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Abstract

Highly repetitive regions have historically posed a challenge when investigating sequence

variation and content. High-throughput sequencing has enabled researchers to use whole-

genome shotgun sequencing to estimate the abundance of repetitive sequence, and these

methodologies have been recently applied to centromeres. Previous research has investi-

gated variation in centromere repeats across eukaryotes, positing that the highest abun-

dance tandem repeat in a genome is often the centromeric repeat. To test this assumption,

we used shotgun sequencing and a bioinformatic pipeline to identify common tandem

repeats across a number of grass species. We find that de novo assembly and subsequent

abundance ranking of repeats can successfully identify tandem repeats with homology to

known tandem repeats. Fluorescent in-situ hybridization shows that de novo assembly and

ranking of repeats from non-model taxa identifies chromosome domains rich in tandem

repeats both near pericentromeres and elsewhere in the genome.

Introduction

Advances in sequencing technology have facilitated development of reference genomes for

many non-model organisms, providing a tremendous resource for the field of comparative

genomics. Our understanding of the repetitive regions of genomes, however, has lagged

behind that of gene-rich regions, mostly because the high identity shared between repeat

sequences causes problems with assembly and mapping [1]. Though repetitive DNA is often

disregarded as“junk DNA”, research continues to unravel its many functions, spurring a grow-

ing interest in a better understanding of the evolutionary history and genomic composition of

repeats [2]. Repeat sequence can be broadly classified into two categories: dispersed repeats

derived from transposable elements (TEs) and tandemly repeated sequences. TE-derived
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repeats comprise the majority of many eukaryotic genomes and have been recognized for their

potential impacts on phenotype, for example via gene expression [3, 4] or affecting chromatin

status [5].

In comparison to the wealth of TE data across organisms, much less is known about the

function and evolutionary history of tandem repeats. Tandem repeats are commonly found

in the gene-poor regions of the genome such as telomeres and centromeres as well as hetero-

chromatic knobs [6], B chromosomes [7], and sex chromosomes [8]. While tandem repeats

generally make up less of the genome than TEs, their abundance varies substantially across

phylogenetic groups [9]. In an effort to better understand tandem repeats, researchers have

applied both sequencing technologies and molecular biology. Several studies, for example,

have paired chromatin immunoprecipitation (ChIP) of centromere proteins with clustering

algorithms [10] to identify centromeric repeats [11, 12, 13].

In a recent paper, Melters et al [9] conducted de novo repeat assembly of published short

read sequence data to study the evolution of centromeric tandem repeats across 280 plant and

animal species. While tandem repeats do not appear necessary for the formation of centro-

meres [14], they may serve as placeholders for an epigenetic signal that governs heterochroma-

tin formation [15] or function in repair of double strand breaks [16]. Transcripts from

centromere-associated tandem repeats have also been found in the nucleolus of both plant and

animal taxa and are thought to be important in protein assembly [17, 18], further suggesting a

potential functional role for tandem repeats. Given their likely importance, there is great

potential for a bioinformatic approach that takes advantage of published sequence data. One

critical assumption of the Melters et al. [9] approach, however, is that the most abundant tan-

dem repeat in each genome taxa is the centromere repeat. While comparison to known repeats

in several model organisms suggests this assumption works well for animals [9], earlier work

suggests that it may not apply broadly to plants. Using a similar pipeline and 454 shotgun

reads from Solanum taxa, for example, Torres et al. [19] identified the most abundant tandem

repeats as subtelomeric rather than centromeric.

Here, we test the assumptions of Melters et al. [9], applying their pipeline to species within

the Andropogoneae tribe of grasses and three outgroups, Arundinella, rice, and bamboo, in

order to better understand tandem repeat contribution to genomic composition. The Andro-

pogoneae tribe, sometimes referred to as the sorghum tribe, includes both maize and sorghum,

two model organisms with well annotated repeats [20, 21]. Many other species in this group

are agriculturally and scientifically important, including sugar cane. The presence of well

annotated reference genomes allows us to test the accuracy of our method and the Melters

et al. [9] assumption regarding centromere repeat sequence and its genomic abundance. We

examine the genomic composition of highly abundant tandem repeats across these species,

determine their homology to known centromere repeats, and perform fluorescent in-situ
hybridization to test whether novel high-abundance repeats show patterns consistent with

known centromere repeats. We show that the common assumption that the highest abundance

tandem repeat is centromeric is not supported in these taxa, but that de novo tandem repeat

assembly can be used to identify entirely novel repeats such as a knob-like repeat in A. nepalen-
sis and U. digitatum.

Materials and methods

Sequencing and genome size measurements

Because previous work has shown that sequencing libraries prepared through identical meth-

ods better retain relative composition of repeats [22], rather than use published data we elect

to re-sequence all the species used here. Seed was requested from the GRIN database, and
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accession information is available in Table 1. DNA was isolated from leaf tissue using the

DNeasy plant extraction kit (Qiagen) according to the manufacturer’s instructions. Samples

were quantified using Qubit (Life Technologies) and 1ug of DNA was fragmented using a bior-

uptor (Diagenode) with cycles of 30 seconds on, 30 seconds off. DNA fragments were then

prepared for Illumina sequencing. First, DNA fragments were repaired with the End-Repair

enzyme mix (New England Biolabs). A deoxyadenosine triphosphate was added at each 3’end

with the Klenow fragment (New England Biolabs). Illumina Truseq adapters (Affymetrix)

were then added with the Quick ligase kit (New England Biolabs). Between each enzymatic

step, DNA was washed with sera-mags speed beads (Fisher Scientific). Samples were multi-

plexed using Illumina compatible adapters with inline barcodes and sequenced in one lane of

Miseq (UC Davis Genome Center Sequencing Facility) for 150 paired-end base reads with an

insert size of approximately 350 bases. Parsing of reads was performed with in house scripts

(All scripts for this and other processes are available at https://github.com/paulbilinski/

Github_centrepeat). In short, barcodes were trimmed from the sequence, paired reads were

separated so that a single read could be used for assembly, allowing for much faster repetitive

contig assembly. Sequence data for each species are available on FigShare (https://dx.doi.org/

10.6084/m9.figshare.3494378.v2). Genome sizes were estimated using flow cytometry follow-

ing [23].

Assembly and genomic composition of tandem repeats

To assemble contigs from low coverage sequence, we used MIRA [26] (version 4.0; job =

genome,denovo,accurate, parameters = -highlyrepetitive -NW:cnfs = no -NW:mrnl = 200

-HS:mnr = no). We selected to use MIRA over other assemblers due to its relative speed of

repetitive sequence assembly without loss of assembly quality. We ran Tandem Repeat Finder

[27] (TRF) on assembled contigs, removing any unassembled reads. Previous work has shown

that TRF identifies only those contigs that contain tandem repeats [9], and dot plots of the con-

tigs confirmed the presence of tandem repeats (S1 Fig). We utilized only those contigs in all

Table 1. Counts of reads per sequence library for each taxa. An accession ID of NA indicates a purchase from a local nursery or sample not registered

with GRIN. Taxa were selected broadly from across the Andropogoneae tribe, with higher density sampling in the Tripsacum genus to study tandem repeat

variation within a genus. We used A. nepalensis, rice, and bamboo as outgroups to the Andropogoneae. Asterisks indicate genome size estimates published

in this study. GS = Genome size.

Genus Species Reads GS (pg/1C) AccessionID

Apluda mutica 746994 1.79* PI 219568

Arundinella nepalensis 662118 2.02[23] PI 384059

Hyparrhenia hirta 861995 1.86* PI 206889

Ischaemum rugosum 920258 0.75* Kew 0183574

Oryza sativa 599567 0.50[24] NA

Phyllostachys edulis 628030 2.1[25] NA

Sorghum bicolor 473944 0.75[24] PI 564163

Tripsacum andersonii 288175 5.8* MIA 34430

Tripsacum dactyloides 391848 3.88[24] MIA 34597

Tripsacum floridanum 743668 3.47* MIA 34719

Tripsacum laxum 723097 3.04* MIA 34792

Tripsacum peruvianum 238983 4.55* MIA 34501

Triticum urartu 435815 4.93[24] PI 428198

Urelytrum digitatum 661535 0.73* SM3109

Zea mays 4422188 2.73[24] RIMMA0019

Zea perennis 5106091 5.28[24] NA

https://doi.org/10.1371/journal.pone.0177896.t001
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subsequent analyses. Parameters for TRF were Match = 2, Mismatch = 7, Indel = 7, Probability

of match = 80, Probability of indel = 10, Min score = 50, and Max period = 2000. Sequence

files for all contigs can be found on the project github. To discover the abundance of the tan-

dem repeats identified in our post-TRF analysis contigs, we used Mosaik [28], which stores

information about multiply mapping reads (version 1.0; parameters optimized for tandem

repetitive elements as in Bilinski et al [22]). Low coverage libraries (<0.1X) were mapped

against the contigs identified by TRF and contigs were ranked by the number of reads aligned.

Previous work has shown that low coverage libraries are sufficient to recover the genomic

composition of high abundance repeats [22, 29]. The top ranking contigs above 30bp were

extracted, and the number of reads aligning to it was recorded from the assembly ace files.

The TRF analysis that identified assembled contigs with tandem repeats also identified the

consensus monomer for those tandem repeats. We used the consensus monomer from the top

ranking contig to blast (-evalue 1E-1 -outfmt 7 -max_target_seqs 15000 -task blastn; these

parameters were used for all BLAST analyses) against all other TRF assemblies and grouped

contigs with BLAST homology. The groups of contigs identified by BLAST homology were

removed from the contig library and marked as the highest abundance tandem repeat cluster.

This process was repeated 4 times to identify the genomic composition of the 4 highest abun-

dance tandem repeat groups; monomer information is available in S1 and S2 Tables. We chose

to examine only the top 4 repeats as abundance was often negligible after the 4th repeat.

Finally, to estimate the overall abundance of each of these four repeats, we mapped reads

against a reference consisting of the most abundant monomer and all polymers with homology

to the monomer as determined by BLAST. Mapping against either single monomers or groups

of contigs ensured that fragment length bias did not play a large role in overall genomic com-

position. Contig sequence and length can be found on the project github.

Fluorescent in-situ hybridization

Repetitive sequences were amplified using the genomic DNA isolated from the targeted species

and labeled with digoxigenin-11-dUTP. Hybridization signals were detected with rhodamine-

conjugated anti-digoxigenin (Roche Diagnostics USA, Indianapolis, IN). Chromosomes were

counterstained with 4‘,6-diamidino-2-phenylindole (DAPI). The following primers were used

on the species indicated: A. nepalensis (sequence ID 568) Primer F- CCATTCAAGAAATGGT

GTCA; A. nepalensis Primer R- GCAAGTACGAAAGCCAAAAT; U. digitatum (sequence ID

605) Primer F- GCACTGGCCCTGAGAGAAAT; U. digitatum Primer R- ACAGGCTTGGGT

GGACAAAA; H. hirta (sequence ID 520) Primer F- GATCCGAAAGTCGCGAAACG; H.
hirta Primer R- TTTTTCGCAACGAACGCACA. We were unable to perform FISH on I.
rugosum due to a lack of living tissue. Primers were designed based on the most abundant tan-

dem repeat contig of the species using the program Primer3 [30]. PCR and FISH was per-

formed using published procedures [31].

Results

Assembly of low depth resequencing data produced several thousand contigs in each species

from our panel (Fig 1, and Table 1). From these, TRF identified between 300 and 15,000 tan-

dem repeat contigs in each taxon (sequences available on the project github at https://github.

com/paulbilinski/Github_centrepeat). The number of tandem repeat contigs varied across

taxa based on coverage and overall genomic repetitive content. We then mapped our sequence

data against tandem repeat contigs to approximate the abundance of tandem repeats in our

panel (Fig 1). Our taxa vary greatly in their total tandem repeat content, ranging from over

13% to under 1%. We see high tandem repeat content across the Tripsacum genus and in

Genomic abundance is not predictive of tandem repeat localization in grass genomes
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A. nepalensis, though Tripsacum taxa show large variation. Based on genome size estimates

(see Table 1), the correlation between total tandem repeat content and genome size is poor

across all taxa as well as within Tripsacum (Pearson correlation; p>0.05).

In order to investigate the proportional contribution of the most common tandem repeat

classes in each of the analyzed taxa, we ranked the mapping abundance of all contigs

Fig 1. Percentage genomic composition of all tandem repeat contigs in monocot taxa. Values are derived from the proportion of all reads

mapping to any tandemly repetitive contig derived from TRF after MIRA assembly. Species are ordered in approximate phylogenetic relationship, with

a phylogenetic schematic below the graph.

https://doi.org/10.1371/journal.pone.0177896.g001
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containing tandem repeats as identified by TRF. We used the number of reads mapping to the

top ranked contig as its abundance, and removed any similar contigs from our rankings using

BLAST homology (see methods for parameters). We repeated this for the top four tandem

repeats in each genome. Results showed that most taxa had one tandem repeat at much higher

abundance (Fig 2). In all taxa except for A. nepalensis, only the top contig exceeded 1% of

genomic composition. S. bicolor, P. edulis, I. rugosum, and A. mutica showed the largest differ-

ence between the top ranked contig and the second ranked contig. In the sister genera Zea and

Fig 2. Genomic composition of top 4 tandemly repetitive contigs. The top 4 contigs in each species were defined as not having homology to one

another, in order to identify independent repeat motifs. Species are ordered in approximate phylogenetic relationship, with a phylogenetic schematic

below the graph. Values were calculated as a percentage of total genomic reads mapping to each tandem repeat family. Tandem repeat families are

ordered by their genomic abundance from left to right.

https://doi.org/10.1371/journal.pone.0177896.g002
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Tripsacum, while the top ranked contig showed immense variation, the second ranked contig

had a relatively constant abundance near 0.5%.

We wanted to test whether the assumption that the most abundant repeat is centromeric

[9] could be applied to these grass taxa with both known and uncharacterized centromere

repeats. Among taxa with known centromere repeats, the centromere repeats were found to be

the most abundant tandem repeat in both O. sativa and S. bicolor. The percentages of the

genome comprised from each tandem repeat was similar to other studies performed in both

Sorghum (1.6–1.9%) [32] and maize(<1%) [21]. In Zea and the closely related Tripsacum taxa,

the centromere repeat was among the four most abundant, but the highest abundance repeat

came instead from heterochromatic knobs, as has been noted previously [9, 33]. In P. edulis,
the most abundant repeat has homology to a repeat region in Bambusa, but is not annotated as

centromeric. While the centromere repeat was not previously known for the species A. mutica,

its highest abundance contig shared homology and a common monomer repeat length with

the S. bicolor centromere repeat. Previous FISH studies have shown that the Tripsacum centro-

mere repeat shares homology to maize and is localized to the centromere [34]. Our data show

that the ranking of the top two repeats in all Tripsacum species studied is the same, while the

3rd and 4th most abundant repeats vary between the species within the genus. The top-ranked

contig in I. rugosum shared a monomer length identical to the centromere repeat of Sorghum,

but with no sequence homology. The top ranked contigs from the remaining taxa in our panel

bore no similarity to known centromere repeats. T. urartu did not have any tandem repeats

longer than 30 bp at an appreciable frequency in the genome (see Methods). To test whether

the most abundant repeat in these taxa is centromeric, we performed fluorescent in situ
hybridization on A. nepalensis, H. hirta, and U. digitatum (FISH; Fig 3), expecting spatial clus-

tering of the probe proximal (for metacentric) or distal (for acrocentric) of most if not all chro-

mosomes. FISH from the de novo constructed repeat of H. hirta is widely dispersed across the

genome, a pattern reminiscent of a TE rather than a localized tandem repeat. The tandem

repeat from U. digitatum showed strong spatial clustering, though clusters were not found on

all chromosomes and were associated with chromosome ends as might be expected from a

subtelomeric sequence. The regions probed in U. digitatum did associate with visible knobs

and the monomer repeat length is 184bp, similar to the 180bp knob repeat found in tightly

packed heterochromatin in Zea (Fig 3). The monomer sequence of U. digitatum does not have

homology longer than 30bp to any annotated sequence and may be a novel knob variant iden-

tifed here. The probed repeat of A. nepalensis also showed subtelomeric clustering, and the fact

that A. nepalensis had the largest proportion of its genome comprised of tandem repeats (Fig

1) is consistent with a knob-like origin for this tandem repeat. In both A. nepalensis and U.
digitatum, FISH signal did not occur at visible primary constriction sites (Fig 3). While the sus-

pected knob repeat sequences in A. nepalensis had sequence lengths similar to those in maize

(approximately 180bp and 350bp), the sequences share no identity. Our A. nepalensis FISH

also showed that the tested 180bp probe did not bind to all visible knobs, and we speculate that

FISH using the 350bp repeat, which ranks second in abundance, would likely bind to some of

the other visible knobs. From these FISH results, we conclude that genomic abundance is not

predictive of centromere localization in the Andropogoneae.

Discussion

Our analyses of de novo assembled tandem repeats in grasses provides insight into the utility of

this approach for studying the evolution of repetitive sequences. Most importantly, we show

that previous assumptions about repeat abundance and location within the centromere do not

hold across all taxa. Identification of the most abundant tandem repeat failed to identify

Genomic abundance is not predictive of tandem repeat localization in grass genomes
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centromeric repeats across many taxa, though in some cases it did identify sequences with

homology to known centromere repeats. In Tripsacum taxa, previous work has shown that the

maize tandemly repeated centromere element CentC cross-hybridized to the Tripsacum cen-

tromeres [34, 35]. As our FISH data show, de novo assembly and abundance ranking identified

non-centromeric repeats in all taxa whose most abundant repeat did not share homology with

a known repeat. Given the inconsistency of abundance as a predictor of centromere localiza-

tion, we believe the alternative method of chromatin immunoprecipitation [13], despite its

higher costs, is likely a more accurate and better method to reliably identify centromere

repeats. Also, new sequencing technologies, such as Pacific Biosciences long reads, can also be

Fig 3. Fluorescent in situ hybridization of the highest abundant tandem repeats in three grasses. (A1-C1)

Somatic metaphase chromosomes prepared from A. nepalensis (A1), H. hirta (B1), and U. digitatum (C1), respectively.

(A2-C2) FISH signals derived from the three repeats identified in the three species. (A3-C3) Images merged from

chromosomes and FISH signals. Scale bar = 10 microns. On all images, knobs are indicated with white arrows.

https://doi.org/10.1371/journal.pone.0177896.g003
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helpful in studying tandem repeats [22]. As costs decrease, long reads can be used alongside

ChIP studies to identify higher order structure in tandem repeats and eventually assemble long

tandem repeat arrays.

Though not ideal for centromere repeat identification, de novo assembly of tandem repeats

can be an efficient, low cost method for characterizing repetitive content in non-model

genomes. Our assembly of A. nepalensis and U. digitatum repeats serve as examples of novel

findings that can be made regarding repeat sequences using this approach. A. nepalensis, sister

to Andropogonae, has two highly abundant tandem repeats that do not share homology to any

annotated genetic sequence, but are of similar sequence lengths of 180bp and 350bp as knob

repeats in Zea and Tripsacum and found in knob-like heterochromatin. U. digitatum is similar,

with the high abundance 184bp repeat associated with visible knobs and lacking homology

>30bp to annotated sequence. Like in Zea, the A. nepalensis 180bp repeat is the highest abun-

dance tandem repeat, and the 350bp tandem repeat is the next highest abundance tandem

repeat with a different length (S1 and S2 Tables). While the sequence length of the tandem

repeats are similar to those observed in many subtelomeric repeats [19], we speculate that the

high genomic abundance of both the A. nepalensis, U. digitatum, and Zea may suggest that

these new repeats are also knob-like. Knobs are associated with meiotic drive in maize [36]

and suppress recombination locally but increase recombination in the intervening region

between themselves and the centromere [37]. Knobs are known in a number of other plant

taxa, such as maize, Tripsacum, rye [38], and Arabidopsis thaliana [39]. That we find no

sequence homology between A. nepalensis or U. digitatum knobs and those in Zea suggests we

may have identified a novel knob repeat that comprises a disproportionate fraction of the

genome comparable only to certain maize and Tripsacum taxa, while not sharing homology to

any known repeat. Further work will be necessary to identify whether the putative knobs of

A. nepalensis or U. digitatum function similarly to those in maize with regard to recombination

and meiotic drive, and analysis of additional taxa may reveal whether the accumulation of

knobs near chromosome ends is also a common evolutionary theme [40].

The methods presented here can also be applied to study variation in genomic composition

within and between species. Genome size is highly variable across plants and is associated with

many important phenotypic traits such as flowering time and seed size [41, 42]. The ability to

identify the percentage of the genome composed of specific types of tandem repeats can enable

studies that track the components driving genome size variation. For example, identification

of genomes with high abundance tandem repeats may lead to a better understanding of selfish

genetic elements and how they influence long term evolution. Altogether, the results presented

here show how de novo assembly can be used to better understand the repetitive fraction of the

genome.

Supporting information

S1 Fig. Dot plot of the A. nepalensis, T. laxum, and H. hirta highest abundance contigs

against themselves. Lines indicate share sequence identity.

(TIFF)

S1 Table. Percentage genomic composition of the top four tandem repeat groups. Species

are ordered phylogenetically.

(PDF)

S2 Table. Monomer information for taxa studied.

(PDF)

Genomic abundance is not predictive of tandem repeat localization in grass genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0177896 June 1, 2017 9 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177896.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177896.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177896.s003
https://doi.org/10.1371/journal.pone.0177896


Acknowledgments

JR-I would like to acknowledge support from USDA Hatch project CA-D-PLS-2066-H and

NSF Plant Genome award IOS-0922703. PB would like to acknowledge support from the UC

Davis Department of Plant Sciences and the DuPont Pioneer Howie Smith Honorary Plant

Breeding Fellowship. We would also like to thank R. Kelly Dawe, Luis Avila, and Michelle Stit-

zer for helpful commentary on the manuscript.

Author Contributions

Conceptualization: PB MBH JJ JRI.

Data curation: PB AL.

Formal analysis: PB.

Funding acquisition: PB JJ JRI.

Investigation: PB AL YH PZ MCE.

Methodology: PB MBH AL YH PZ JJ JRI.

Writing – original draft: PB JRI.

Writing – review & editing: PB JJ JRI.

References
1. Treangen T. J. and Salzberg S. L. (2012). Repetitive dna and next-generation sequencing: computa-

tional challenges and solutions. Nature Reviews Genetics, 13(1):36–46. https://doi.org/10.1038/

nrg3117 PMID: 22124482

2. ENCODE Project Consortium (2012). An integrated encyclopedia of dna elements in the human

genome. Nature, 489(7414):57–74. https://doi.org/10.1038/nature11247 PMID: 22955616

3. Waterland R. A. and Jirtle R. L. (2003). Transposable elements: targets for early nutritional effects on

epigenetic gene regulation. Molecular and cellular biology, 23(15):5293–5300. https://doi.org/10.1128/

MCB.23.15.5293-5300.2003 PMID: 12861015

4. Makarevitch I., Waters A. J., West P. T., Stitzer M., Hirsch C. N., Ross-Ibarra J., and Springer N. M.

(2015). Transposable elements contribute to activation of maize genes in response to abiotic stress.

PLoS Genet, 11(1):e1004915. https://doi.org/10.1371/journal.pgen.1004915 PMID: 25569788

5. Miura A., Yonebayashi S., Watanabe K., Toyama T., Shimada H., and Kakutani T. (2001). Mobilization

of transposons by a mutation abolishing full dna methylation in arabidopsis. Nature, 411(6834):212–

214. https://doi.org/10.1038/35075612 PMID: 11346800

6. Albert P., Gao Z., Danilova T., and Birchler J. (2010). Diversity of chromosomal karyotypes in maize

and its relatives. Cytogenetic and genome research, 129(1-3):6–16. https://doi.org/10.1159/

000314342 PMID: 20551613

7. Klemme S., Banaei-Moghaddam A. M., Macas J., Wicker T., Novák P., and Houben A. (2013). High-

copy sequences reveal distinct evolution of the rye b chromosome. New Phytologist, 199(2):550–558.

https://doi.org/10.1111/nph.12289 PMID: 23614816

8. Hobza R., Lengerova M., Svoboda J., Kubekova H., Kejnovsky E., and Vyskot B. (2006). An accumula-

tion of tandem dna repeats on the y chromosome in silene latifolia during early stages of sex chromo-

some evolution. Chromosoma, 115(5):376–382. https://doi.org/10.1007/s00412-006-0065-5 PMID:

16612641

9. Melters D. P., Bradnam K. R., Young H. A., Telis N., May M. R., et al. (2013). Comparative analysis of

tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome

Biol, 14(1):R10. https://doi.org/10.1186/gb-2013-14-1-r10 PMID: 23363705

10. Novák P., Neumann P., Pech J., Steinhaisl J., and Macas J. (2013). Repeatexplorer: a galaxy-based

web server for genome-wide characterization of eukaryotic repetitive elements from next-generation

sequence reads. Bioinformatics, 29(6):792–793. https://doi.org/10.1093/bioinformatics/btt054 PMID:

23376349

Genomic abundance is not predictive of tandem repeat localization in grass genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0177896 June 1, 2017 10 / 12

https://doi.org/10.1038/nrg3117
https://doi.org/10.1038/nrg3117
http://www.ncbi.nlm.nih.gov/pubmed/22124482
https://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
https://doi.org/10.1128/MCB.23.15.5293-5300.2003
https://doi.org/10.1128/MCB.23.15.5293-5300.2003
http://www.ncbi.nlm.nih.gov/pubmed/12861015
https://doi.org/10.1371/journal.pgen.1004915
http://www.ncbi.nlm.nih.gov/pubmed/25569788
https://doi.org/10.1038/35075612
http://www.ncbi.nlm.nih.gov/pubmed/11346800
https://doi.org/10.1159/000314342
https://doi.org/10.1159/000314342
http://www.ncbi.nlm.nih.gov/pubmed/20551613
https://doi.org/10.1111/nph.12289
http://www.ncbi.nlm.nih.gov/pubmed/23614816
https://doi.org/10.1007/s00412-006-0065-5
http://www.ncbi.nlm.nih.gov/pubmed/16612641
https://doi.org/10.1186/gb-2013-14-1-r10
http://www.ncbi.nlm.nih.gov/pubmed/23363705
https://doi.org/10.1093/bioinformatics/btt054
http://www.ncbi.nlm.nih.gov/pubmed/23376349
https://doi.org/10.1371/journal.pone.0177896
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