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Abstract

WHOLE BODY HEAT SHOCK ATTENUATES IMPACT-INDUCED SKELETAL
MUSCLE DAMAGE IN MICE

Joshua Scott Godwin

B.S., Lees McRae College
M.S., Appalachian State University

Chairperson: R. Andrew Shanely

Impact-induced muscle damage of [IMD is a common sports injury, often resulting
in acute skeletal muscle contractile dysfunction. Whole-body heat shock is reported to
attenuate skeletal muscle atrophy in animal models. PURPOSE: The purpose of this study
was to test the hypothesis that whole-body heat shock attenuates [IMD related contractile
dysfunction and accelerates the recovery of contractile function following IIMD.
METHODS: Male mice (13.7 £ 0.6mo) were randomized to either the whole body heat
shock group (WBHS n = 24) or the normal body temperature group (NBT n = 24). Under
anesthesia, the in vivo torque-frequency relationship (1Hz-300Hz) of the anterior crural
muscle group was measured in all mice. Rectal temperature was then raised to 41°C (WBHS)
or maintained at 37°C (NBT) for 30 min and then all mice were allowed to recover
consciousness. Twenty-four hours later all mice were anesthetized again and a single impact
(IIMD) was delivered via the instrumented mass-drop technique (14.1 g steel ball was

dropped through a tube from 115 cm onto an impactor directly striking the tibialis anterior),
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all mice were then allowed to recover. Following 2-hours, 2-days, or 5 days of normal cage
activity (2-hours, 2-days, or 5-days recovery), in vivo torque-frequency relationships were
measured in all mice. After post-recovery in vivo torque-frequency testing, the tibialis
anterior is removed and mounted for later histological analysis. Data were analyzed using a
factorial ANOVA with an a priori level of significance of 0.05. Fisher’s LSD pair-wise
comparisons were made post hoc. RESULTS: There was a significant group-time-frequency
interaction (F = 3.41, p < 0.0001). Within group pairwise comparison pre-to 5-days recovery
revealed, WBHS fully recovered (p = 0.901), and NBT did not recover (p < 0.0001) muscle
contractile function. Comparison pre-to 2-days recovery revealed, WBHS recovered (p =
0.090), and NBT did not recover (p <0.0001) muscle contractile function. Comparison pre
to 2-hours recovery revealed both WBHS and NBT did not recover muscle contractile
function (p = 0.001, p < 0.0001 respectively), however at 250Hz, WBHS had greater torque
compared to NBT (p = 0.048). Histological analysis revealed that mice in the WBHS groups
had visually less edema compared to NBT groups at 2-days and 5-days. The number of
centrally located myonuclei was higher in NBT compared to WBHS at 5-days (p = 0.001).
The percentage of injured fibers did no differ at 2-hours and 2-days (p = 0.501, and p =
0.342, respectively); however, at 5-days NBT had significantly higher percentage of injured
fibers compared to WBHS, (p = 0.048). CONCLUSION: Whole body heat shock treatment
prior to a single impact induced muscle injury, accelerates the rate of recovery of in-vivo
skeletal muscle contractile function within the 2-days and 5-days recovery period, as well as

confers a degree of protection to the skeletal muscle at 2-hours.
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Chapter 1. Introduction and Literature review
Introduction

In the sports world, impact-induced skeletal muscle damage (IIMD), contusions, are
one of the most common injuries incurred, however little is known about proper treatment of
IIMD due to the variability of the injury. In sports, IIMD are typically caused by blunt
trauma directly impacting the skeletal muscle, causing a hematoma (9,25,39). [IMD are
difficult to characterize in human clinical populations; therefore, Crisco et al. (6) developed a
“mass-drop” method to induce IIMD in an animal model. Since the development of this
technique, other groups (3,10,15,26,27,48) have studied the effect [IMD have on skeletal
muscle function and recovery. These groups report that [IMD causes whole muscle damage,
ranging from contractile dysfunction to overt structural damage. They also report that
recovery time for [IMD, as verified by measuring contractile function and histological
evidence, takes several days to weeks, which can lead to performance deficits in sport. Due
to the lengthy recovery time associated with IIMD, many studies have been aimed at
treatment methods (3,18,20,27); however, little is known about the recovery of IIMD in
humans other than the rest, ice, compression, and elevation (R.I.C.E) technique (1).

Heat shock proteins (HSPs) are a family of proteins that are upregulated when the
body is exposed to “stress” stimuli such as heat. Heat shock proteins have protective
characteristics across a variety of different tissues (4,11). The protective characteristic of
HSPs have been historically studied in cardiac muscle and have been shown to protect
cardiac muscle in animal models of ischemia-reperfusion injury (4). Multiple studies

(10,21,24,28,33,35) report that HSPs can play a role in attenuating oxidative stress and



atrophy in skeletal muscle during disuse atrophy models. Although HSPs play a protective
role in both ischemia-reperfusion (cardiac) and atrophy (skeletal muscle), the degree to
which HSPs attenuate IIMD is unknown.

Literature Review

Impact-Induced Skeletal Muscle Damage. Impact-induced muscle damage (IIMD), as stated
by Naughton et al. (25), can occur from contact events resulting in blunt trauma impacts and
is one of the most common sports related injuries that are often overlooked as injuries that
frequently require treatment (25). IIMD is usually identified by hematoma from capillary
rupture and swelling due to inflammation; the common term for this is “bruising” (5,6).
IIMD is normally caused by a non-penetrating blunt trauma directly to the muscle and the
crushing type force that is applied, results in muscle damage (39), characterized by structural
damage, contractile dysfunction, and leukocyte infiltration (1,6,10).

Impact-Induced Skeletal Muscle Damage Models. The effects of IIMD on skeletal muscle
are difficult to study using human subjects, given the large variability in [IMD that occur in
every-day activities (5). Consequently, most research into the effects of [IMD on skeletal
muscle function and recovery, has been done in animal models, primarily in rats. In order to
obtain reliable and reproducible damage, a “mass-drop” technique was developed to induce
IIMD (6). The IIMD mass-drop technique involves dropping a known mass from a set height
onto the desired muscle group to induce a non-penetrating blunt trauma. By adjusting the
mass of the dropped object or the height from which the object is dropped, the impact force
can be altered to produce more or less serve IIMD. Following the development of the mass-
drop model other groups have modified the design to allow for different levels of injury and

other animal models, such as mice (48).



Type of Muscle Damage and Regeneration. Contractile function is often measured by the
amount of force the muscle is able to produce at a given stimulation frequency. Following
IIMD, skeletal muscle is damaged at the cellular level, including contractile dysfunction,
structural damage, and leukocyte invasion (5,6). Contractile dysfunction is defined as a
decrease in contractile force per unit area (or mass) of skeletal muscle. The cause of
contractile dysfunction is due to altered structure or alignment of the muscle fibers (6,10,20).
Multiple studies have demonstrated that contractile function is significantly impaired
following IIMD (3,5,10,33). Each of these studies have demonstrated that contractile
function of the damaged muscle group is impaired from low/submaximal stimulation
frequencies through higher maximal stimulation frequencies. Crisco et al. (6) reported that
from 7 to 24 days post-IIMD, contractile function remains depressed by 10 to 20%,
compared to pre-injury/non-injured values. Another important factor of contractile function
recovery is the rate of fatigue that occurs. Elmer et al. (10) report that even after several days
of recovery, the onset of fatigue in [IMD is 15% faster, when compared to non-injured
muscle. These results demonstrate the high degree of contractile dysfunction that is caused
by IIMD and how this damage can negatively affect muscle performance days to weeks after
injury.

Structural damage of the skeletal muscle fibers occurs due to the physical force and
mechanical strain that is imparted onto the muscle during blunt force trauma (1,6,29,39).
Structural damage is characterized by the disruption of individual muscle fiber alignment and
between fibers and extracellular components (6,18,37,40-42). Structural damage in skeletal
muscle may be studied using histological staining techniques, such as hematoxylin and eosin

stain, in order to visualize infiltration of immune cells and muscle fiber disruption. Many labs



use these techniques to map the structural regeneration of the damaged muscle tissue
(6,15,16,19,21,40-42, 46). By tracking the structural regeneration of the damaged skeletal
muscle (as indicated by centralized myonuclei), the degree of recovery and persisting
damage can be accessed. These results show measurable myofiber disruption hours after
IIMD. At two days post-IIMD, severe inflammation and misaligned fiber disruption are
observed (6,21). At five days post-IIMD vimentin and fibronectin are present, both of which
are components of muscle fiber regeneration (6,15,18,21). At eight days post-IIMD,
significant fiber regeneration and realignment are noted (6,18,21). At ten days post-IIMD
close to normal/control muscle fiber arrangement is reported (6,16,21).

Blunt trauma IIMD is noted for the large amount of edema that is visible in the hours
and days following the injury; this is largely due to the invasion of leukocytes that infiltrate
into the damaged area (3). Leukocyte invasion is started by neutrophils which respond to
chemicals secreted by the damaged skeletal muscle and is followed closely by the invasion of
macrophages (22,26,29,48). With the infiltration of neutrophils and macrophages into the
damaged tissue, further structural misalignment occurs (29,40-42). Even though the initial
invasion of leukocytes is damaging, the phagocytic role of these cells is vital in the removal
of damaged tissues and cellular structure to allow for necessary functional recovery
(22,36,40-42).

Treatment of IIMD. The treatment of IIMD has not been well studied due to the inability to
control the severity of [IMD in human trails. When IIMD occurs in a human, it is uncommon
for the person to be hospitalized; therefore, the various treatments for [IMD are not well
researched. Currently the most common type of treatment for IIMD is to apply the R.I.C.E.

method which stands for rest, ice, compression, and elevation (1). The R.I.C.E. method is



widely used due to the ease of application and does not require pharmaceutical treatment.
The R.I.C.E method was developed to decrease the hematoma and connective tissue scarring
that occurs as a result of immune cell activation following IIMD. By aiming to decrease the
swelling and connective tissue damage, the R.I.C.E. method is employed as a first treatment
therapy and the best results of recovery occur when the method is applied immediately after
the injury (1).

Another method used to treat IIMD is non-steroidal anti-inflammatory drugs
(NSAIDs). NSAIDs are pharmaceutical drugs that decrease swelling and inflammation as the
result of skeletal muscle injury (29,32). NSAIDs are often overused and can be detrimental to
the healing process as inflammation is needed for normal recovery (29). Inflammation is the
result of leukocyte invasion which is critical for the remove damaged tissue and is necessary
for the recovery process (36). Further evidence against the over-use of NSAIDs comes from
Rahusen et al. (32), who report that the use NSAIDs had no significant effect in the treatment
of acute IIMD.

Regardless of the treatment that is selected for healing of IIMD, timing is vital in the
effectiveness of regeneration (1,26). Baoge et al. (1) explains that the R.I.C.E. method is best
when implemented directly after injury and the use of NSAIDs should not be used prior to 48
hours post-IIMD (1). The use of NSAIDs during the initial 48-hour post-injury period can
interfere with the inflammatory response that is necessary for normal muscle repair (1).
Regardless of the treatment type employed, mitigating the symptoms of IIMD injury is often
the primary goal, which is why the R.I.C.E method is most commonly used.

Despite the ineffectiveness of some treatments to IIMD, it is worth mentioning that a

study by Kim et al. (17), reports that heat therapy following eccentric exercise induced



muscle damage, accelerates the recovery of fatigue resistance compared to non-heat-treated
human subjects (17). Given that eccentric exercise induced-injury is a common sport related
injury, heat treatment could be a viable therapy option for treating IIMD.

Heat Shock Protein Families. Heat shock proteins are a family/group of proteins whose
name is derived from their primary function of chaperoning nascent proteins and to protect
against denaturing of proteins during stressful conditions, mainly heat (13,45). The HSP
family of proteins are divided into subfamilies based on the size of the molecules in
kilodaltons (kDa), ranging from HSP10 to HSP110 (13). The HSP70 and HSP90 families of
proteins have been reported to play an important role during physical exercise. HSP72 is a
well-known, inducible protein that chaperones other HSPs as well as aiding in the folding of
newly synthesized proteins (13). HSP90 is a major constitutively expressed protein that has
been reported to be largely active in chaperoning the folding of newly synthesized proteins,
while also aiding in myosin thick filament and sarcomere formation (12,13,45). The HSP110
family of heat shock proteins has been reported to play roles in supporting the immune
system as well as aiding protein folding (44,51). HSP110 has also been reported to amplify
inflammatory signals; however, little is known on the expression of HSP110 in response to
exercise (13,44,51).

Heat Shock Proteins in Cardiac Muscle. Cardiac and other cardiovascular related diseases
are among the leading health problems (4,11,16,38), therefore any treatment or protective
method that can be applied would have tremendous clinical impact. HSPs have been heavily
researched for their role in protection of cardiac muscle, especially following a cardiac event
(4,7). Ischemic events are characterized by insufficient blood flow to a tissue, often resulting

in, stunning, necrosis or death of the tissue (7,16). HSP activation prior to an ischemic event



in the heart has been demonstrated to provide effective cardio-protection during these
conditions (4,7,8,11). It has been demonstrated that activation of HSPs prior to the ischemic
event enhances recovery of the cardiac muscle (7,8,38). Further studies conducted by
Karmazyn et al. (16) have associated HSP activation with recovery of force in cardiac
muscle following ischemic conditions. The same study also related the protective
mechanisms of HSPs to attenuating ventricular damage, thus enhancing recovery. From these
studies involving the protective role of HSPs in cardiac muscle, many researchers also
believe heat shock proteins play a similar role in skeletal muscle (24,28,34). However further
studies are needed to investigate if the mechanisms of protection provided by HSPs are
similar in both cardiac and skeletal muscle.

Heat Shock Proteins in Hindlimb Suspension and Immobilization. Hindlimb suspension
models were developed to simulate microgravity and results in disuse atrophy of the affected
limbs. In these experimental animal models, mainly mice and rats, the hindlimbs are
suspended so that the forelimbs bare the majority of the body mass and thus, the animal can
no long use their hindlimbs for normal ambulation. The purpose of this technique is to study
the effect of disuse or low contractile activity on skeletal muscle and increases in oxidative
stress and atrophy of the muscle (24, 28). During the reloading phase of the suspension
experiments, which occurs once the animal is allowed use of its hind limbs again, a large
amount of eccentric damage is observed, which is characterized by increased inflammation
and muscle fiber disruption (24). This heavy inflammation and muscle fiber disruption then
leads to impaired contractile function, resulting in further loss of specific force production
(37). It has been demonstrated that during the end of suspension and the beginning of the

reloading phase, skeletal muscle HSP expression is low (28); however, following



inflammation and disruption of muscle fibers from reloading, HSP expression increases
significantly (24,28). Once recovery of injured muscle is complete, HSP expression returns
to pre-suspension values. These data indicate that HSP expression responds to damage and
plays a role in the recovery of skeletal muscle health and function.

In practical applications, prevention or attenuation of damage is preferred, meaning
activation of HSPs before hindlimb suspension or other insults attenuates muscle damage.
Naito et al. (24) demonstrated that activation of HSPs prior to hindlimb suspension results in
less skeletal muscle atrophy, suggesting that induction of HSPs also plays a role in protection
of skeletal muscle from atrophy.

Immobilization is often used in clinical settings as an initial treatment for various
injuries, however it can lead to skeletal muscle weakness caused by low contractile activity
in the muscle (45). Similar to hindlimb suspension, low contractile activity in the skeletal
muscle of the immobilized limb causes increased oxidative stress and muscle atrophy (35).
The damage caused by immobilization results in loss of fiber size, decreasing overall force
production (35). Selsby et al. (34) demonstrated that activation of HSPs prior to
immobilization decreases the amount of atrophy and oxidative stress. In this study, HSPs
were activated prior to immobilization of one hindlimb. After eight days of immobilization,
HSP72 levels, antioxidant enzyme activity, and total muscle weight were measured. After
eight days immobilization it was found that levels of antioxidant enzyme activity, and muscle
mass were significantly higher in heat-stressed rats, compared to immobilized non-heat
shocked control rats. These results demonstrate that the activation of HSPs prior to
immobilization played a role in protecting against skeletal muscle oxidative stress and

atrophy. This protective role displayed by HSPs is important as it demonstrates that HSP



activation may be used as a viable modality to prevent or attenuate skeletal muscle oxidative
stress and atrophy during periods of disuse.

Heat Shock Proteins in Mechanical Ventilation. Mechanical ventilation is a critical
procedure in rehabilitating patients who cannot maintain adequate alveolar ventilation. In
controlled mechanical ventilation, air is forced into the airways and controlled by an external
source (15). However, controlled mechanical ventilation can cause significant diaphragmatic
problems including oxidative stress, muscle fiber atrophy, and increased contractile
dsyfunction (14,30,36,40,49,50). As shown by Ichinoseki et al. (14), HSP activation prior to
controlled mechanical ventilation protects the diaphragm from oxidative stress and atrophy.
This study demonstrates that activation of HSPs decreased the amount of oxidative stress
caused by controlled mechanical ventilation. Oxidative stress is damaging to the muscle in
that the build-up of harmful metabolites can impair function and decreased force production
(39,49,50). Decreased oxidative stress was assessed by measuring the levels of oxidized
proteins in HSP activated diaphragm when compared to a control of non-heat shock protein
activated diaphragm (14). Ichinoseki et al. (14) also reported that when HSPs are activated,
the overall weight of the mechanically-ventilated diaphragm and the fiber cross-sectional
area did not decrease compared to normal non-mechanically-ventilated diaphragm.
Controlled mechanical ventilation results in contractile dysfunction (31), however HSP
activation prior to mechanical ventilation can protect against contractile dysfunction (49).
Yoshihara et al. (49) demonstrated that with the activation of HSPs prior to controlled
mechanical ventilation, the prevention of diaphragm contractile dysfunction at lower
stimulation frequencies is observed. This is an important concept regarding the effects of

HSPs, due to submaximal stimulation being more frequent in day-to-day activities.



Heat Shock Proteins Attenuate Eccentric Contraction-Induced Muscle Damage. It has
been previously reported by McArdle et al. (23) that life-long overexpression of HSP70 in
mice attenuates some of the force deficit following eccentric contraction-induced muscle
injury. The study also showed an improved recovery time in both adult and old mice that
overexpress HSP70 when compared to mice that do not overexpress HSP70. This study by
McArdle et al. (23) shows that overexpression of HSPs aid in the recovery of a sports related
injury.
Muscle Injury and HSP. Hindlimb suspension, immobilization, mechanical ventilation,
eccentric muscle damage in skeletal muscle, and ischemic conditions in cardiac muscle cause
oxidative stress and atrophy, both of which lead to a decrease in specific force production of
muscle. Previous studies report that HSP activation has a protective effect in cardiac muscle
and skeletal muscle, decreasing oxidative stress and protecting against atrophy, thus playing
a role in recovery. The collective findings from these studies demonstrate that activation of
HSPs can attenuate of a many types of muscle damage. However, it is unknown if prior
activation of HSPs has a protective role in decreasing the amount of [IMD caused by a single
impact.
Purpose of Study

IIMD is among the most common sports related injury and HSP activation provides a
protective mechanism against muscle damage in a variety of muscle injuries. Therefore, the
purpose of this study was to determine the degree to which whole body heat shock attenuates
impact-induced skeletal muscle damage on the anterior crural skeletal muscle group in adult
mice and to assess recovery following impact-induced skeletal muscle damage by measuring

contractile function and histological analyses.
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Hypothesis

I hypothesized that whole body heat shock prior to [IMD would decrease the amount
of damage to the skeletal muscle, decreasing both contractile muscle function loss and
structural damage; as well as, decrease the time to recover contractile function. Further, I
hypothesize that whole body heat shock prior to IIMD will result in less overt structural

damage compared to normal body temperature.
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Chapter 2. Methods
Methods
Experimental Design. Adult C57BL/6 mice were randomly assigned to one of six groups
and the body weight of each mouse was measured. Following this, mice were then
anesthetized with 4% isoflurane and maintained with 2% isoflurane prior to undergoing in
vivo contractile function testing (described below). After the initial contractile function
testing, mice were either subjected to whole body heat shock (WBHS) or maintained at
normal body temperature (NBT). 24-hours later mice were anesthetized and received one
impact using the mass-drop method, all mice were then allowed to recover consciousness and
allowed normal cage activity. Following the assigned recovery time of 2-hours, 2-days, or 5-
days, mice were re-anesthetized and in vivo contractile function was retested. After the
follow-up contractile function, the tibialis anterior muscle was harvested and mounted for
histological analysis.
Animals. Male C57BL/6 mice aged 12-to-14 months, procured from the in-house colony at
Appalachian State University, were randomly assigned into one of six groups (n=8 per
group); whole body heat shock 2-hour, whole body heat shock 2-day, whole body heat shock
5-day, normal body temperature 2-hour, normal body temperature 2-day and, normal body
temperature 5-day. All groups were tested for contractile function via in-vivo methods prior
to heat treatment or normal body temperature conditions and again after the prescribed
amount of time following IIMD. This study was approved by the Appalachian State
University IACUC (16-18).
Injury Model. The IIMD model that was employed was developed by the Crisco lab (5,6)

and later modified by Xiao et al. (48) for mice. The model used (48) is a mass-drop technique
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where a 14.1g steel ball was dropped from a height of 115cm onto a metal impactor that
directly impacts the belly of the tibialis anterior (TA), Figure 1. The force that is applied to
the TA has been reported to induce whole muscle damage (5,6,33,47).

In Vivo Contractile Function. To test contractile function, a torque frequency curve was
determined for each mouse prior to injury. Once the animal is anesthetized with 4%
isoflurane and maintained with 2% isoflurane, isometric twitch contractions were used to
obtain optimal electrode placement of the peroneal nerve to stimulate the anterior crural
muscles, optimal placement was confirmed by 5-10 300Hz isometric contractions. Following
electrode placement, a torque frequency curve tested the isometric torque produced by the
anterior crural muscle group at 11 ascending 120ms train stimulations ranging from 1Hz to
300Hz with two minutes rest between each contraction. This torque frequency curve is
designed to assess torque from submaximal, unfused tetanic contractions up to maximal
fused tetanic contractions. This specific torque frequency curve was published by Baumann
et al. (2) and has been conducted by our lab in previous investigations (see Figure 2).

Data Acquisition and Analysis. The muscle lever system (Aurora Scientific 1300A, Aurora,
ON, Canada), stimulator and force transducer was connected to a signal interface (Aurora
Scientific, Model 610A) that sends the analog signal to an analog to digital converter card
(Model PCI-6221, National Instruments, Austin, TX, USA) on a computer with Dynamic
Muscle Control software (Aurora Scientific, 310A). The force output data was analyzed
utilizing the Dynamic Muscle Analysis software (Aurora Scientific, 610A).

Activation of Heat Shock Proteins. Whole body heat shock was used to activate heat shock
proteins. The mice were anesthetized (as described above) and placed on an electric heating

pad in the prone position. The rectal temperature of the animals was raised to 41° C and
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maintained at this temperature for 30 minutes. The temperature of the animals was monitored
by a rectal temperature probe (34-1402, Harvard Apparatus, Holliston, MA) throughout the
entirety of the heating protocol. Animals in the normal body temperature groups, were
maintained at 37° C for 30 minutes. All mice were then allowed to fully recover
consciousness and resume normal cage activity.

Preliminary Data. Preliminary data from our lab shows that this method of whole body heat
shock increased the expression of HSP72 ~5-fold (Figure 3). This was confirmed by Western
blot analysis of homogenized skeletal muscle 24 hours post whole-body heat shock.
Preliminary data also showed that whole body heat shock had no effect on the amount of
torque produced. This was tested by comparing torque frequency curves pre- and 24hr post-
whole body heat shock treatment, data not shown.

Histology. Tissue was harvested and mounted for histological analysis at 2-hours, 2-days,
and 5-days post injury. Harvested tissue mounted on cork using optimal cutting temperature
medium (Fisher healthcare, Houston, TX., USA), frozen in isopentane cooled in liquid
nitrogen. Slide-mounted serial cross-sections, 10um thick, were obtained from the proximal,
medial, and distal portions of the tibialis anterior muscle. Mounted tissue sections were then
stained using common histological techniques for cytosolic and nucleic components using
Mayer’s hematoxylin and eosin (H&E) solution. H&E stained sections were then analyzed
using an EVOS imaging microscope (AMFC4300, Thermofisher) at magnification 20X.
Several images were taken of each section, ~300 fibers/section. When quantifying the
amount of muscle damage, the total number of damaged/regenerating fibers was taken as a

percentage of the total number of fibers. The guidelines used for quantifying muscle damage
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included counting the presence of: pale cytoplasm, extracellularly located phagocytes,
intracellularly located phagocytes, and centrally located myonuclei (19,43).

Statistics. A three-way factorial ANOVA was used to evaluate muscle torque-generating
capacity. Treatment group, recovery/harvest time post IIMD, and stimulation frequency were
the three factors. Histological data were analyzed using a one-way ANOVA for each marker
of damage. All statistical analysis used a priori level of significance set at p < 0.05 and
Fisher’s LSD pair-wise comparison were made post hoc. Data were analyzed using SPSS

(IBM Inc., Chicago, IL, USA).
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Chapter 3: Results
Contractile Function. At 5-days post-IIMD there was a significant interaction effect of time-
by-frequency-by-group (F = 3.602; p = 0.038). Mice that received the WBHS treatment fully
recovered torque values over the entire torque frequency relationship, (F = 0.016; p = 0.901,
Figures 4 and 8), whereas mice that were maintained at NBT did not, (F =26.368; p = 0.001,
Figures 4 and 7). Further analysis of torque values at a submaximal frequency, 40Hz, and a
maximal tetanic frequency, 250Hz, revealed that WBHS animals recovered torque at both
frequencies, (F = 0.078; p = 0.786 and F = 0.293; p = 0.602, respectively), whereas animals
in the NBT group did not, (F =23.943; p =0.001 and F = 12.752; p = 0.027, respectively,
Figures 9 and 10).

At 2-days post-IIMD, there was a significant interaction effect of time-by-frequency-
by-group (F = 3.689; p = 0.024). WBHS mice fully recovered torque values over the entire
torque frequency relationship (F = 0.090; p = 0.090, Figures 5 and 8), whereas NBT mice did
not, (F =23.071; p=0.0001, Figures 5 and 7). Further analysis of torque values at a
submaximal frequency, 40Hz, and a maximal tetanic frequency250Hz, revealed that WBHS
animals recovered torque at both frequencies, (F = 0.888; p=10.516 and F = 1.675; p=0.217,
respectively), whereas NBT mice did not, (F =9.244; p = 0.009 and F = 21.583; p = 0.0001,
respectively, Figures 9 and 10.)

At 2-hours post-IIMD, there was a significant interaction effect of time-by-frequency-
by-group (F = 6.001; p=0.0001). The torque frequency relationship was significantly
depressed in both groups, (F =4.075; p = 0.001 for both groups, Figure 6) with WBHS IIMD
function significantly greater than NBT (F = 4.677; p <0.05, Figure 6). Further analysis of

torque at 40Hz and 250Hz was significantly depressed compared to pre-injury for both
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groups, (F =104.462; p=0.0001 and F = 79.628; p = 0.001, respectively, Figures 9 and 10).
However, the WBHS group generated significantly more torque than the NBT group at
40Hz, at 250Hz no significant difference was found between NBT and WBHS,

(F=1.249; p=0.195; F =4.677; p = 0.048 respectively, Figure 9 and 10).

Skeletal Muscle Morphology. Hematoxylin and Eosin staining was used assess the changes
in skeletal muscle morphology following IIMD; see Figure 11 for normal skeletal muscle
morphology. Morphology was quantified using the following criteria; presence of
extracellular phagocytes (Figure 12), pale cytoplasm (Figure 13), intracellular phagocytes
(Figure 14), and centrally located myonuclei (Figure 15). At 2-hours post-1IIMD, visually
substantial edema and fiber disruption was present, while what appears to be the start of
phagocyte infiltration is observed, (Figure 16). At 2-days post-IIMD, many extracellular
phagocytes are present and a small quantity of centrally located myonuclei are present,
(Figure 17). For intracellular located phagocytes, there was a significant main effect of group
(F =6.044; p = 0.001). Fisher LSD comparisons revealed, NBT group at 2-days post-IIMD
had significantly greater intracellular phagocyte infiltration compared to un-injured control
tissue (p = 0.009, Figure 19). The presence of centrally located myonuclei displayed a
significant main effect of group (F = 7.675; p = 0.001). Fisher LSD comparisons revealed,
both groups at 2-hours and 2-days post-IIMD did not differ (p = 0.354 and p = 0.355,
respectively). However, the NBT had significantly more centrally located myonuclei at 5-
days post-IIMD than the WBHS group, (p = 0.001, Figure 21). The percentage of injured
fibers, as described by Tsivitse et al. (43), displayed a significant main effect of group (F =
7.385; p=0.0001). Fisher LSD comparisons revealed both groups at 2-hours, or 2-days post-

IIMD did not differ (p = 0.501, and p = 0.342, respectively). However, the NBT group at 5-
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days post-IIMD had significantly more injured fibers than the WBHS group 5-days post-

[IMD, (p = 0.048, Figure 22).
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Chapter 3. Discussion

Discussion

The purpose of this study was to investigate the effects of WBHS, prior to IIMD, has
on the recovery of contractile function in adult mice and its effects on attenuating the amount
of skeletal muscle damage incurred. The novel findings of this study are that WBHS
accelerated the rate of contractile function recovery at both 2-days and 5-days and afforded a
degree of protection against contractile function loss 2-hours post-IIMD. Histological
findings demonstrate that WBHS treatment reduced the number of intracellularly located
phagocytes at 2-days and WBHS treatment resulted in a decrease in the number of centrally
located myonuclei at day 5.
Accelerated Recovery of In-Vivo Contractile Function. The response of contractile function
in NBT mice following IIMD was as hypothesized. Mice in the NBT groups had contractile
function deficits of ~50% at 2-hours and ~40% at 2- and 5-days post-IIMD at a maximal
tetanic contraction, 250Hz. These results align with previous in vitro contractile function data
from Crisco et al. (6), who report depressed contractile function up 24 days following [IMD.

The rate of contractile function recovery from IIMD was accelerated in the WBHS
treatment group. Mice that received WBHS recovered contractile function at both 2-days and
5-days (89% and 96% of pre-injury, respectively). At 2-hours post-impact injury, contractile
function was significantly depressed in both treatment groups; however, at 250Hz, WBHS
resulted in less functional decrements (30%), compared to NBT mice (50%; p<0.05), where
at 40Hz there was no significant difference between WBHS and NBT, (p=0.195). These data
align with the functional deficits reported by Crisco et. al (6) and Russ et. al (33), in that

functional deficits of ~30-40% persist 7 days post-IIMD.
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These results differ from previous studies by Yoshihara et al. (49) and Ichinoseki et
al. (14), where these groups found WBHS prior to controlled mechanical ventilation did not
attenuate the loss of in vitro diaphragmatic contractile function. The results of the current
study are in line with results from McArdle et al. (23), where transgenic mice that had life
long overexpression of HSP70 had increased contractile function recovery times and
attenuated force deficits after eccentric contraction-induced skeletal muscle injury.
Therefore, the contractile function results of the current study are in agreement with the
hypothesis that activation of HSPs via whole body heat shock prior to skeletal muscle injury
confers a degree of protection.

Histological Analysis. Impact-induced skeletal muscle damage has been characterized in
previous studies by Crisco et al. (6) and Xaio et al. (48) as displaying large amounts of
muscle fiber disruption and a large infiltration of phagocytic cells, namely neutrophils and
macrophages. In the current study, several key histological markers for
repairing/regenerating muscle fibers were used, as previously described by Koh et al. (19),
and Tsivitise et al. (43). These markers include presence of pale cytoplasm, extracellular
phagocytes, intracellular phagocytes, and centrally located myonuclei.

When examining H&E staining of both WBHS and NBT groups at all time points it is
apparent that both groups have an increased presence of extracellularly located phagocytes.
These findings are in-line with increased presence of phagocytes reported by Xaio et al. (48),
i.e., the infiltration of phagocytes peaks 1-3 days post-injury. The progression of different
phagocyte infiltration into the damaged muscle issue is explained in depth by Tidball (42).
The infiltration of these phagocytes begins with the invasion of neutrophils, starting hours

after injury, and is followed closely by the infiltration of M1-like (pro-inflammatory)
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macrophages and later M2-like (anti-inflammatory) macrophages (42). This progression of
phagocyte infiltration into damaged skeletal muscle was confirmed by Xaio et al. (48) in an
IIMD model in mice. The time course for extracellular phagocyte infiltration matches the
histological evidence seen from the current study, where at 2-hours post-IIMD some
phagocytes can be seen (Figure 16), at 2-days post IIMD (Figure 17) increased levels of
phagocyte invasion are observed, and at 5-days the levels of phagocyte infiltration is again
minimal (Figure 18). Even though the amount of extracellularly located phagocytes was
visual higher in all groups, the amount of intracellularly located phagocytes was lower than
5-days in both WBHS and NBT groups. This finding differs from Xaio et al. (48), where they
reported mRNA data for CD163 M2-like macrophages was still elevated at 5-days post
IIMD, suggesting intracellularly located phagocytes were expected to be elevated in the
current study.

The number of centrally located myonuclei is higher in NBT mice at 5-day compared
to WBHS mice at the same time point, while at 2-days both groups have approximately the
same number of centrally located myonuclei. Given this decrease in centrally located
myonuclei at 5-days in WBHS mice, a possible explanation for accelerated contractile
function recovery is that WBHS could be affecting the number of centrally located
myonuclei between 2-days and 5-days post-injury. The presence of centrally located
myonuclei represent the shift from damaged fibers to regeneration/repairing fibers (40,42).
Evidence of fewer centralized myonuclei at 5-days in WBHS mice, could mean that mice
with WBHS treatment are reaching the fiber regeneration stage sooner compared to NBT
mice. This decrease in central myonuclei at 5-days in WBHS mice could also be due to less

initial damage in WBHS mice, evident by the contractile function data at 2-hour post-IIMD
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(figure 6). Less initial damage would result in a both a decreased phagocyte response and
fewer regenerating fibers meaning fewer centralized myonuclei. Further studies with time
points between 2-days and 5-days post-injury are needed to determine the peak of centrally
located myonuclei for WBHS mice.

While quantifying the markers of muscle damage, it is visually clear that animals in
the WBHS treatment groups had less edema compared to animals in the NBT groups,
(Figures 16-18). Less edema could be another possible mechanism for the accelerated
recovery of contractile function in mice subjected to WBHS treatment. Less edema, as seen
in WBHS groups, can result in less contractile dysfunction as shown by less force deficit at
2-hours and full recovery of contractile function at 2-days and 5-days post-IIMD. It has been
proposed that edema increases the disruption of actin and myosin filaments, reducing the
ability of cross bridge formation and ultimately resulting in a decrease in contractile function
(6,10,25). Further investigation into quantifying the amount of edema is needed to determine
if this is actually a mechanism involved in the protection afforded by whole body heat shock
treatment.

Future Studies. Future studies should aim to discern the mechanism at which WBHS is
affecting the skeletal muscle following IIMD. Future studies should include understanding
the monocyte progression in the injured tissue by using monocyte markers. This would
determine the effect WBHS has on the progression of macrophage phenotypes from M1-like
pro-inflammatory to M2-like anti-inflammatory and aid in determining the stage of recovery
at that time point. Another future study would be to use a sarcolemmal stain of calcium dye
to understand how the release and reuptake of calcium is affected. Russ et al. (33), report that

calcium uptake and release are impaired following IIMD with no intervention; therefore,
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determining calcium handling after WBHS and IIMD could prove to be another potential
mechanism of WBHS providing protection and accelerating recovery. Also, future studies
should look into the difference between local single limb heating/HSP expression verse
global whole body heating/broad HSP expression. Studies determining which HSPs are
predominantly playing a role in skeletal muscle is needed. To do this, ShRNA can be used to
directly inhibit HSPs in the skeletal muscle, this could be used to determine which HSPs are
primarily affecting recovery of skeletal muscle.
Limitations of the Study. While this study is the first to test if WBHS treatment prior to
impact-induced muscle injury affects contractile function and histological markers of muscle
damage, the investigation was not without limitations. Major limitations of this study include
the following: muscle wet weight was not measured, this would have allowed for an estimate
of the amount of edema resulting from I[IMD and if WBHS attenuates the resulting edema,
only three time points were tested, earlier post-injury time points (e.g., immediately post-
[IMD, 30min and 60min post-IIMD) may help if WHBS attenuates edema.
CONCLUSION

This is the first study to report that WBHS prior to IIMD attenuates skeletal muscle
damage and accelerates the rate of contractile function recovery. Furthermore, the 2-hour
post-injury data suggest that WBHS treatment provides a protective mechanism to the
skeletal muscle. Further analysis is needed to uncover the differing response in the amount of
edema that is visually seen between WBHS and NBT groups. The findings from this study
also warrant the need for further investigation into the mechanism with which HSP activation

provides this protection.
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Figure 1: Schematic of the mass drop device used to cause impact-induced skeletal muscle
damage.
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Figure 2: Preliminary data demonstrating the anterior crural in-vivo torque frequency

relationship in young (3-6 mo old) mice (n = 20 for each group), P = 0.564. Mice were

initially tested on Day 1 and the same in-vivo torque frequency relationship was measured 7-
days later. These data show the repeatability of this technique.
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Figure 3: Preliminary study demonstrates that whole body heat shock increases HSP72
expression. Tibialis anterior (right and left) from whole body heat shock mice (n = 2) lanes 1,

2, 5, and 6. Tibialis anterior (right and left) from normal body temperature mice (n = 2) lanes
3,4,7, and 8.
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Figure 4: Contractile function pre-injury and 5-days post-impact induced muscle damage.

Data from in-vivo torque frequency relationship, mean + SEM.
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Figure 5: Contractile function pre-injury and 2-days post-impact induced muscle damage.
Data from in-vivo torque frequency relationship, mean + SEM.
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Figure 6: Contractile function pre-injury and 2-Hours post-impact induced muscle damage.
Data from in-vivo torque frequency relationship, mean + SEM.
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Figure 7: Contractile function data for normal body temperature groups pre-injury, 2-hour, 2-
day, and 5-day post-impact induced muscle damage. Data from in-vivo torque frequency

relationship, mean + SEM.

38



125,

r..z......:l:oooooo‘_!’ooo..x '.'||MD5—dayF’re
.0' ". - ##I’ 1IMD 5-day Post

*——--—,‘

*®- |IMD 2-day Pre
IIMD 2-day Post

: * «m [IMD 2-hour Pre
IIMD 2-hour Post

* p<0.05 from within group
pre-injury

:
',ci
W\
{
.5:
l

2
b

Torque (MNm-kg™)

N
&
&

0 50 100 150 200 250 300
Stimulation Frequency (Hz)

Figure 8: Contractile function data for whole body heat shock groups pre-injury, 2-hour, 2-
day, and 5-day post-impact induced muscle damage. Data from in-vivo torque frequency
relationship, mean + SEM.
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Figure 9: Submaximal 40Hz frequency for all groups at all time points. The dotted line
represents the average pre-injury torque for all groups; NBT (normal body temperature),

WBHS (whole body heat shock), mean = SEM.
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Figure 10: Maximal 250Hz frequency for all groups at all time points. The dotted line is
average pre-injury value for all groups; NBT (normal body temperature), WBHS (whole

body heat shock), mean + SEM.
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Figure 11: Hematoxylin and Eosin stain of uninjured tibialis anterior, 20X magnification.
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Figure 12: Hematoxylin and eosin stain showing extracellular phagocytes. Black arrows
pointing to extracellularly located phagocytes, 40X magnification.
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Figure 13: Hematoxylin and eosin stain showing pale cytoplasm. Black arrow pointing to
pale cytoplasm, 40X magnification.
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Figure 14: Hematoxylin and eosin stain showing intracellular phagocytes. Black arrow
pointing to intracellularly located phagocytes, 40X magnification.
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Figure 15: Hematoxylin and eosin stain showing central myonuclei. Black arrows pointing to
centrally located myonuclei, 40X magnification.
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Figure 16: Hematoxylin and Eosin stain at 2-hour post-impact induced muscle damage. Top:
image of WBHS 2-hour. Bottom: NBT 2-hour. Showing edema and extracellularly located
phagocytes.
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Figure 17: Hematoxylin and Eosin stain at 2-day post-impact induced muscle damage. Top:
image of WBHS 2-day. Bottom: NBT 2-day. Showing edema and extracellularly located
phagocytes.
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Figure 18: Hematoxylin and Eosin stain at 5-day post-impact induced muscle damage. Top:
image of WBHS 5-day. Bottom: NBT 5-day. Showing edema and extracellularly located
phagocytes.
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Figure 19: Quantification of intracellularly located phagocytes. Total number of myofibers
with intracellularly located phagocytes are counted for each section, mean + SEM
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Figure 20: Quantification of pale cytoplasm. Total number of myofibers containing pale
cytoplasm for each section, mean + SEM
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Figure 21: Quantification of centrally located myonuclei. Total number of myofibers with
centrally located myonuclei for each section, mean £+ SEM
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Figure 22: Percentage of injured fibers for each section. Percentage of injured fibers is
determined by adding the amount of pale cytoplasm, intracellular phagocytes, and central
myonuclei then dividing number of injured fibers by the total number of fibers, mean £ SEM
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