest temperature reading vertically, 

above which the temperature change per inch is close to zero. To examine the temperature 

change per inch, the period of each cycling of the heater from on to off was examined. For each 

period, the maximum temperature, minimum temperature, and average temperatures were 

found. Then the average of these three temperatures for each period over the entire run for 

each treatment was found. In this way, the temperature gradient at the highest temperatures, 

lowest temperatures, and the average temperatures could be examined. These values were then 

used in the second method for examining the temperature gradients that follows.   

The second method used for examining the temperature distribution in the space was 

detailed by Mateus and da Graça (2015), where non-dimensional variables are used to compare 

temperature profiles between experiments in which the room geometry varies between each 

experiment. The method is based on equation (22):  

𝜃 =
𝑇 − 𝑇𝑖𝑛

𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛
, 𝑧 =

𝑧

𝑧𝑡𝑜𝑡𝑎𝑙
 (22) 

Where: 

𝜃 is temperature 

Z is height 

 

This method shows the temperature gradient over the height of the space, allowing the 

reader to see the location of the neutral height in the space, above which the temperature 
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gradient is much lower than in the rest of the space. As was noted above, the temperature 

gradient at the average maximum temperature, average minimum temperature, and overall 

average temperature are examined. The temperature gradients examined can be seen in the 

results section Figures 10-23. For the Tin value, the temperature of the air entering the space in 

the bottom hole in the blower door is used. The values used for Tout differ from those that are 

used in other experiments examined in this research.  

The experiments conducted on DV systems are done during the cooling season, as the 

primary design for DV systems is for building ventilation and cooling (Mateus & da Graça, 

2015). As such, the exhaust temperatures are the highest temperatures recorded in each 

experiment, as the exhaust is removing unwanted hot air from the space (Mateus & da Graça, 

2015). In this experiment however, the highest temperatures are seen near the ceiling level in 

the space, and the exhaust is located below this level at the door. So as the air is pulled from the 

upper warm layer in the room, it cools down as it moves toward the exhaust located in the door, 

most likely due to heat loss across the door itself. For this reason, the Tout values that are used 

here are the highest temperatures that are seen on each strand close to the ceiling. Otherwise 

the use of the exhaust temperature in the space would give a false depiction of the temperature 

gradient for each sensor strand. 

Research Questions 2 & 3 Data Analysis Procedure 

The original intent of this portion of the experiment was to use the inputs that were 

present in the experimental phase as a basis for developing the energy model, and to then find a 

way to compare the three temperature outputs (Tfloor, Toccupied, and Tmixed) to the 

temperatures that were recorded in the experiment. Given the high number of sensors that 

were used in this experiment, it was necessary to find a way to average all of the temperatures 

in the building such that three temperatures could be produced that were representative of the 

three different subzones in the building. A method of averaging all of the temperatures 
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according to the zones in the model would be devised, with the location of the neutral height in 

the test building being assigned according to the predicted location of the neutral height from 

the model. As will be discussed in the results section of this paper, the neutral height predicted 

by the model was not as expected, due to unforeseen errors in the results of the modeling 

portion of this experiment. The original method of averaging the temperatures in the test 

building, such that three temperatures can be examined (Tfloor, Toccupied, and Tmixed), was 

carried out, regardless of the discrepancies between expected results from the model, and 

actual results from the model. To do this, a volumetric weighting method was devised.   

A three-dimensional model was used, identical to what was used in the OpenStudioⓇ 

model of the test building. Graphical representations of the location of the sensors in the test 

building were placed in the model. A three-dimensional box or volume was placed around each 

sensor. The size and location of the volume around each sensor was meant to coincide with the 

temperature readings at each sensor, and how much of the air in the test building could be 

assumed to be at the same temperature as the air at each sensor, according to variables that 

would affect temperature readings in the test building. In other words, a volume corresponding 

to the surrounding conditions that were assumed to be representative of the same conditions at 

the exact location of each sensor was created around the space in which each sensor was 

located. This means that the sensors located closest to the walls and ceilings were 

representative of a smaller volume of the overall space of the test building, due to their close 

proximity to surfaces that were potentially cooler than the air in the space, which may have 

affected the temperature readings for these sensors.  

The sensors located on the medium strand were closest to the middle of the space, and 

furthest from any factors in the space that would affect the temperature readings at these 

locations, and as such these sensors were given the largest weight in the space. Each volume 

was then assigned its weighting factor according to the proportion of the given volume in 
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relation to the entire volume of the interior space in the test building. This weighting factor was 

then used to average the temperature readings from the sensors in the test building. A graphic 

of the volumetric weighting method can be seen in Figure 9. Each three-dimensional box seen in 

the image corresponds to the location of a sensor on a strand. The significance of the colors of 

each volume are as follows: red represents the mixed zone, orange represents the occupied 

zone, and blue represents the floor zone. 

 

 

 

Figure 9. Three-dimensional volumetric weighting method. 
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CHAPTER 4: RESULTS 

The following results are from four different experimental runs. The runs were chosen 

according to which sets of data were most representative of the typical results and 

experimental conditions that were seen during this experiment. Two runs for which results will 

be shown are 15 ACH@50. The other two runs for which results will be shown are a baseline 

run (no air-flow), and a run with 5 ACH@50. 

Research Question 1 Results 

As was noted earlier in this paper, the first question that was addressed was: Is there 

thermal stratification in buildings with loosely constructed envelopes and no centralized forced 

air system in the heating season? The answer is yes. As one might expect, there is thermal 

stratification in buildings under the aforementioned conditions. However, whether the 

stratification is non-linear, or linear, remains unclear due to circumstances which will be 

discussed later in this paper. 

The following figures show the temperature gradients over three different treatments 

used in three different runs; one treatment with no airflow (baseline), one treatment with 5 

ACH@50, and one treatment with 15 ACH@50. The temperature gradients examined are those 

that were previously mentioned in the methods section of this paper, averaged from each cycle 

of the heater from on to off; the temperature gradient at the average maximum temperature 

recorded, the average minimum temperature recorded, and the overall average temperature 

recorded. Again, the method used for this approach is the same noted by Mateus and da Graça 

(2015), which uses equation (22):  
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𝜃 =
𝑇 − 𝑇𝑖𝑛

𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛
, 𝑧 =

𝑧

𝑧𝑡𝑜𝑡𝑎𝑙
 (22) 

 

The temperature gradients shown in Figures 10-23 show the temperature gradients at 

the three different sensor strands with the highest resolution; M1, M2, and M3. Also displayed 

with the temperature gradients are Tables 1-3, which show the temperatures used in equation 

(22), and the corresponding average temperature change per inch. It should be noted that the 

inlet temperature was included in these tables, but does not have an associated height in the 

table. The temperature sensor that recorded the inlet temperature was located in the center of 

the bottom opening in the custom blower door that was made for the purposes of this 

experiment. The height of this temperature sensor is approximately 8”, but this height is not 

taken into account in the change per inch in any way. The inlet temperature is recording the 

temperature of the air entering the space through the duct blaster from the exterior of the 

building. 

Table 1 Temperature 1M Average Maximum 

 
1M Avg Max 15 ACH@50  
H (in) Temp℃ ΔT/inch 

Inlet 12.41048 N/A 

4 17.02394 N/A 

48 21.48583 0.10141 

72 22.98578 0.06250 

78 22.94417 -0.00694 

84 23.10383 0.02661 

90 23.87833 0.12908 

96 23.76728 -0.01851 
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Table 2 Temperature 2M Average Maximum 

  
2M Avg Max 15 ACH@50 

H (in) Temp℃ ΔT/inch 

Inlet 12.41048 N/A 

4 17.88172 N/A 

48 21.66983 0.08609 

72 23.12478 0.06062 

78 23.33650 0.03529 

84 23.72194 0.06424 

90 24.51011 0.13136 

96 24.28789 -0.03704 
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Figure 10. 15 ACH@50 Temperature gradient average maximum strand 1M. 
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Table 3 Temperature 3M Average Maximum 

  
3M Avg Max 15 ACH@50 

H (in) Temp℃ ΔT/inch 

Inlet 12.41048 N/A 

4 19.02061 N/A 

48 21.95461 0.06668 

72 24.27061 0.09650 

78 24.73939 0.07813 

84 24.67333 -0.01101 

90 25.10050 0.07119 

96 25.48933 0.06481 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Z

θ
Sensor Strands

15 ACH@50
Temperature Gradient 

Average Maximum

2M

Figure 11. 15 ACH@50 Temperature gradient average maximum strand 2M. 
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Temperature nodes two and three are located at 90” and 84” respectively. It is this area, 

in between nodes two and three, that the neutral height location was predicted. As can be seen 

in Table 2, the temperature change between these two nodes is an order of magnitude greater 

per inch than in the rest of the space. While this is also true for table 1, the change per inch is 

not as consistent due to the close proximity of sensor strand 1M to the door where cold air is 

coming in. Sensor strand 3M also deviates from this pattern, due to its close proximity to the 

heater. In light of this it was assumed that this larger temperature change per inch indicates a 

transition from the occupied zone to the mixed zone, where the air is at the highest 

temperatures present in the space.  
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Figure 12. 15 ACH@50 Temperature gradient average maximum strand 3M. 
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The temperature gradient in some places in the upper region of the space appears as 

though it is going to transition to zero or near zero, as it does when the transition between the 

occupied zone to the well mixed zone occurs, but then the gradient increases again. This may 

suggest that if there is a neutral height located where it was predicted, that the mixed zone is 

much smaller than what was expected, and due to the resolution of the sensors on the strands, 

the mixed zone is not apparent. It may also be that the space in the test building is stratified, but 

has a linear temperature profile. This notion will be discussed in the next section of results. The 

temperature gradient is fairly consistent among the three different medium length sensor 

strands at the average maximum, as well as the overall average temperatures that are seen. 

These profiles are also consistent under different testing treatments. The gradient at the 

average minimum temperatures varies, however, as the temperatures throughout the space 

have a narrower range, being at the coldest point before the heater switches back to the on 

position. The aforementioned gradients are as depicted in Figures 13-21.  
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Table 4 Medium Strand Temperatures Average Minimum 

Average Minimum Temperatures 15 ACH@50 

  
1M Min 2M Min 3M Min 

Temp Temp Temp 

16.4512 17.3296 18.0449 

19.5206 19.5483 19.7289 

19.8468 19.8398 20.2672 

19.6492 20.0173 20.4753 

19.7079 19.9442 20.4407 

20.0414 20.2116 20.4893 

19.8678 20.1316 20.2776 
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Figure 13. 15 ACH@50 Temperature gradient average maximum. 
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Table 5 Medium Strand Temperatures Overall Average 

Overall Average Temperatures 15 ACH@50 

  
1M Avg 2M Avg 3M Avg 

Temp Temp Temp 

16.7318 17.6042 18.5068 

20.4353 20.5377 20.7770 

21.2903 21.3506 22.0832 

21.1523 21.5315 22.3969 

21.2518 21.6695 22.3285 

21.7889 22.1473 22.5328 

21.6305 22.0031 22.5779 
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Figure 14. 15 ACH@50 temperature gradient average minimum. 
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Figure 15. 15 ACH@50 Temperature gradient overall average. 
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Figure 17. 5 ACH@50 Temperature gradient average maximum. 
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Figure 16. 5 ACH@50 Temperature gradient average minimum. 
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Figure 18. 5 ACH@50 Temperature gradient overall average. 
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Figure 19.  5 ACH@50 Temperature gradient average maximum. 
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Figure 20. Baseline temperature gradient overall average. 

Figure 21. Baseline temperature gradient average minimum. 
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To further verify that the temperature gradient in the test building is present in varying 

conditions, the graph shown in Figure 22 depicts a comparison between the temperature 

gradient at the coldest exterior temperature that was experienced during the run, and the 

warmest exterior temperature during the run. 

Table 6 Temperatures Used in the Gradients Shown in Figure 22  

  
Warm, Cold 

Height (in) Warm ℃ Cold ℃ 

Exterior 18.437 ℃ 1.3 ℃ 

Inlet 18.437 16.437 

4 17.875 17.625 

48 21.500 20.875 

72 23.062 22.312 

78 23.187 22.562 

84 23.687 23.000 

90 24.500 23.812 

96 24.250 23.562 
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The final graph shown depicts the temperature gradient for the average maximum 

temperatures on sensor strand M2 between each of the different experimental treatments. It 

can be seen that the gradient curve is consistent among all three treatments. 
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Figure 22.  5 ACH@50 Temperature gradient outdoor temperatures cold vs warm. 
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Research Question 2 Results 

As was stated in the methodology section of this paper, the initial intent was to model 

the test building using the parameters that were present during the experimental portion of 

this research, and use the predicted neutral height from the model to develop a weighted 

method of averaging the temperature data from the test building in order to produce three 

different temperatures that match those that are the outputs from the model; Tfloor, Toccupied, 

Tmixed. Unfortunately, the results of the model were not as expected. The treatment that was 

used in the experiment with the highest air flow rate was 15 ACH@50. This equates to 

approximately .75 ACHn. With this airflow rate used in the model, the iterative solver in the 

model did not show the interior temperatures to be stratified, and as such the results produced 
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Figure 23.Temperature gradient average maximum across treatments. 



  58 

 

by the model showed a well-mixed temperature profile. It was not until the airflow used was 

approximately 30 ACH@50 (2ACHn), that the model showed stratification in the outputs. This 

airflow value is not one which was used in any of the testing treatments for airflow in the test 

building experimental runs. Figure 24 shows the model switching back and forth between well 

mixed and stratified at the higher airflow rate of 30 ACH@50.   

When the heater cycles on and off, the iterative solver in EnergyPlus™ cycles between 

performing calculations for a thermally stratified model and a well-mixed model. This can be 

seen in the temperature profile in Figure 24 where all of the temperatures from the different 

subzones converge back into one single temperature reading. This can be accounted for in the 

equation for the prediction of the height of the boundary layer Frhb in the models (U.S. 

Department of Energy, 2018a): 
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Figure 24. Stratified model output using simple heater configuration. 
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𝐹𝑟ℎ𝑏 = (
24.55

𝐻𝑐𝑒𝑖𝑙
) (

0.000833 × 𝑀𝐶𝑃𝑡𝑜𝑡

𝑁𝑝𝑙𝑢𝑚𝑒𝑠 × �̇�
𝑝𝑒𝑟𝑝𝑙𝑢𝑚𝑒

1
3

)

3
5

 

 

(23) 

 

In typical scenarios where a DV system is used for space conditioning, there are multiple 

internal gains such as computers, office equipment, task lights, people, etc. As was noted earlier, 

the value for 𝑄 ̇ in the EnergyPlus™ Three-Node DV model incorporates all of those internal 

gains. Due to an oversight in the setup, the only internal gain in the experimental setup in the 

test building was the radiant heater. When the heater in the model cycles on and off, the value 

of �̇� goes from approximately 1500 W, to 0 W. When this happens, the model goes from a 

thermally stratified configuration, to a well-mixed configuration, due to the fact that when 

trying to predict the height of the boundary layer the program is trying to divide by zero.  

In reality, when the heater thermostat is calling for heating, the electrical resistance 

elements in the heater are inputting heat energy into the oil in the heater, where it is stored. 

When the thermostat on the heater is satisfied, the flow of current that is being supplied to the 

heating elements is interrupted. However, a portion of the energy that was input into the oil in 

the heater is still present and being slowly released into the space. So, even though the heater is 

not constantly in heating mode, there is almost always a varying flow of heat energy into the 

space. For this reason, a customized baseboard heater with a more realistic heating curve was 

created using the EnergyPlus™ EMS, to examine whether the resultant output from the model 

would more closely represent the measured data. The heater input into the model was 

manipulated such that once the heater turns on and begins heating the zone, the power input 

from the heater is a fraction of the total power (1500 W), depending on the amount of time the 

thermostat has been calling for heat. As the room heats up, the heating power input begins at a 
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smaller fraction, and increases to full power over a given length of time. Once the heater 

reaches full power and the setpoint is reached, the heater power input is reduced incrementally 

over a period of time. This is representative of the curve of heat energy that is input into the 

zone from the actual heater. Unfortunately, while the heating curve produced by the radiant 

heater in the model more closely represents what is happening in the test building, it is still 

necessary to set the airflow rate to an unrealistically high input for the zone to be thermally 

stratified. The temperature profile from the customized heater model can be seen in Figure 25 

with the infiltration rate 30 ACH@50. 

Figure 25. Temperature Profile from customized heater input. 

 

Even with the heating curve being more closely in line with a real heating curve from 

this type of appliance, the model still predicted transition heights that differed greatly from 

what was expected, and often reported an error value of -9.99 meters as the transition height 
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(neutral height). As was stated previously in the review of literature, the conditions under 

which the model will revert to well mixed (or in this case report an error value) are as follows: 

• Whenever Tmixed<Toccupied 

• Whenever MCPtotal ≤ 0 

• Whenever Hfr * Hceil < Hfl,top + Δzocc,min 

 

It is the last condition that caused the model to report an error value. Whenever the 

height fraction (Hfr) multiplied by the height of the ceiling (Hceil), the product of which is the 

predicted neutral height, is less than the minimum height of the floor zone plus the minimum 

change in height of the occupied zone, both of which are .2 meters (0.065 ft), the model will give 

an error value of -9.99 meters for the transition height.  

 Even though the model is not producing results that were the same as those predicted 

in this research, it is the opinion of the author that further research needs to be done on 

modeling thermally stratified buildings during the heating season. One of the average 

temperature ranges for an experimental run in the test building can be seen in Table 7.  Figure 

26 shows the test building and a representation of the size of the heater used in this experiment 

in relation to the size of the test building space.  
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Table 7 Temperature 2M Average Max 

2M Avg Max 15 ACH@50 

H (in) Temp℃ ΔT/inch 

4 17.88172 N/A 

24 19.60352 N/A 

48 21.66983 0.08609 

72 23.12478 0.06062 

78 23.3365 0.03529 

84 23.72194 0.06424 

90 24.51011 0.13136 

96 24.28789 -0.03704 

Average 22.64754 N/A 
 

 

 

Figure 26. Building elevation with radiant heater. 
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The thermostat on the heater is located at less than the height of the top of the heater, 

which is approximately 24”. For the discussion that follows, we will assume that the height of 

the top of the heater will coincide with the thermostat height for the purpose of simplifying 

assumptions. The placement of the sensors vertically on the strands is such that there is no way 

to know exactly what the temperature is at the height that coincides with the top of the heater. 

If the known temperatures at two known heights are used, 4” and 48”, the temperature change 

per inch can be used to find an approximate assumed temperature at the height of the top of the 

heater, 24”. When this is done, and an assumed temperature is produced at 24”, it can be seen 

that the assumed temperature at this height is approximately 3˚C less than the average of all of 

the known temperatures. 

If the assumptions made here are reasonably accurate, it can be deduced that in a well-

mixed model that uses the average of temperatures in a zone to determine the zone HVAC 

equipment operation mode, the heater will run less than the heater in a model that is 

representative of a space that in reality is thermally stratified. Theoretically this will result in a 

false depiction of heater energy use from the well-mixed model, with this model showing less 

energy used than a thermally stratified model, as the well mixed model uses the average 

temperature in a zone which is warmer than the temperatures that are experienced in reality at 

the thermostat height for the heater. Figures 27-30 show the temperature profiles from the data 

gathered in this experiment when compared with both a well-mixed model, and the results of 

the thermally stratified model. It should again be noted here that the thermally stratified model 

uses an air change rate that is higher than what was actually used in the experimental 

procedures in this research.    



  64 

 

 

0

5

10

15

20

25

Te
m

p
er

at
u

re
 d

eg
re

es
 C

Date/Time

Occupied Zone Test Building ACH@50 of 15
vs 

Well-Mixed model
vs

Occupied Zone Model ACH50@ 30 

Occupied Test Building Occupied Model Well Mixed Model

Average Exterior Temp: 5.9 ℃

Figure 27. Occupied zone test building vs well mixed model vs occupied model. 
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It can be seen that the well mixed model shows maximum temperatures that are much 

higher than those recorded in the occupied zone of the test building, as well as the averaged 

temperatures of the test building. This supports the assumption that the heater in a model that 

assumes well mixed air, and averages the temperatures, will run more than a model that is 

representative of a thermally stratified building when modeling buildings that are subject to 

high levels of infiltration during the heating season. 

Research Question 2 & 3 Results 

As was stated by da Graça (2003), in the design of DV systems the ratio between the 

heat gain �̇� and airflow MCPtot is the most important parameter for assuring the effective 
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operation of the DV system, and the value of this ratio has a very small range in which it should 

be set in order to achieve ideal operating conditions for a given space. While using the 

EnergyPlus™ Three-Node Displacement Ventilation RoomAir Model may not be the most 

appropriate approach for modeling buildings constructed with low levels of air sealing and 

insulation, this research has provided some insight into further steps that can be taken in the 

quest for finding a more suitable approach to modeling the conditions in question. The data in 

the results from question 1 were initially interpreted as there being a neutral height between 

84” and 90”. However, given the conditions set forth in this experiment, this could not be fully 

validated. The model results show that at higher air-flow rates, there is a neutral height, but it is 

located considerably lower than what was predicted in this research. This also cannot be 

validated, due to the low resolution in the sensor strands in the lower regions of the space. In 

order to gain a better understanding of where the model predicted neutral height lies based on 

the ratio of �̇� and MCPtot in equation 14, three tables were generated using the equation for the 

prediction of the height boundary layer Frhb (the neutral height), for three different building 

volumes. These tables show how varying the ratio between �̇�, represented here as Power in 

watts, and MCPtot affects the outcome of the model predicted height of the boundary layer Frhb. 

𝐹𝑟ℎ𝑏 = (
24.55

𝐻𝑐𝑒𝑖𝑙
) (

0.000833 × 𝑀𝐶𝑃𝑡𝑜𝑡

𝑁𝑝𝑙𝑢𝑚𝑒𝑠 × �̇�𝑝𝑒𝑟𝑝𝑙𝑢𝑚𝑒

1
3

)

3
5

 

(14) 

 

Table 8 shows the color-coding scheme used in the tables for the model predicted 

neutral height location. Here again it should be noted that whenever the height fraction (Hfr) 

multiplied by the height of the ceiling (Hceil), the product of which is the predicted neutral 

height, is less than the minimum height of the floor zone plus the minimum required change in 

height of the occupied zone, the total of which is .4 meters (0.13 ft), the model will give an error 
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value of -9.99 meters for the neutral height. The first two tables produced are using building 

volumes of 1280 ft3 and 2119 ft3, which coincide with the size of the test building used in this 

research and the size of a building from the South Africa research by Ramsdell et al. (2105) 

respectively. The last building volume of 4238 ft3 was used for the purposes of showing the 

same inputs for heat gain with a higher airflow. 

. 

Table 8 Color-coding scheme for model predicted neutral heights 

 

Color Scale for Neutral Height Location Feet 

Model Failure <1.3 

Lower Occupied Space 1.3 - 4 

Upper Occupied 4 - 6 

Mixed Space 6 - 15 

Above 15' > 15 
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Table 9 Heat gain vs airflow for 1280 ft3 

  

ACHn 
Predicted Neutral Height (ft)     

Volume-1280 ft3 

5 8.32 7.24 6.38 5.56 4.84 4.46 4.21 4.03 3.88 3.77 3.67 3.51 

4.5 7.81 6.80 5.99 5.22 4.54 4.19 3.95 3.78 3.65 3.54 3.44 3.29 

4 7.27 6.33 5.58 4.86 4.23 3.90 3.68 3.52 3.40 3.29 3.21 3.07 

3.5 6.71 5.84 5.15 4.49 3.91 3.60 3.40 3.25 3.14 3.04 2.96 2.83 

3 6.12 5.33 4.70 4.09 3.56 3.28 3.10 2.96 2.86 2.77 2.70 2.58 

2.5 5.49 4.78 4.21 3.67 3.19 2.94 2.78 2.66 2.56 2.48 2.42 2.31 

2 4.80 4.18 3.68 3.21 2.79 2.57 2.43 2.32 2.24 2.17 2.12 2.02 

1.5 4.04 3.52 3.10 2.70 2.35 2.17 2.05 1.96 1.89 1.83 1.78 1.70 

1 3.17 2.76 2.43 2.12 1.84 1.70 1.60 1.53 1.48 1.43 1.40 1.34 

0.5 2.09 1.82 1.60 1.40 1.22 1.12 1.06 1.01 0.98 0.95 0.92 0.88 

0 

20 40 75 150 300 450 600 750 900 1050 1200 1500 

Power W 
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Table 10 Heat gain vs airflow for 2119 ft3 

  

ACHn 

Predicted Neutral Height (ft)      
Volume-2119 ft3 

5 11.25 9.80 8.64 7.52 6.55 6.04 5.70 5.45 5.26 5.10 4.96 4.74 

4.5 10.56 9.20 8.11 7.06 6.15 5.67 5.35 5.12 4.93 4.78 4.66 4.45 

4 9.84 8.57 7.56 6.58 5.73 5.28 4.99 4.77 4.60 4.46 4.34 4.15 

3.5 9.08 7.91 6.97 6.07 5.29 4.87 4.60 4.40 4.24 4.11 4.01 3.83 

3 8.28 7.21 6.36 5.53 4.82 4.44 4.19 4.01 3.87 3.75 3.65 3.49 

2.5 7.42 6.46 5.70 4.96 4.32 3.98 3.76 3.60 3.47 3.36 3.27 3.13 

2 6.49 5.65 4.99 4.34 3.78 3.48 3.29 3.15 3.03 2.94 2.86 2.74 

1.5 5.46 4.76 4.19 3.65 3.18 2.93 2.77 2.65 2.55 2.47 2.41 2.30 

1 4.28 3.73 3.29 2.86 2.49 2.30 2.17 2.08 2.00 1.94 1.89 1.81 

0.5 2.83 2.46 2.17 1.89 1.64 1.52 1.43 1.37 1.32 1.28 1.25 1.19 

0 20 40 75 150 300 450 600 750 900 1050 1200 1500 

Power W 
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Table 11 Heat gain vs airflow for 2119 ft3 

  

ACHn 

Predicted Neutral Height (ft)        
Volume-4238 ft3 

5 17.06 14.85 13.09 11.40 9.92 9.15 8.64 8.26 7.97 7.72 7.52 7.19 

4.5 16.01 13.94 12.29 10.70 9.32 8.59 8.11 7.76 7.48 7.25 7.06 6.75 

4 14.92 12.99 11.45 9.97 8.68 8.00 7.56 7.23 6.97 6.76 6.58 6.29 

3.5 13.77 11.99 10.57 9.20 8.01 7.39 6.97 6.67 6.43 6.24 6.07 5.81 

3 12.55 10.93 9.64 8.39 7.30 6.73 6.36 6.08 5.86 5.68 5.53 5.29 

2.5 11.25 9.80 8.64 7.52 6.55 6.04 5.70 5.45 5.26 5.10 4.96 4.74 

2 9.84 8.57 7.56 6.58 5.73 5.28 4.99 4.77 4.60 4.46 4.34 4.15 

1.5 8.28 7.21 6.36 5.53 4.82 4.44 4.19 4.01 3.87 3.75 3.65 3.49 

1 6.49 5.65 4.99 4.34 3.78 3.48 3.29 3.15 3.03 2.94 2.86 2.74 

0.5 4.28 3.73 3.29 2.86 2.49 2.30 2.17 2.08 2.00 1.94 1.89 1.81 

0 20 40 75 150 300 450 600 750 900 1050 1200 1500 

Power W 

 

It can be seen that when the heat gain in a space is at the larger end of this spectrum, 

and the airflow in a space is at the lower end, the model calculated neutral height is much lower 

than what was predicted early on in this research. As the size of the building increases, values 

that would be useful in the case of a DV system are seen in the outputs for the model calculated 

neutral heights. As previously stated, the values for the model calculated neutral height that 

coincide with the parameters that were used in this experiment cannot be validated using the 

experimental setup that was in place for the purposes of this research.  
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Table 10 shows the ratio of heat gain and airflow in a building with a similar volume to 

one of the buildings examined in the South Africa research by Ramsdell et al. (2015). The 

calculated neutral heights are similar to those calculated by the model for the test building that 

was used in this research. Further research into the actual conditions in a building of this size 

should be conducted in order to verify the conditions under which the building is thermally 

stratified.
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CHAPTER 5: DISCUSSION AND CONCLUSION 

 The goal of this research was to simulate a building that was subject to high levels of 

infiltration and thermal stratification during the heating season, record the temperature 

distribution inside the building, and then use the data to validate a simplified method of 

modeling thermal stratification. After examining the data produced by this experiment in 

comparison with the model results, it was determined that further research in the area of 

developing a method for modeling buildings that are subject to high levels of infiltration in the 

heating season is needed before any firm conclusions can be drawn. It was initially predicted 

that the temperature profile in the test building would show thermal stratification with two 

different temperature gradients, and that a neutral height would develop in the upper portion 

of the space, marking the transition between the two gradients. The results show that the 

building is thermally stratified, however, the stratification may be closer to a linear temperature 

gradient, rather than having two different gradients as is found in DV systems. Further research 

in this area is needed to determine what types of temperature distributions occur in buildings 

with high levels of infiltration during the heating season.   

The results produced by this experiment, specifically the modeling portion, suggest that 

if a neutral height does develop, that it is located lower in the space than what was predicted. 

Regardless of the location of the neutral height, the model only showed thermal stratification 

when the air-flow was set to a much higher rate than what was used in the experiment. As such, 

it would appear that the EnergyPlus™ Three-Node Displacement Ventilation RoomAir Model 

will not predict the temperature profiles in a test building that is subject to high levels of 

infiltration during the heating season within 10% accuracy. Furthermore, the results of this 
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research suggest that this modeling approach is most likely not the most appropriate method 

for modeling the building type in question. Here again, it is the opinion of the author that 

further research into the most appropriate method for modeling buildings subject to high levels 

of infiltration during the heating season is needed.  

In terms of modeling the building types in the South Africa research being conducted by 

Ramsdell et al. (2015), and determining the levels of stratification and temperature distribution 

gradients present in these buildings, further research is needed. Even though high levels of air 

changes were simulated in the test building in this research, considering the tightness and 

insulation levels of the envelope of the building used in this experiment, further research should 

be performed before any conclusions can be made as to how much stratification is present in 

buildings that are constructed using simple techniques, with low levels of insulation and air 

sealing.  

As was noted earlier in this paper, when there are large levels of heat transfer across a 

building’s envelope, negatively buoyant convective currents at the ceiling and walls can develop 

with the same order of magnitude as those driving thermal plumes generated by heating 

appliances in a space, causing the airflow patterns in a zone to be more well mixed than one 

might assume (da Graça, 2003). When one considers the effectiveness of air sealing and 

insulation levels in the test building that was used in this research, it is conceivable that there is 

considerably less heat transfer across the envelope itself in the test building when compared 

with the heat transfer across the envelope of a building that contains little to no insulation and 

little to no air sealing. Because of this, it may be the case that the thermal stratification that was 

seen in the test structure was due solely to the induced air flow, and that the temperature 

distribution is atypical of what is seen in houses constructed using low levels of air sealing and 

insulation. For this reason, further research should be conducted in this area, so as to determine 
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the amount of error that is seen when applying energy modeling methods that assume that the 

air in the space is well mixed.  

Following are some recommendations regarding setup of future research experiments 

in the area of modeling buildings that are subject to high levels of infiltration with low levels of 

insulation and air sealing, based on the findings from this research.  

Sensor strands should be hung at even increments throughout the entire space. In this 

way a more accurate depiction of the space can be captured in the data collection. In the setup 

of the sensors in this research, the highest resolution strands were hung in a place where it was 

expected that the data would show the most notable neutral height. Not only were the 

assumptions that guided this portion of the setup wrong, they ultimately limited the data 

collection and resolution of temperature profiles in the space.  

Sensor strands should have consistent sensor placement from the bottom of the strand 

to the top of the strand, allowing for consistent resolution. Here again, this portion of the setup 

was driven by assumptions made based on the expected outcomes, assuming that a neutral 

height would develop in the upper portion of the space. As such, no sensors were placed 

anywhere vertically between 4” and 48” in the space. This limited the ability of the author to 

make any firm conclusions on what the temperature profile looks like in this area.   

Further research should be done using a test building constructed with simple 

techniques, in which zone conditions are representative of the heat and air transfer seen in the 

housing types that are examined in the South Africa research being conducted by Ramsdell et al. 

(2015). This is the most important part of the future research. In this way the amount of 

thermal stratification taking place in buildings of this type can be verified or denied. It is 

possible that buildings of this type are closer to well mixed than thermally stratified than one 

might assume, when one considers the amount of heat transfer that occurs across the envelope, 

and the resultant convective currents that are generated as a result.    
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 More typical electrical gains should be used in the experiment, representative of heat 

gains from a person, as well as typical household electrical items (televisions, cooking 

appliances, etc.). As was seen in the literature review in this paper, even the smallest of heat 

gains can generate a thermal plume that might affect the air flow in a space. With all of the heat 

gains that are present in a typical home, this might lead to a more well mixed space than one 

might assume. 

If meaningful recommendations are to be made regarding energy use in low income 

communities and developing nations as to the type of construction techniques and materials 

that should be used, a method for accurately modeling the interior conditions and energy use of 

these residences that is not overly computationally expensive should be developed. When such 

a large portion of population growth and urban development is occurring in areas of low 

income and energy insecurity, more and more people will be living in substandard conditions, 

and using energy sources that lead to pollution, low indoor environmental quality, and low 

occupant health. It is the responsibility of leaders in the building industry and the academic 

realm to strive to find a way for everyone to live in conditions deemed acceptable from the 

standpoint of health and comfort by the majority of the world's population. If humanity can 

move forward in the area of urban development with an eye towards energy efficiency, 

occupant comfort, and equal rights regarding basic human necessities such as housing, then we 

might be able to avoid some of the negative effects of unsustainable growth and in turn mitigate 

the worsening of climate instability that has resulted thus far.  
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