BIBLIOGRAPHY OF ARIZONA VERTEBRATE PALEONTOLOGY

CALEB LEWIS1, ANDREW B. HECKERT2 and SPENCER G. LUCAS1

1New Mexico Museum of Natural History and Science, 1801 Mountain Road NW, Albuquerque, NM 87104-1375;
2Department of Geology, Appalachian State University, ASU Box 32067, Boone, NC 28608-2067

Abstract—We provide a bibliography of Arizona vertebrate paleontology that consists of approximately 625 references covering vertebrate occurrences ranging in age from Devonian to Holocene. Not surprisingly, references to Triassic and Neogene vertebrates are the most numerous, reflecting the particular strengths of the Arizona record. We break the bibliography down into various taxic groups and provide a complete, unified bibliography at the end of the paper.

Keyworks: Arizona, bibliography, fossil, vertebrate, paleontology

INTRODUCTION

Our aim in presenting a bibliography of Arizona vertebrate paleontology is to provide a valuable research tool for all those conducting vertebrate paleontology research in Arizona. This bibliography will also be made available as individual, downloadable Endnote® libraries on the New Mexico Museum of Natural History and Science paleontological resources website (www.nmfossils.org).

The bibliography is separated into broad taxonomic groups. These are Chondrichthyes, Osteichthyes, primitive amphibians, Lissamphibia, anapsids, Lepidosauromorpha, non-dinosaurian archosaurs, dinosaurs, Aves, non-mammalia synapsids, and Mammalia. There is also a separate category for trace fossils.

As used here, “primitive amphibians” are all non-lissamphibian, non-amniote tetrapods known from the state, and consists primarily of temnospondyls. Anapsids includes turtles, procolophonids, and some enigmatic Triassic reptiles of unknown affinities. “Lepidosauromorpha” consists of all non-archosaurian diapsids, and thus includes marine reptiles in addition to lepidosaurs, and again contains some taxa of unknown affinities. Non-dinosaurian archosaurs includes basal archosauromorphs, pterosaurs, and crocodylans, including crocodylians. The bulk of this record reflects study of “thecodont”-grade archosauromorphs—very few papers have been published on Arizona fossil crocodylians. Dinosaurs, given their popular and academic interest, and the importance of Arizona’s role in the early evolution of dinosaurs, were given their own category separate from the rest of the archosaurs. Aves covers all bird fossils from the state, and the synapsids are split into non-mammalian synapsids and mammals to reflect Arizona’s relatively sparse, but important record of “mammal-like reptiles” and larger, exceptionally important mammalian faunas. Trace fossils include not just references related to footprints, but also those covering coprolites, fossilized dung, packrat middens, and skin impressions.

Some generalities about Arizona vertebrate paleontological research can be made based on the bibliography. The greatest amount of research and publications dealing with Arizona vertebrate paleontology are on non-dinosaurian archosauromorphs. This is due to the great outcrop area of Triassic strata in Arizona, and subsequent large amount of preserved Triassic vertebrate fossils from the state. The next most researched group is the dinosaurs, dominated by Late Triassic and Early Jurassic forms from the Chinle Group and Kayenta Formation as well as scattered Cretaceous records in the southern portion of the state. Neogene faunas, particularly of mammals but also of lissamphibians and lepidosaurs, reflect the strength of the late Neogene and Quaternary record of the state. Also notable are the amount of vertebrate tracks from the Paleozoic and Mesozoic of the state. The Lower Permian Coconino and Lower Jurassic Navajo sandstones in northern Arizona are especially known for their vertebrate and invertebrate trackways.

Abstracts were generally omitted from the bibliography partly to save space, but also due to the difficulty in tracking down all published abstracts, many of which exist only in the “gray literature” and are duplicated by subsequent full-length publications. The occasional exception to this rule is an abstract that serves as the only record of a particular taxonomic group or age. This bibliography also was designed to be a research tool and not a historical record of all publications on vertebrate paleontology from the state, so we focused on complete articles. Doubtless this bibliography is incomplete, and some may take issue with how we indexed some of the faunal papers, but we believe that utilizing this bibliography will allow any new researcher, be they professional or avocational, to enter the literature and find all significant references to a particular taxonomic group. We do not provide a separate index of article by time period, in large part because that would duplicate the many comprehensive papers found elsewhere in the volume.

Resources used for the assembly of this bibliography were Georef, Boone, Google Scholar, New Mexico Museum of Natural History bulletins and the references therein, and references from many individual papers. Clearly, this bibliography cannot be considered complete, but it should provide an extensive entrée into the growing literature on the vertebrate paleontology of Arizona.

BIBLIOGRAPHY BY TAXONOMIC GROUPS

CHONDRICHTHYES

Curtis, K. M., 1989, A taxonomic analysis of a microvertebrate fauna from the Kayenta Formation (Early Jurassic) of Arizona and its comparison to an Upper Triassic microvertebrate fauna from the Chinle Formation. [M.A. thesis]: University of California.

Curtis, K., and Padian, K., 1999, An Early Jurassic microvertebrate fauna...
from the Kayenta Formation of northeastern Arizona; microfaunal change across the Triassic-Jurassic boundary: Paleobiol, v. 19, no. 2, p. 19-37.

David, L. R., 1944, A Permian Shark from the Grand Canyon: Journal of Paleontology, v. 18, no. 1, p. 90-93.

Heckert, A. B., 1997, Litho- and biostratigraphy of the lower Chinle Group, east-central Arizona and west-central New Mexico, with a description of a new theropod (Dinosauria: Theropoda) from the Bluewater Creek Formation: University of New Mexico, 278 p.

Johns, M. E., 1988, Architectural element analysis and depositional history of the upper Petrified Forest Member of the Chinle Formation [M.S. thesis]: Northern Arizona University, 163 p.

Kirby, R. E., 1989, Faunal content and age of the Owl Rock Member (Chinle Formation) in Ward Terrace are of northern Arizona, in Dawn of the age of dinosaurs in the American southwest, New Mexico Museum of Natural History and Science, p. 12-28.

Murry, P. A., 1989, Paleocology and vertebrate faunal relationships of the
Upper Triassic Dockum and Chinle Formations, southwestern United States, in Dawn of the Age of Dinosaurs in the American Southwest, Albuquerque, NM (USA), p. 375-400.

Ossian, C. R., 1976, Redescription of Megachtenopetalus kaibabanus David 1944 (Chondrichthyes; Petalodontidae) with comments on its geographic and stratigraphic distribution: Journal of Paleontology, v. 50, p. 392-397.

OSTECHTHYES

Armstrong, A. K., 1962, Stratigraphy and paleontology of the Mississippian system in southern New Mexico and Adjacent Southeastern Arizona: New Mexico Institute of Mining and Technology Memoir, no. 8.

Beus, S. S., 1980, Late Devonian (Frasnian) paleogeography and paleoenvironment in northern Arizona, in Rocky Mountain paleogeography, Denver, CO (USA), p. 55-69.

Curtis, K. M., 1989, A taxonomic analysis of a microvertebrate fauna from the Kayenta Formation (Early Jurassic) of Arizona and its comparison to an Upper Triassic microvertebrate fauna from the Chinle Formation. [M.A. thesis]: University of California.

Denison, R. H., 1951, Late Devonian fresh-water fishes from the western United States: Fieldiana: Geology, v. 11, p. 221-261.

Kirby, R. E., 1991, A vertebrate fauna from the Upper Triassic Owl Rock Member of the Chinle Formation of northern Arizona [M.S. thesis]: Northern Arizona University.

Mexico Museum of Natural History, p. 249-277.
Nesbitt, S., 2001, An update on fossil reptile material from the Upper Moenkopi Formation, Holbrook Member (Middle Triassic), northern Arizona: Southwest Paleontological Symposium Proceedings, p. 3-7.

PRIMITIVE AMPHIBIANS

Fiorillo, A. R., and Padian, K., 1993, Taphonomy of the Late Triassic Placerasias quarry (Petrified Forest Member, Chinle Formation) of eastern Arizona.
Heckert, A. B., 1997, Litho- and biostratigraphy of the lower Chinle Group, east-central Arizona and west-central New Mexico, with a description of a new theropod (Dinosauria:Theropoda) from the Bluewater Creek Formation: Albuquerque, University of New Mexico, 278 p.
Hey, R. E., 1989, A vertebrate fauna from the Upper Triassic Owl Rock Member of the Chinle Formation of northern Arizona [M. S. thesis]: Northern Arizona University, 450 p.
v. 84, p. 1-150.

LISSAMPHIBIA

Curtis, K. M., 1989, A taxonomic analysis of a microvertebrate fauna from the Kayenta Formation (Early Jurassic) of Arizona and its comparison to an Upper Triassic microvertebrate fauna from the Chinle Formation. [M.A. thesis]: University of California.

ANAPSIDS

Colbert, E. H., 1972, Vertebrates from the Chinle Formation, in Breed, C. S.,

Curtis, K. M., 1989, A taxonomic analysis of a microvertebrate fauna from the Kayenta Formation (Early Jurassic) of Arizona and its comparison to an Upper Triassic microvertebrate fauna from the Chinle Formation. [M.A. thesis]: University of California.

Kirby, R. E., 1991, A vertebrate fauna from the Upper Triassic Owl Rock Member of the Chinle Formation of northern Arizona [M.S. thesis]: Northern Arizona University.

LEPIDOSAUROMORPHA
Colbert, E. H., 1972, Vertebrates from the Chinle Formation,
Francyzk, K. J., 1988, Stratigraphic revision and depositional environments
Camp, C.L., 1923, Classification of the lizards: Bulletin of the American
Benz, S., 1980, The stratigraphy and paleoenvironment of the Triassic
Curtis, K. M., 1989, A taxonomic analysis of a microvertebrate fauna from the Kayenta Formation (Early Jurassic) of Arizona and its comparison to an Upper Triassic microvertebrate fauna from the Chinle Formation. [M.A. thesis]: University of California.
Kirby, R. E., 1991, A vertebrate fauna from the Upper Triassic Owl Rock

NON-DINOSAURIAN ARCHOSAURS

Curtis, K. M., 1989, A taxonomic analysis of a microvertebrate fauna from the Kayenta Formation (Early Jurassic) of Arizona and its comparison to an Upper Triassic microvertebrate fauna from the Chinle Formation. [M.A. thesis]: University of California.

Hunt, A. P., 1994, Vertebrate paleontology and biostatigraphy of the Bull Canyon Formation (Chinle Group, Upper Triassic), east-central New Mexico with revisions of the families Metoposauridae (Amblypterygia: Temnospondyli) and Parasuchidae (Reptilia: Archosauria) [Ph.D. dissertation]: University of New Mexico, 404 p.

Kirby, R. A., 1989, Late Triassic vertebrate localities of the Owl Rock Mem-

Curtis, K. M., 1989, A taxonomic analysis of a microvertebrate fauna from the Kayenta Formation (Early Jurassic) of Arizona and its comparison to an Upper Triassic microvertebrate fauna from the Chinle Formation. [M.A. thesis]: University of California.

Hunt, J. P., 1989, A new ornithischian dinosaur from the Bull Canyon Formation (Upper Triassic) of east-central New Mexico, in Lucas, S. G.,

Kirby, R. E., 1988, First report of a vertebrate fauna from the Upper Triassic Owl Rock Member of the Chinle Formation in northern Arizona, *in* Symposium on Southwestern Geology and Paleontology: Flagstaff, AZ (USA), p. 7.

Kirby, R. E., 1991, A vertebrate fauna from the Upper Triassic Owl Rock Member of the Chinle Formation of northern Arizona [M.S. thesis]: Northern Arizona University.

Wetmore, A., 1943, Remains of a swan from the Miocene of Arizona: Condor, v. 45, no. 3, p. 120.

NON-MAMMALIAN SYNAPSIDs

Camp, C. L., 1956, Triassic dicynodont reptiles; part II, Triassic dicynodonts compared: Memoirs of the University of California, v. 13, p. 305.

Nesbitt, S., 2001, An update on fossil reptile material from the Upper Moenkopi Formation, Holbrook Member (Middle Triassic), northern Arizona: Southwest Paleontological Symposium Proceedings, p. 3-7.
Sues, H.-D., 1985, First record of the tritylodontid Oligokyphus (Synapsida) from the Lower Jurassic of western North America: Journal of Vertebrate Paleontology, v. 5, no. 4, p. 328-335.

MAMMALIA

Stirton, R. A., 1931, A new genus of the family Vespertilionidae from the

TRACE FOSSILS

Bulklew, S., 1996, A dinosaur mass tracksite in the Lower Jurassic Kayenta

Sumida, S. S., Lombard, R. E., Berman, D. S., and Henrici, A. C., 1999, Late Paleozoic amniotes and their near relatives from Utah and northeastern Arizona, with comments on the Permian-Pennsylvaniaian boundary in Utah and northern Arizona, in Gillette, D. D., ed., Vertebrate Paleontol-

Thompson, M. E., Meldrum, D. J., White, R. S., Jr., and Thrasher, L., 2002, Camel tracks and trackways from late Pliocene deposits, Graham County, Arizona: Journal of Vertebrate Paleontology, v. 22 (supplement to no. 3), p. 114A.

BIBLIOGRAPHY OF ARIZONA FOSSIL VERTEBRATES BY AUTHOR, YEAR

Beus, S. S., 1980, Late Devonian (Frasnian) paleogeography and paleoenvironment in northern Arizona, in Rocky Mountain paleogeography, Denver, CO (USA), p. 55-69.
Cappetta, H., 1987, Chondrichthyes II: Mesozoic and Cenozoic Esa
Clark, F. E., 1974, Carbon nitrogen and 14N content of fossil and modern dung from the lower Grand Canyon: Journal of the Arizona Academy of Sciences, v. 9, no. 3, p. 95-96.
Emslie, S. D., and Czaplewski, N. J., 1999, Two new fossil eagles from the Late Pliocene (Late Blancan) of Florida and Arizona and their biogeographic implications: Smithsonian Contributions to Paleobiology, no. 89, p. 185-198.
Euler, R. C., 1984, The archaeology, geology, and paleobiology of Stanton’s Cave: Grand Canyon Natural History Association, monograph no. 6.
Western Association of Vertebrate Paleontologists with Mesa Southwest Museum and Southwest Paleontological Society: First Meeting of the New Millennium, Mesa, Arizona (USA), p. 9-15.

Irby, G. V., 1995, Marine reptiles from the Upper Cretaceous Mancos Shale, Black Mesa, northeastern Arizona, in Fossils of Arizona Symposium, Mesa, Arizona (USA), p. 75-80.

Johns, M. E., 1988, Architectural element analysis and depositional history of the upper Petrified Forest Member of the Chinle Formation [M. S. thesis]: Northern Arizona University, 163 p.

Kaye, F. T., and Padian, K., 1994, Microvertebrates from the Placelrias...

MacFadden, B. J. and Skinner, M. E., 1979, Diversification and biogeography of the one-toed horses Onohippidium and Hippidium: Postilla, no. 175, 10 p.

Petrie (1974, p. 268-269)

Wetmore, A., 1943, Remains of a swan from the Miocene of Arizona: Condor, v. 45, no. 3, p. 120.