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ABSTRACT 

Two experiments with rats as subjects were conducted to investigate the associative structure 

of temporal control of conditioned inhibition through posttraining manipulation of the training 

excitor-unconditioned stimulus (US) temporal relationship. Experiment 1 found that following 

simultaneous Pavlovian inhibition training (i.e., A → US/XA-no US) in which a conditioned 

stimulus (CS A) was established as a delay excitor, maximal inhibition was observed on a 

summation test when CS X was compounded with a delay transfer CS. Furthermore, 

posttraining shifts in the A-US temporal relationship from delay to trace resulted in maximal 

inhibition of a trace transfer CS. Experiment 2 found complementary results to Experiment 1 

with an A-US posttraining shift from serial to simultaneous. These results suggest that temporal 

control of inhibition is mediated by the training excitor-US temporal relationship. 

 

ARTICLE 

 

Students of animal learning have been interested in the phenomenon of behavioral inhibition since the 

pioneering work of Pavlov (1927). In a typical Pavlovian conditioned inhibition procedure, a conditioned 

stimulus (CS A) is followed by the unconditioned stimulus (US), except when it is compounded with a putative 
inhibitor (CS X; A → US/XA-no US). Behavior indicative of inhibition is typically assessed with two assays, the 

negative summation and retardation tests for inhibition (Hearst, 1972; Rescorla, 1969). A stimulus is said to be 

a conditioned inhibitor when it passes both tests. That is, it must attenuate responding to an independently 
trained excitor when presented in compound with it (the summation test), and it must be slow to acquire 

behavioral control when paired with the US (the retardation test). Since the introduction of this two-test 
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strategy for evidencing conditioned inhibition, much has been learned about the associative structure of 

conditioned inhibition. 

Prior studies of the associative structure of inhibition found that subjecting an inhibitory CS to extinction 

treatment (i.e., X-no US presentations) prior to inhibition testing does not disrupt inhibitory behavioral control 
(e.g., Witcher & Ayres, 1984; Zimmer-Hart & Rescorla, 1974). In fact, extinction of the conditioned inhibitor 

has sometimes been found to enhance inhibitory behavioral control (DeVito & Fowler, 1987; Williams & 
Overmier, 1988). In contrast, subjecting the training excitor (CS A) with which the inhibitor was established to 

extinction often disrupts inhibitory behavioral control (e.g., Best, Dunn, Batson, Meachum, & Nash, 1985; 
Hallam, Matzel, Sloat, & Miller, 1990; Lysle & Fowler, 1985; but see Rescorla & Holland, 1977; Witcher & 

Ayres, 1984, for conflicting results). On the basis of their findings, Lysle and Fowler suggested that inhibition is 

a “slave process” to excitation. That is, the inhibitory potential of a CS depends on the excitatory status of the 
training excitor, such that changes in the associative status of the training excitor produce corresponding 

changes in inhibitory behavioral control by the conditioned inhibitor. These results suggest that the associative 
structure of conditioned inhibition includes the excitor with which the inhibitor was established. That is, the 

inhibitor activates a representation of the training excitor, which in turn activates a representation of the US. 
Extinction of this latter association tends to disrupt inhibitory behavioral control. 

The observation that inhibitory behavioral control is mediated by the associative status of the inhibitor's 
training excitor is consistent with Miller and Matzel's (1988; also see Denniston, Savastano, & Miller, 2001) 

comparator hypothesis. The comparator hypothesis views behavior indicative of inhibition as arising from a 

comparison of the strength of the inhibitor-US association relative to the associative strengths of other stimuli 
trained in the presence of the inhibitor (i.e., so-called comparator stimuli). In the case of Pavlovian inhibition, 

the training excitor with which the inhibitor was established is the comparator stimulus. According to the 
comparator hypothesis, at least three associations are potentially formed during the course of Pavlovian 

training (see Figure 1). The first association is between the target CS (X) and the US (i.e., X-US, Link 1); the 
second association is between the target CS (X) and the most salient stimulus present during training, the 

comparator stimulus (A, i.e., X-A, Link 2); and the third association is between the comparator stimulus (A) 
and the US (i.e., A-US, Link 3). The strength of the directly activated US representation is determined by the 

absolute associative strength of the target CS (Link 1), whereas the strength of the US representation indirectly 

activated through the comparator stimulus is determined by the product of the strengths of Links 2 and 3. 
Thus, weakening either Link 2 or 3 will result in reduced strength of the indirectly activated US representation. 

At test, conditioned responding is assumed to reflect a comparison of the US representations directly and 
indirectly activated by the target CS. Applied to behavior indicative of conditioned inhibition, the comparator 

hypothesis posits that inhibition arises from the interaction of exclusively excitatory associations. Inhibitory 
behavioral control (a negative response potential) is predicted to increase with increases in the strength of the 

indirectly activated US representations (i.e., Link 2 × Link 3) relative to the strength of the directly activated 
US representation (Link 1) and to decrease with decreases in the strength of the indirectly activated US 

representation relative to the strength of the directly activated US representation. Thus, following Pavlovian 
inhibition training (i.e., A → US/XA-no US), inhibitor X generates a negative response potential when it 

activates a US representation through its comparator stimulus CS A (the training excitor). When the X-A and A-
US associations are strong (relative to the X-US association, which is presumably nil), the negative response 

potential should be robust. In contrast, extinction of the inhibitor's training excitor (CS A) should attenuate the 
negative response potential because this should weaken the strength of the indirectly activated US 

representation. This conceptualization of inhibition is entirely consistent with Lysle and Fowler's (1985) 
suggestion that inhibition is a slave process to excitation.  
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Figure 1. The comparator hypothesis (based on Miller & Matzel, 1988 ). Conditioned responding to CS X is 
directly related to the magnitude of the US representation that is directly activated by CS X and is inversely 
related to the magnitude of the US representation that is indirectly activated by CS X (i.e., mediated by CS X's 
comparator stimulus through conjoint action of the X-comparator stimulus and comparator stimulus-US 
associations). CS = conditioned stimulus; US = unconditioned stimulus 

In contrast to the above account, Rescorla and Holland (1977) failed to obtain a loss of inhibition following 
extinction of the training excitor (also see Witcher & Ayres, 1984). Their series of experiments were notable 

because they explicitly attempted to ascertain the associative structure of conditioned inhibition established 
through A → US/XA-no US training. In their experiments, Rescorla and Holland found no reduction in inhibitory 

behavioral control following extinction of the inhibitor's training excitor, A. This suggests that X-A and X-(A-US) 

associations do not provide the associative structure of inhibition. They did, however, find that 
counterconditioning of the transfer excitor, B, used for negative summation testing, resulted in a loss of 

inhibitory control. This suggests that either X-no US or X-CR (a competing response) associations underlie the 

associative structure of inhibition. A second experiment seemed to rule out the importance of X-CR 
associations and, by default, they concluded that the X-no US associative structure is primarily responsible for 

behavioral inhibition. Thus, it is unclear whether behavior indicative of inhibition is mediated by the inhibitor's 
training excitor (as suggested by Lysle & Fowler's [1985] findings) or is the result of a direct inhibitor-no US 

association (as suggested by Rescorla and Holland's [1977] findings). 

One potential means of further investigating the associative structure of inhibition is through assessing the 

informational content of inhibitory behavioral control. Miller and colleagues (Barnet & Miller, 1996; Burger, 
Denniston, & Miller, 2001; Denniston, Blaisdell, & Miller, 1998; Denniston, Cole, & Miller, 1998) found that 

conditioned inhibitors exert maximal inhibitory behavioral control at a particular temporal location. That is, 

following conditioned inhibition training, a conditioned inhibitor produces maximal inhibitory behavioral control 
when it is compounded with a transfer excitor that signals US presentation at the same temporal location as 

the inhibitor signals US omission. When these temporal expectancies for US presentation and US omission 
were inconsistent, inhibitory behavioral control was attenuated. Analogously, Burger et al., using a retardation 

test for conditioned inhibition, found that retardation pairings in which the US was presented at the same 
temporal location as the inhibitor signaled US omission produced maximal retardation of acquisition of 

behavioral control. When the US was presented at a temporal location different from that at which the inhibitor 
signaled US omission, retardation of behavioral control was attenuated. These results are consistent with the 

temporal coding hypothesis (Barnet, Arnold, & Miller, 1991; Matzel, Held, & Miller, 1988; Miller & Barnet, 1993; 



Savastano & Miller, 1998), which states that (a) temporal contiguity is both necessary and sufficient for 

learning to occur, (b) associations incorporate the temporal relationship between the CS and the US as part of 
the encoded memory (i.e., subjects form temporal maps that link events in memory), (c) the form and timing 

of the conditioned response are in part determined by these temporal maps, and (d) animals can integrate 
separate temporal maps when elements common to these separate temporal maps (e.g., a US) are presented 

together. However, what is unclear is the associative mechanism by which the inhibitor signals US omission. 
That is, if the inhibitor is never directly paired with the US, then how can it signal the omission of the US? 

The present experiments were designed to investigate the associative structure of temporal control of 
inhibition. The rationale for these experiments follows from two lines of research: (a) the observation that 

inhibitory behavioral control by a stimulus is tied to the current associative status of its training excitor (e.g., 

Lysle & Fowler, 1985); and (b) the observation that inhibitory behavioral control is temporally specific (e.g., 
Barnet & Miller, 1996). On the basis of this rationale, we hypothesized that inhibitory behavioral control is 

mediated by the inhibitor's training excitor (as posited by the comparator hypothesis; Miller & Matzel, 1988) 
and that temporal control of inhibition might also be tied to the training excitor-US temporal relationship in 

effect at the time of testing. To assess whether temporal control of inhibition is influenced by the temporal 
relationship between the inhibitor and the training excitor and between the training excitor and the US at the 
time of testing, we provided rats with Pavlovian conditioned inhibition training (i.e., A → US/XA-no US) 

followed by posttraining manipulation of the A-US temporal relationship. On the basis of the comparator 
hypothesis, we expected inhibition training to result in inhibitory behavioral control (a negative response 

potential) as a consequence of strong inhibitor-training excitor and training excitor-US associations. 

Furthermore, if these associations also encode the temporal relationship between associates (as posited by the 
temporal coding hypothesis, Matzel et al., 1988; Savastano & Miller, 1998), then inhibitor X should indirectly 

activate a representation of the US at a specific moment in time relative to X, as mediated by training excitor 
A. Posttraining manipulation of the training excitor-US temporal relationship was expected to reveal whether 

inhibitory behavioral control is mediated by the training excitor-US temporal relationship in effect at the time of 
testing. That is, changing the training excitor-US temporal relationship should produce a corresponding shift in 

inhibitory behavioral control if behavior indicative of inhibition is mediated by the training excitor. In contrast, if 
inhibitory behavioral control is determined by a direct inhibitor-no US association, then posttraining 

manipulation of the inhibitor's training excitor should have no effect on temporal control of inhibition. 

Experiment 1  
Prior research investigating the informational content of Pavlovian inhibitors has found that Pavlovian 

conditioned inhibitors produce maximal negative summation when compounded with a transfer excitor that 
signals US presentation at the same temporal location as the inhibitor signals US omission (e.g., Barnet & 

Miller, 1996; Denniston, Blaisdell, & Miller, 1998; Denniston, Cole, & Miller, 1998). However, these experiments 
did not address the associative structure of inhibitory behavioral control; that is, they did not determine 

whether the temporal expectancy for US omission is a direct inhibitor-no US association as posited by Rescorla 
and Holland (1977) or is mediated by the current status of the training excitor (i.e., inhibitor-training excitor-

US) as suggested by Lysle and Fowler (1985). Thus, we designed Experiment 1 to contrast these two opposing 

views. 

In Experiment 1 (see Table 1), all subjects received treatment in which CS A was trained as a delay excitor 

with no gap between CS termination and US onset (i.e., A US, in which the superscript number represents 
the interval in seconds between stimuli) and CS X was trained as a simultaneous inhibitor with CS A (i.e., XA-

no US). For the purpose of negative summation testing, two transfer excitors (CSs C and D) with different 
temporal relationships to the US were trained separately. CS C was trained as a delay transfer CS (i.e., C 

US), whereas CS D was trained as a trace transfer CS with a 5-s gap between CS termination and US 

onset (i.e., D US). Following inhibition training, half of the subjects (shift condition) received posttraining 

manipulation of the A-US temporal relationship, in which CS A was retrained as a trace CS (with a 5-s gap 



between CS termination and US presentation, i.e., A US), whereas the remaining subjects (no-shift 

condition) received equivalent training with a previously neutral CS (i.e., B US pairings). Inhibitory 
behavioral control was assessed during a single summation test, in which the potential of inhibitor X to reduce 

responding to the transfer excitors was assessed through simultaneous presentations of CS X and transfer 
excitor C or D depending on group. The magnitude of conditioned inhibition was measured by comparison 

between these subjects and separate groups tested with C or D alone.  

 

 

On the basis of the temporal coding hypothesis, we expected subjects in the no-shift condition to demonstrate 
greater negative summation (indicative of inhibition) when tested with the XC stimulus compound than with 

the XD stimulus compound because inhibitor X generates a negative response potential (through its 
comparator stimulus, CS A) at the same temporal location as CS C, but not CS D, generates a positive response 

potential (see Figures 2B and 2D. In effect, inhibition was predicted to be greatest when the transfer excitor 

predicted the occurrence of the US at the same temporal location as the inhibitor's training excitor, A, 
predicted the occurrence of the US. Any mismatch in their temporal expectancies would attenuate inhibitory 

behavioral control, a result that would replicate the prior findings of Miller and his colleagues (Barnet & Miller, 
1996; Denniston, Blaisdell, & Miller, 1998; Denniston, Cole, & Miller, 1998). Of central interest were the groups 

that received posttraining manipulation of the A-US temporal relationship. If inhibition is controlled by an X-no 
US association (as posited by Rescorla & Holland, 1977), then changes in the A-US temporal relationship 

should have no effect on the expression of inhibition (i.e., X should maximally inhibit C but not D), just as 
posttraining extinction of CS A had no effect on inhibitory behavioral control. In contrast, if the inhibitory 

potential of CS X is modulated by its training excitor (as posited by Lysle & Fowler, 1985), then posttraining 

manipulation of the A-US temporal relationship should produce a corresponding shift in inhibitory behavioral 
control. That is, shifting the A-US temporal relationship from delay to trace should result in maximal negative 

summation when inhibitor X from the shift condition is compounded with the trace transfer CS D but not the 
delay transfer CS C (see Figures 2A and 2C). 



 

 

Figure 2. Hypothetical temporal expectancies generated at test, as a result of conditioned inhibition training 
and transfer excitor training provided in Experiment 1. Horizontal lines indicate a forward expectancy. 
Horizontal lines with an arrow represent an expected US; horizontal lines ending with a cross bar indicate that 
an otherwise expected US will be omitted. Vertical lines indicate a simultaneous expectancy. Maximal inhibition 
is hypothesized to occur when the transfer excitor and the inhibitor's training excitor signal US presentation at 
the same temporal location. A: Group Shift.XC; B: Group No Shift.XC; C: Group Shift.XD; D: Group No Shift.XD. 
US = unconditioned stimulus 

 

Method 

Subjects 

The subjects were 30 male and 30 female, experimentally naive, Sprague-Dawley derived rats (Rattus 
norvegicus) from our State University of New York at Binghamton breeding colony. Body weights ranged from 

320 to 440 g for males and from 240 to 370 g for females. The rats were individually housed in standard 

hanging, stainless-steel, wire-mesh cages in a vivarium maintained on a 16:8-hr light-dark cycle. All training 
occurred approximately midway through the light portion of the cycle. Subjects were allowed free access to 

food in their home cages, whereas access to water was gradually decreased to 10 min per day prior to the 
initiation of the experiment. All subjects were handled for 30 s three times per week from weaning until the 

initiation of the study. Subjects were randomly assigned to one of eight groups (ns = 5 or 10), 
counterbalanced as closely as possible for sex. 

Apparatus 

Two types of experimental chambers, designated R and V, were used. Chamber R was rectangular in shape 

and measured 22.75 × 8.25 × 13.0 cm (length × width × height). The walls and ceiling of the chamber were 

constructed of clear Plexiglas, and the grid floor consisted of stainless-steel rods measuring 0.48 cm in 
diameter, spaced 1.5 cm center-to-center. The rods were connected by NE2-neon bulbs, which allowed for the 

delivery of constant-current footshock produced by a high-voltage AC circuit in series with a 1.0-MΩ resistor. 
Each of six copies of Chamber R was housed in a separate sound- and light-attenuating environmental 

enclosure. Chamber R could be dimly illuminated by a 2.0-W (nominal at 120-V AC) houselight driven at 60-V 



AC. The bulb was located on the inside wall of the environmental enclosure, approximately 30 cm from the 

center of the experimental chamber. 

Chamber V was a box 25.5 cm long in the shape of a vertical truncated V. The chamber was 28 cm high, was 

21 cm wide at the top, and narrowed to 5.25 cm wide at the bottom. The ceiling was constructed of clear 
Plexiglas, the front and back end walls were black Plexiglas, and the side walls were stainless steel. The floor 

consisted of two 25.5-cm-long parallel stainless-steel plates, each 2 cm wide and separated by a 1.25-cm gap. 
A constant-current footshock could be delivered through the metal walls and floor of the chamber. Each of six 

copies of Chamber V was housed in a separate sound- and light-attenuating enclosure. Chamber V was 
illuminated by a 7-W (nominal at 120-V AC) bulb driven at 60-V AC. The bulb was mounted on the inside wall 

of the environmental enclosure, approximately 30 cm from the center of the experimental chamber, with the 

light entering the chamber primarily by reflection from the ceiling of the environmental enclosure. The light 
intensities in Chambers R and V were approximately equal, despite the discrepancy in the lightbulbs used, 

because of the differences between the chambers in the opaqueness of the walls. 

Chambers R and V could each be equipped with a water-filled lick tube. When inserted, the lick tube extended 

1 cm into a cylindrical drinking recess that was set into one of the Plexiglas end walls of the chamber. Each 
drinking recess was left-right centered with its bottom 1.75 cm above the floor of the chamber. The recess was 

4.5 cm in diameter and 5 cm deep. An infrared photobeam was projected horizontally across the recess, 1 cm 
in front of the lick tube. To drink from the lick tube, a subject had to insert its head into the recess, thereby 

breaking the photobeam. By this means, we could monitor when subjects were accessing the lick tube. Three 

speakers, mounted on separate walls in each enclosure, could each deliver one of the following auditory cues: 
a 6 clicks per second click train, a white noise, or a low-frequency tone (compound of 300 and 320 Hz), each 8 

dB (C-scale) above the ambient background of 74 dB (C-scale), which was produced primarily by a ventilation 
fan in each environmental enclosure. Each chamber could also provide a flashing-light stimulus (0.25 s on/0.25 

s off). In Chamber R, the flashing light was a 25-W bulb (nominal at 120-V AC) driven at 60-V AC, whereas the 
flashing light in Chamber V was a 100-W bulb (nominal at 120-VAC) driven at 60-V AC. The bulbs were located 

on the back wall of each environmental chest. Each enclosure also contained a buzzer that could produce a 
buzzing sound 8 dB (C-scale) above the background. All CSs were 5 s in duration, and the US was a 0.5-s, 1.3-

mA footshock. 

 

Procedure 

In the first phase of training (inhibition training), all subjects received conditioned inhibition training consisting 

of A US/XA-no US, in which A represents the training excitor and X represents the conditioned inhibitor. 

Thus, CS A served as a delay training excitor, and CS X served as a simultaneous inhibitor for CS A. For the 
purpose of testing, during conditioned inhibition training all subjects also received training intended to establish 

two transfer excitors (C and D) as signals for US presentation. CS C was trained as a delay CS with no gap 

between CS termination and US onset (i.e., C US), whereas CS D was trained as a trace CS with a 5-s gap 

between CS termination and US onset (i.e., D US). 

In the second phase of training (update training), half of the subjects (shift condition) received conditioning of 

the previously established delay CS (A) in which the temporal relationship was shifted (i.e., updated) from 

delay to trace (i.e., A US) such that there was now a 5-s gap between CS termination and US onset, 

whereas the other half of the subjects (no-shift condition) merely received equivalent training with a previously 

novel stimulus, B (i.e., B US). Additionally, all subjects continued to receive training with transfer 
excitors C and D. Both phases of training (inhibition and update training) occurred in Context Train, which was 



Chamber V for half of the subjects in each of the two conditions and Chamber R for the other half of the 

subjects. 

Summation testing was conducted during the third phase of the experiment in Context Test. Context Text was 

created by switching the type of enclosure (R or V) from that used in inhibition and update training. That is, 
subjects that received training in Context R were tested in Context V, whereas subjects that received training 

in Context V were tested in Context R. Different contexts were used for training and testing to ensure that an 
associatively neutral context was present at the time of testing and that any reduction in conditioned 

suppression to the test stimuli could be attributed only to inhibition and/or update training and not to 
contextual associations acquired during training. Extensive prior research had established that rats treat these 

two contexts as distinctly different (e.g., Gunther, Denniston, & Miller, 1998). Testing occurred during a single 

test session in which a transfer excitor was presented either alone, or in a simultaneous compound with the 
putative inhibitor, CS X. For purposes of testing, the subjects in each of the conditions (shift and no shift) were 

assigned to one of four groups that were tested on C alone (n = 5), D alone (n = 5), a simultaneous 
compound of XC (n = 10), or a simultaneous compound of XD (n = 10). The combination of their prior training 

(shift vs. no shift) and test procedure defined the eight groups. 

Acclimation 

Acclimation to the experimental chambers comprising Context Train and Context Test was conducted on Days 
1 and 2, respectively, in daily 60-min sessions during which water-filled lick tubes were available and no 

nominal stimuli were presented. This phase of the experiment served to establish a stable baseline level of 

drinking behavior, a departure from which would serve as the dependent variable during testing. Following 
acclimation, the water-filled lick tubes were removed from all chambers. 

Conditioned inhibition training 

On Days 3–20, conditioned inhibition training was conducted during daily 75-min sessions in Context Train. 

During each of these 18 sessions, all subjects received interspersed eight A US, eight XA-no US, two C 

US, and two D US pairings. The buzzer served as CS A for half of the subjects in each group and 

the flashing light for the other half of the subjects; the click and low-frequency tone served as transfer CSs C 
and D, counterbalanced within groups; the white noise served as CS X for all subject; and the US was a 0.5-s, 

1.3-mA footshock. All sessions began with a reinforced trial, and the remaining reinforced and nonreinforced 
trials were pseudorandomly distributed within the session. The mean intertrial interval (CS onset to CS onset) 

for the 20 trials was 3.5 min, with a range from 1.5 to 5.5 min. Three different running schedules, which 
differed with respect to trial order, were alternated through use of an A, B, C, C, B, A pattern between days. 

Thus, during inhibition training, CS A was established as a delay excitor in which the US was presented 
immediately following termination of the CS, CS X was trained as a simultaneous inhibitor through 

nonreinforced compound presentations of CSs X and A (i.e., XA-no US), and transfer CSs C and D were trained 

as delay and trace CSs, respectively, in which either there was no gap between termination of CS C and US 
onset or there was a 5-s gap between termination of CS D and US onset. 

Update training 

On Days 21–28 update training was provided during daily 75-min sessions in Context Train. During each 
session, subjects in the shift condition received eight trace A → US presentations (i.e., CS A was retrained as a 

trace CS with a 5-s gap between CS termination and US onset), whereas subjects in the no-shift condition 

received equivalent training with CS B (i.e., B US). These 8 trials were interspersed among 2 C US 

and 2 D US trials. The mean intertrial interval (CS onset to CS onset) for the 12 trials was 6 min, with a 



range from 3 to 9 min. Two different running schedules, which differed with respect to trial order, were 

alternated through use of an A, B, B, A, A, B, B, A pattern across days. 

Reacclimation 

On Days 29–31, all subjects were reacclimated to Context Test during daily 60-min sessions. During these 
reacclimation sessions, the water-filled lick tubes were returned to the chambers to stabilize baseline drinking 

following any disruption produced by the footshock USs. No nominal stimuli were presented during these 
sessions. 

Summation testing 

On Day 32, all subjects were tested for suppression of ongoing drinking in the presence of the test stimuli in 

Context Test. Subjects in the shift condition were randomly assigned to one of four groups (C and D, ns = 5 

per group; XC and XD, ns = 10 per group). Subjects in the no-shift condition were similarly assigned to one of 
four groups (C and D, ns = 5 per group; XC and XD, ns = 10 per group). The difference in sample size 

between conditions in which subjects were tested on a transfer excitor alone and an inhibitor-transfer excitor 
compound was introduced to minimize the number of subjects in the transfer-excitor-alone test conditions (we 

intended to collapse the C and D data across update treatment conditions [shift and no shift] provided that 
there was no statistical interaction of condition and C and D test stimuli). On the test day, the subjects were 

allowed to drink from the lick tubes for 5 cumulative seconds, after which the target stimuli were immediately 
presented. Thus, all subjects were drinking at the moment of test stimuli onset. The time to complete an 

additional 5 cumulative seconds of licking in the presence of the test stimuli was recorded. An 11-min ceiling 

was imposed on the suppression scores. 

Data analysis 

Prior to statistical analysis in this experiment and Experiment 2, all suppression scores were converted to log 
(base 10) scores to better normalize the within-group distributions, thereby allowing the use of parametric 

statistics. An alpha level of.05 was adopted for all statistical tests in each experiment. Also in each experiment, 
any subject taking more than 60 s to complete its first 5 cumulative seconds of drinking (prior to CS onset), 

thus showing great reluctance to drink in the test context, was scheduled to be eliminated from the data 
analysis. In practice, no subjects had to be eliminated for this reason from Experiment 1. 

 

Results and Discussion 

The central findings from this study were that subjects that received no shift during the update phase 

demonstrated less conditioned suppression (i.e., more behavior indicative of conditioned inhibition) when 

tested with the XC simultaneous compound relative to transfer excitor C alone but not when tested with the XD 
simultaneous compound relative to transfer excitor D alone (see Figure 3). In contrast, subjects that received 

posttraining manipulation of the A-US temporal relationship from delay to trace demonstrated less conditioned 
suppression when tested with the XD simultaneous compound relative to transfer excitor D alone but not with 

the XC compound relative to transfer excitor C alone. Thus, maximal conditioned inhibition was observed in the 
no-shift condition when the inhibitor (X) produced a negative response potential at the same temporal location 

as transfer excitor C signaled US presentation. However, if the temporal expectancy for US omission was 
shifted from delay to trace as a consequence of posttraining manipulation of X's training excitor, CS A (shift 

condition), then maximal inhibitory behavioral control was observed when testing was conducted with the 

trace, but not the delay, transfer excitor. These findings were confirmed with the following statistical analyses.  



 

 

Figure 3. Experiment 1: Group identification refers to whether the A-unconditioned stimulus (A-US) temporal 
relationship was shifted following conditioned inhibition training and the stimuli presented at test. Bars depict 
mean times to complete 5 cumulative seconds of drinking in the presence of the test stimulus. Higher scores 
indicate greater fear (i.e., less inhibition). Groups for which the temporal coding hypothesis predicts strong 
conditioned inhibition are represented with striped bars. Error brackets denote the standard error of the mean. 
See Table 1 for procedural details 

We first analyzed the conditioned suppression scores in the presence of the test stimuli for subjects in Groups 
Shift.C, Shift.D, No Shift.C, and No Shift.D. A 2 × 2 analysis of variance (ANOVA) with condition (shift vs. no 

shift) and transfer excitor (C vs. D) as variables was conducted on the suppression scores from the test session 

and revealed no main effects or interaction of the variables (all Fs < 1). We then pooled the data from subjects 
tested on transfer excitor C alone across conditions (shift and no shift) and on transfer excitor D alone across 

conditions to form Groups Pooled.C and Pooled.D, respectively. 

Prior to further analysis of the suppression scores from the test session, we analyzed the times to complete 5 

cumulative seconds of drinking prior to CS onset (i.e., the pre-CS scores) in order to assess potential 
differences in baseline drinking behavior. A 2 × 3 ANOVA with transfer excitor (C vs. D) and condition (pooled 

vs. shift vs. no shift) as variables was conducted on the pre-CS scores from subjects in Groups Pooled.C, 
Shift.C, No Shift.C, Pooled.D, Shift.D, and No Shift.D. This analysis revealed no main effect of test excitor, F(1, 

54) = 2.41, p >.10, and no main effect of condition, F(2, 54) = 2.89, p >.05. Although this last effect was of 

borderline significance, the actual differences between the six conditions were very small, with means ranging 
from 0.981 to 1.199 log seconds. More important, given the importance of the interaction between transfer 

excitor and condition in the CS scores, there was no interaction between these variables in the pre-CS scores 
(F < 1). Thus, there were no reliable differences in baseline drinking behavior prior to test stimulus onset. 



Analysis of the times to complete 5 cumulative seconds of drinking in the presence of the test stimuli was 

accomplished with a 2 × 3 ANOVA using the same variables as above. This analysis revealed no main effect of 
test excitor, F(1, 54) = 2.49, p >.10, a main effect of condition, F(2, 54) = 6.57, p <.01; and a Test Excitor × 

Condition interaction, F(2, 54) = 23.74, p <.001. Planned comparisons using the error term from the overall 
ANOVA were conducted on the suppression scores from subjects tested on the delay transfer excitor C. These 

comparisons revealed attenuated conditioned suppression in Group No Shift.XC, relative to Group Pooled.C, 
F(1, 54) = 18.44, p <.001, thereby demonstrating that CS X passed a summation test for conditioned inhibition 

when the A-US temporal relationship was not shifted after inhibition training. In contrast, no difference in 
suppression was observed between Group Shift.XC and Group Pooled.C (F < 1), thereby demonstrating that 

posttraining manipulation of the A-US temporal relationship from delay training to trace training attenuated the 

potential of CS X to inhibit conditioned responding to delay transfer excitor C. Additionally, Group No Shift.XC 
demonstrated less conditioned responding than did Group Shift.XC, F(1, 54) = 18.32, p <.001, suggesting that 

the posttraining manipulation of the A-US temporal relationship attenuated the potential of CS X to inhibit 
responding to transfer excitor C. 

Comparison of suppression scores from Group No Shift.XD revealed no difference in suppression from Group 
Pooled.D (F < 1), indicative of inhibitor X failing to attenuate conditioned responding to the trace transfer 

excitor when the A-US temporal relationship (delay) was not changed following inhibition training. In contrast, 
attenuated conditioned suppression was observed in Group Shift.XD relative to Group Pooled.D, F(1, 54) = 

23.99, p <.001, thereby demonstrating that posttraining shifting of the A-US temporal relationship from delay 

to trace allowed CS X to inhibit conditioned responding to the trace transfer excitor D. Additionally, Group 
Shift.XD demonstrated less conditioned responding than did Group No Shift.XD, F(1, 54) = 29.87, p <.001, 

suggesting that posttraining manipulation of the A-US temporal relationship enhanced the potential of CS X to 
inhibit responding to transfer excitor D. 

Finally, and most centrally, Group No Shift.XC demonstrated less conditioned responding than did Group No 
Shift.XD, F(1, 54) = 15.66, p <.001, whereas Group Shift.XD demonstrated less conditioned responding than 

did Group Shift.XC, F(1, 54) = 33.50, p <.001, suggesting that in the absence of posttraining manipulation of 
the A-US temporal relationship (no-shift condition), CS X was an effective inhibitor of the delay transfer excitor 

(C) but not the trace transfer excitor (D) and that following a posttraining shift in the A-US temporal 

relationship from delay to trace (shift condition), CS X was an effective inhibitor of the trace transfer excitor 
(D) but not the delay transfer excitor (C). 

Thus, in Experiment 1, we found that a simultaneous Pavlovian inhibitor established with a delay training 
excitor was able to attenuate conditioned responding to a delay, but not a trace, transfer excitor, a finding that 

replicates prior studies of temporal control of Pavlovian conditioned inhibition (e.g., Barnet & Miller, 1996; 
Denniston, Blaisdell, & Miller, 1998; Denniston, Cole, & Miller, 1998). More important, posttraining 

manipulation of the training excitor-US temporal relationship resulted in a shift of temporal control of inhibition. 
That is, shifting the A-US temporal relationship from delay to trace resulted in inhibitor X maximally attenuating 

conditioned responding to a trace, but not a delay, transfer excitor. These findings suggest that the temporal 

expectancy for US omission provided by the conditioned inhibitor is mediated by the current training excitor-US 
temporal relationship. Hence, the temporal expectancy for US omission does not appear to be determined by a 

direct inhibitor-no US association; rather, it is dependent on both the inhibitor-training excitor temporal 
relationship and the prevailing training excitor-US temporal relationship as demonstrated in the current 

experiment. 

Experiment 2  
The results of Experiment 1 revealed that a conditioned inhibitor produced maximal negative summation when 
compounded with a transfer CS that signaled US presentation at the same temporal location as the inhibitor's 

training excitor signaled the occurrence of the US. That is, lengthening the training excitor-US temporal 

relationship led to a corresponding shift in inhibitory behavioral control by the target cue. We designed 
Experiment 2 to investigate the generality of this finding by using serial inhibitors (i.e., established through A 
→ US/X → A-no US pairings in which → signifies “precedes”). In addition, in Experiment 2 we shifted the 

temporal relationship by shortening the A-US interval, potentially extending the generality of the central finding 
of Experiment 1 to temporal shifts of the A-US interval in each direction. Lastly, in Experiment 2 we assessed 

the alternative interpretation of Experiment 1 that CS X is maximally inhibitory when the training and transfer 
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excitors have the same temporal relationship to the US regardless of CS X's superpositioned temporal 

relationship to the US. 

Holland, Hamlin, and Parsons (1997) found that, following serial feature-positive occasion-setting training, 

modulation by the feature was greatest when the feature-target interval was of the same duration as in 
occasion-setting training, a result that is consistent with the observations of Denniston, Blaisdell, and Miller 

(1998), who found similar results with serial inhibition training. Moreover, when Holland et al. varied the 
feature-target interval from that of training, modulation was attenuated. Their results are consistent with the 

view that temporal control by the feature is determined in part by the temporal relationships between the 
feature and the target and between the target and the US. That is, the temporal expectancy for US 

presentation appears to be mediated by the target. 

We designed Experiment 2 to assess whether temporal control of serial inhibition is mediated by the current 
training excitor-US temporal relationship by providing posttraining shifts in the training excitor-US temporal 

relationship (see Table 2). As in Experiment 1, all subjects received training intended to establish CS A as a 
signal for US presentation and CS X as a conditioned inhibitor. CS A was trained as a delay training excitor with 

no gap between CS termination and US onset (i.e., A US), and CS X was trained as a serial inhibitor of CS 

A (i.e., X A-no US) through nonreinforced serial presentations of X and A with no gap between the 
termination of CS X and the onset of CS A. Additionally, two transfer excitors (CSs C and D) were once again 

separately established as delay (i.e., C US) and trace (i.e., D US) transfer excitors for the purpose 
of summation testing. Following inhibition training, half of the subjects received posttraining manipulation of 

the A-US temporal relationship in which CS A was retrained as a simultaneous CS with the CS and US being 

presented coterminously (shift condition), whereas the other half of the subjects merely received equivalent 
training with a previously novel CS (no-shift condition; i.e., simultaneous B-US pairings). Inhibitory behavioral 

control was assessed during a single summation test in which the potential of inhibitor X to reduce responding 
to the transfer excitors was assessed through simultaneous presentations of CS X and a transfer excitor (C or 

D) as compared with presentation of the transfer excitor alone.  
 

 

Design Summary for Experiment 2 

We expected subjects in the no-shift condition to demonstrate maximal negative summation when CS X was 
compounded with the trace transfer CS (D; i.e., Group No Shift.XD) relative to the delay transfer CS (C; i.e., 

http://ehis.ebscohost.com/ehost/detail?vid=4&hid=101&sid=7c9da46e-30b6-4036-817b-7b21f79bfde4%40sessionmgr114&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#tbl2


Group No Shift.XC) because CS X was expected to generate inhibitory behavioral control 10 s following CS 

onset, which corresponds to the temporal expectancy for US presentation generated by transfer CS D, but not 
C (see Figures 4B and 4D). In contrast, we expected to observe greater negative summation by subjects in 

Group Shift.XC relative to Group Shift.XD because shifting the A-US temporal relationship from delay to 
simultaneous should shorten the window for inhibitory behavioral control generated by CS X by 5 s, thereby 

corresponding to the temporal expectancy for US presentation generated by transfer CS C, but not D (see 
Figures 4A and 4C).  

 

 

Figure 4. Hypothetical temporal expectancies generated at test, as a result of conditioned inhibition training 
and transfer excitor training provided in Experiment 2. Horizontal lines indicate a forward expectancy. 
Horizontal lines with an arrow represent an expected US; horizontal lines ending with a cross bar indicate that 
an otherwise expected US will be omitted. Vertical lines indicate a simultaneous expectancy. Maximal inhibition 
is hypothesized to occur when the transfer excitor and the inhibitor's training excitor signal US presentation at 
the same temporal location. A: Group Shift.XC; B: Group No Shift.XC; C: Group Shift.XD; D: Group No Shift.XD. 
US = unconditioned stimulus 

 

Method 

Subjects and Apparatus 

The subjects were 30 male and 30 female, experimentally naive, Sprague-Dawley derived rats from our State 
University of New York at Binghamton breeding colony. Body weights ranged from 266 to 434 g for males and 

from 201 to 301 g for females. Animal care and deprivation were the same as in Experiment 1. Subjects were 
randomly assigned to one of eight groups (ns = 5 or 10), counterbalanced as closely as possible for sex. The 

apparatus was the same as in Experiment 1, except that the US was a 5-s, 0.7-mA footshock. US duration and 

intensity were changed from those of Experiment 1 because Experiment 2 provided simultaneous CS-US 
presentations (update training) in which both the CS and the US were 5 s in duration. 

Procedure 

The design and procedure of Experiment 2 were similar to those of Experiment 1, with the following 

exceptions. In the first phase of treatment, all subjects received conditioned inhibition training consisting of A 



US/X A-no US. Thus, CS A served as a delay training excitor, and CS X served as a serial inhibitor of 
CS A. As in Experiment 1, all subjects also received training intended to establish two transfer excitors, one 

delay (C) and one trace (D) as signals for US presentation. In the second phase of treatment, subjects in the 
shift condition received simultaneous CS A-US pairings in which the temporal relationship was shifted (i.e., 

updated) from delay in Phase 1 to simultaneous (i.e., A-US) in Phase 2, whereas subjects in the no-shift 

condition merely received equivalent training with a previously novel stimulus, B (i.e., B-US). Testing occurred 
during a single test session in which each transfer excitor was presented either alone or in a simultaneous 

compound with the putative inhibitor, X. As in Experiment 1, the subjects in each update condition (shift and 
no shift) were divided into four groups that were tested on C alone (n = 5), D alone (n = 5), a simultaneous 

compound of XC (n = 10), or a simultaneous compound of XD (n = 10). 

Acclimation 

Acclimation to the experimental chambers comprising Context Train and Context Test were conducted on Days 
1 and 2, respectively, with the same procedure as in Experiment 1. 

Conditioned inhibition training 

On Days 3–20, conditioned inhibition training was conducted during daily 75-min sessions in Context Train. 

During each of these 18 sessions, all subjects received eight A US, eight X A-no US, two C US, 

and two D US pairings. The physical stimuli serving as A, X, C, and D, as well as trial order and stimulus 

spacing, were the same as in Experiment 1. Thus, CS A was established as a delay excitor in which the US was 

presented immediately following termination of the CS, and CS X was trained as a serial inhibitor in which 
termination of CS X was followed immediately by onset of CS A, which on these trials was nonreinforced (i.e., 

X A-no US). 

Update training 

Update training (Days 21–28) was the same as in Experiment 1, except that subjects in the four shifted groups 
received eight simultaneous reinforced CS A-US presentations in which CS A and the US were presented 

coterminously (i.e., A-US). Subjects in the four unshifted groups received equivalent training with CS B (i.e., B-
US). 

Reacclimation 

On Days 29 and 30, all subjects were reacclimated to Context Test during daily 60-min sessions, as in 

Experiment 1. No nominal stimuli were presented during these sessions. In Experiment 2, only two 

reacclimation sessions were needed to restabilize baseline drinking behavior. 

Summation testing 

On Day 31, all subjects were tested for suppression of ongoing drinking in the presence of the test stimuli in 
Context Test, as in Experiment 1. At test, the time to complete 5 cumulative seconds of drinking in the 

presence of the test stimuli was recorded. 

Data analysis 

As in Experiment 1, any subject requiring more than 60 s to complete the initial 5 cumulative seconds of 
drinking prior to test stimulus onset was scheduled to be eliminated from the data analysis. One subject from 

Group Shift.C had to be eliminated for this reason. 



 

Results and Discussion 

The primary findings from this study were that when the A-US interval was not shifted, the summation test to 
D provided good evidence of inhibitory control to X, but no such evidence was found in the summation test to 

C (see Figure 5). In contrast, when the A-US temporal relationship was shifted from delay to simultaneous, the 
summation test to C provided good evidence of inhibitory control to X, but no such evidence was found in the 

summation test to D. Thus, greater conditioned inhibition was observed in the no-shift condition when inhibitor 

X generated inhibitory behavioral control at the same temporal location as transfer CS D signaled US 
presentation. More centrally, when the training excitor-US temporal relationship was shifted from delay to 

simultaneous (shift condition), maximal inhibition was then observed when testing was conducted with delay 
transfer CS C and conditioned inhibitor X. These findings were confirmed with the following statistical analyses.  

 

 

Figure 5. Experiment 2: Group identification refers to whether the A-unconditioned stimulus (A-US) temporal 
relationship was shifted or maintained following conditioned inhibition training and the stimuli presented at 
test. Bars depict mean times to complete 5 cumulative seconds of drinking in the presence of the test stimulus. 
Higher scores indicate greater fear (i.e., less inhibition). Groups for which the temporal coding hypothesis 
predicts strong conditioned inhibition are represented with striped bars. Error brackets denote the standard 
error of the mean. See Table 2 for procedural details 

As in Experiment 1, we first analyzed the conditioned suppression scores in the presence of the test stimuli for 
subjects tested on the transfer excitors (C and D) alone. A 2 × 2 ANOVA with condition (shift vs. no shift) and 

transfer excitor (C vs. D) as factors was conducted on the suppression scores from the test session. This 

analysis revealed no main effects or interactions (all Fs < 1). Therefore, we pooled the transfer excitor data (C 



and D separately) across conditions. Using the same analysis as that used in Experiment 1, we next analyzed 

the pre-CS scores to assess potential differences in baseline drinking behavior. A 2 × 3 ANOVA with transfer 
excitor (C vs. D) and condition (pooled vs. shift vs. no shift) as factors revealed no main effects or interactions 

(all Fs < 1). Thus, there were no reliable differences in baseline drinking behavior prior to test stimulus onset. 

Analysis of the times to complete 5 cumulative seconds of drinking in the presence of the test stimuli was 

accomplished with a 2 × 3 ANOVA that used the same factors as were used for the pre-CS score analysis. This 
2 × 3 ANOVA revealed no main effect of transfer excitor (F < 1); a main effect of condition, F(2, 53) = 10.73, 

p <.001; a Transfer Excitor × Condition interaction, F(2, 53) = 17.88, p <.001. Planned comparisons using the 
error term from the overall ANOVA were conducted on the suppression scores from subjects tested on trace 

transfer CS D. These comparisons revealed less conditioned suppression in Group No Shift.XD relative to Group 

Pooled.D, F(1, 53) = 27.25, p <.001, thereby demonstrating the passage of a summation test for conditioned 
inhibition by CS X when the A-US temporal relationship was not shifted between inhibition training and testing. 

More important, there was no difference in conditioned suppression between Groups Shift.XD and Pooled.D (F 
< 1), thereby evidencing that posttraining shifting of the A-US temporal relationship from delay to 

simultaneous virtually eliminated inhibitory behavioral control by CS X when compounded with trace transfer 
CS D. Furthermore, Group No Shift.XD demonstrated less conditioned responding than did Group Shift.XD, F(1, 

53) = 25.66, p <.001, suggesting that posttraining manipulation of the A-US temporal relationship reduced the 
effectiveness of CS X to inhibit responding to transfer excitor D. 

Comparison of suppression scores from Group No Shift.XC revealed no difference in suppression relative to 

Group Pooled.C, F(1, 53) = 1.38, p >.20, indicative of inhibitor X failing to attenuate conditioned responding to 
the delay transfer excitor when the A-US temporal relationship (delay) was maintained between inhibition 

training and testing. Of greater interest, attenuated conditioned suppression was observed in Group Shift.XC 
relative to Group Pooled.C, F(1, 53) = 19.99, p <.001, thereby evidencing that posttraining shifting of the A-US 

temporal relationship from delay to simultaneous allowed CS X to better inhibit responding to delay transfer CS 
C. Furthermore, Group Shift.XC demonstrated less conditioned responding than did Group No Shift.XC, F(1, 53) 

= 11.48, p <.01, suggesting that posttraining shifting of the A-US temporal relationship resulted in greater 
inhibitory behavioral control by CS X when compounded with delay transfer CS C. 

Finally, greater attenuation of conditioned responding was observed in subjects in Group No Shift.XD relative 

to Group No Shift.XC, F(1, 53) = 20.33, p <.001, whereas greater attenuation of conditioned responding was 
observed in Group Shift.XC relative to Group Shift.XD, F(1, 53) = 15.56, p <.001. These findings suggest that 

when the A-US temporal relationship was maintained between conditioned inhibition training and testing (no-
shift condition), CS X was a more effective inhibitor of the trace transfer excitor (D) than of the delay transfer 

excitor (C), and that when the A-US temporal relationship was shifted (from delay to simultaneous) between 
inhibition training and testing (shift condition), CS X was a more effective inhibitor of the delay transfer excitor 

(C) than of the trace transfer excitor (D). 

In summary, in Experiment 2 we found that a serial Pavlovian inhibitor established with a delay training excitor 

produced greater conditioned inhibition when tested with a trace, but not a delay, transfer CS. However, 

posttraining shifting of the training excitor-US temporal relationship resulted in a corresponding shift of 
temporal control of inhibition. That is, changing the A-US temporal relationship from delay to simultaneous 

allowed inhibitor X to inhibit conditioned responding to the delay, but not the trace transfer CS. These findings 
provide a conceptual replication of the results from Experiment 1 and additional evidence for the temporal 

control of inhibition being mediated by the training excitor-US temporal relationship in effect at the time of 
testing. Additionally, they extend the generality of the effect of lengthening the A-US interval after conditioned 

inhibition training that was seen in Experiment 1 to shortening of the A-US interval as well. 

General Discussion  
The results of Experiments 1 and 2 indicate that the associative structure of behavior indicative of inhibition is 

modulated by the inhibitor's training excitor (i.e., inhibitor-training excitor-US [X-A-US]). In Experiment 1 we 
found that a cue paired in simultaneous compound with a delay training excitor produced greater negative 

summation when compounded with a delay transfer CS relative to a trace transfer CS but that when the 
training excitor-US temporal relationship was shifted from delay to trace, the cue produced greater negative 

summation when tested with the trace transfer CS relative to the delay transfer CS. Similarly, in Experiment 2 



we found that a cue paired in serial compound with a delay training excitor maximally inhibited a trace transfer 

CS relative to a delay transfer CS but that when the training excitor-US temporal relationship was shifted from 
delay to simultaneous, maximal inhibition was observed when the cue was compounded with the delay relative 

to the trace transfer CS. 

These results are consistent with the temporal coding hypothesis (Barnet et al., 1991; Matzel et al., 1988; 

Miller & Barnet, 1993; Savastano & Miller, 1998), which posits that animals form temporal maps linking events 
in memory and use these integrated maps to determine the form and timing of the conditioned response. It is 

important that these integrated temporal maps appear to include the training excitor with which the inhibitor 
was established. For example, in Experiment 1, CS X was established as a simultaneous inhibitor for CS A. 

Assuming that behavior indicative of inhibition is maximal when the inhibitor generates a negative response 

potential at the same temporal location that the transfer CS signals US presentation, greater inhibition should 
have been observed when CS X was compounded with the delay transfer CS (C) than with the trace transfer 

CS (D). Our results confirmed this prediction. Toward investigating the associative structure of temporal control 
of inhibition, we then shifted the A-US temporal relationship. If the associative structure of inhibition is based 

on an inhibitory association between the CS and the time of US absence experienced during the nonreinforced 
XA trials, then changing the A-US temporal relationship after completion of inhibition training should have had 

no effect on temporal control of inhibition. In contrast to this prediction, we observed a shift in inhibitory 
behavioral control that paralleled the shift in the training excitor-US temporal relationship. That is, shifting the 

A-US temporal relationship from delay to trace resulted in the inhibitor producing negative summation when 

compounded with the trace, but not the delay transfer excitor. These results (as well as the results of 
Experiment 2) strongly support the view that the temporal location of maximal inhibition following onset of a 

CS is mediated by the training excitor-US temporal relationship existing at the time when the test is conducted 
(see Figures 2 and 4). 

Although our present results are consistent with those of Lysle and Fowler (1985; see also Hallam et al., 1990) 
who found that the inhibitory potential of a CS is dependent on the current excitatory associative status of its 

training excitor, they are inconsistent with those of Witcher and Ayres (1984) and Rescorla and Holland (1977). 
Witcher and Ayres provided Pavlovian inhibition training (A → US/XA-no US) followed by conjoint extinction of 

CSs A, X, and XA and failed to observe an attenuation of inhibition, relative to control subjects that received no 

extinction treatment. Applied to the results of Witcher and Ayres, the comparator hypothesis would anticipate 

that extinction of the training excitor (CS A) should decrease the strength of Link 3, the comparator stimulus-
US association, thereby leading to attenuated inhibitory behavioral control. However, Witcher and Ayres 

additionally provided extinction of the XA compound which might have further strengthened Link 2 (the X-A 
association), thereby counteracting the effect of weakening Link 3. (Although it should be acknowledged that 

presentations of X and A alone might have offset any strengthening of the X-A association.) 

In a different line of research, Rescorla and Holland provided Pavlovian inhibition training (i.e., A → US/XA−) 

followed by extinction of the training excitor (CS A) and found no loss of inhibition, a result inconsistent with 

the associative structure of inhibition being mediated by the training excitor. However, they provided fewer 
extinction trials with CS A (24) than have previous studies that observed a loss of inhibition following extinction 

treatment of the training excitor (e.g., Lysle & Fowler, 1985, provided 96 extinction trials and Hallam et al., 

1990, provided 48 extinction trials). Thus, it is possible that had Rescorla and Holland provided more extinction 
trials, they would have observed a loss of inhibition. More important, Rescorla and Holland found a loss of 

inhibition following counterconditioning treatment of the transfer excitor. During their counterconditioning 
treatment, the previously feared transfer excitor that had been 30 s in duration was then presented for 10.5 s 

and followed by an appetitive US. In light of the present findings, the loss of inhibition following 
counterconditioning of the transfer excitor might have been due to the change in the valence of the US paired 

with the transfer excitor and/or the shift in the transfer excitor-US temporal relationship. That is, at test, the 
inhibitor, which was established with a training excitor that signaled shock at a specific temporal location in the 

absence of the inhibitor, was compounded with a transfer excitor that signaled the presentation of a different 

US (food) at another temporal location. The present results suggest that the change in temporal relationship 
between the transfer excitor and the US might have been sufficient to attenuate inhibitory behavioral control. 



In Experiment 2, we investigated the associative structure of an inhibitor trained serially with its training 

excitor. Following serial inhibition training (i.e., A US/X A-no US), CS X produced greater negative 
summation when compounded with a trace transfer CS than when compounded with a delay transfer CS. Of 
greater importance, inhibitory behavioral control was shifted following posttraining manipulation of the A-US 

temporal relationship from delay to simultaneous. This training allowed CS X to better inhibit responding to the 

delay transfer CS than to the trace transfer CS. The observed potential of a serial inhibitor to attenuate 
responding to a stimulus when presented in a simultaneous compound is inconsistent with the findings of 

Holland and colleagues (Holland, 1984; Holland & Lamarre, 1984; Lamarre & Holland, 1987), who have 
consistently reported that serial and simultaneous discrimination training result in two different types of 

inhibitors (negative features). They found that serial negative features generally fail to transfer to simple CSs 
and instead tend to be specific to excitors that were trained as targets in other feature-negative discriminations 

(Holland & Lamarre, 1984; Lamarre & Holland, 1987). In contrast, simultaneous negative features readily 
transfer to simple excitatory stimuli. Thus, our observation that a serial inhibitor (feature) attenuated 

responding to an independently trained excitor (provided that the temporal expectancies for US presentation 

and the inhibitor's negative response potential were consistent) is somewhat surprising. However, there are 
numerous procedural differences between our experiments and those of Holland and his colleagues (see 

Denniston, Blaisdell, & Miller, 1998, for a review); perhaps the most important difference is that Holland and 
his colleagues typically presented a gap between their serial negative feature and the target, whereas in the 

present Experiment 2, there was no gap. Regardless of the source of this discrepancy, Holland et al. (1997) 
reported a series of experiments in which they observed temporal control of occasion setting similar to our 

temporal control of inhibition. That is, they found that following serial feature-positive occasion setting training, 
modulation by the feature was greatest when the feature-target interval was the same as that established 

during occasion-setting training, a result that is consistent with the present results as well as those of 

Denniston, Blaisdell, and Miller. 

At the theoretical level, the present results are problematic for Schmajuk, Lamoureux, and Holland's (1997) 

neural network model of inhibition and occasion setting. According to their model, a feature can exert 
behavioral control through a direct link with the US, an indirect link with the US (mediated by a hidden unit), or 

both. Typically, serial (occasion-setting or inhibition) training results in a pattern of connections in which both 
the feature and the target become most strongly linked with a hidden unit that is in turn linked to the US. Each 

of these links exerts temporal control as a consequence of multiple memory traces (with different onsets and 
durations) evoked by the CS. Thus, both the feature and the target have separate connections to a common 

hidden unit, which in turn is linked with the US. One interesting prediction of this model is that posttraining 

manipulation of the target CS-US temporal relationship might result in the strengthening of different hidden 
unit-US memory traces (and the extinction of the original hidden unit-US memory traces), which could then 

allow the feature to exert behavioral control at a different temporal location than that at which it had been 
originally trained. This prediction is consistent with the results of Experiment 2 in that changes in the A-US 

temporal relationship apparently resulted in changes in the X-no US temporal expectancy. 

Problematic for Schmajuk et al.'s (1997) theory are the results of Experiment 1. In Experiment 1 we found a 

similar shift in temporal control of inhibition when the training excitor-US temporal relationship was 

manipulated. According to Schmajuk et al.'s model, simultaneous features (inhibitors) generally form a direct 
inhibitory CS-US connection. This direct CS-US connection should not be influenced by changes in the training 

excitor-US temporal relationship, unlike serially trained stimuli, as the patterns of connections differ (i.e., direct 
vs. mediated, respectively). On the basis of our present findings, it appears that both simultaneous and serial 

inhibitors exert behavioral control through a common associative structure (X-A-US), rather than different 
associative structures, a result more consistent with Buhusi and Schmajuk's (1999) model that has multiple 

memory traces for each CS. 

The present results can be illuminated by the comparator hypothesis's (Denniston et al., 2001; Miller & Matzel, 

1988) conceptualization of behavior indicative of inhibition. According to the comparator hypothesis, the 

strength of the inhibitor-US association (which is nil) is compared with the strength of the training excitor 
(comparator stimulus)-US association. As the strength of the comparator stimulus-US association increases 

relative to the strength of the inhibitor-US association, inhibitory behavioral control is predicted to increase 



(and excitatory behavioral control is predicted to decrease). Conversely, as the strength of the comparator 

stimulus-US association decreases, inhibitory behavioral control should decrease (and excitatory behavioral 
control should increase). Thus, the comparator hypothesis can anticipate the occurrence of behavior indicative 

of inhibition and can explain the attenuation of inhibitory behavioral control following extinction of the training 
excitor. 

Notably, the comparator hypothesis alone is unable to explain the effect of posttraining manipulation of the 
training excitor-US temporal relationship on the temporal control of inhibition in that it has no mechanism for 

explaining temporal control of behavior. However, integration of the comparator and temporal coding 
hypotheses provides a more complete account of the present results (see Blaisdell, Denniston, & Miller, 1999; 

Denniston, Blaisdell, & Miller, 1998). According to this conjoint application, the inhibitory strength of CS X is 

derived from its association with CS A (X's training excitor, because CS X was never directly paired with the US) 
and is directly proportional to the strengths of the X-A and A-US associations. Likewise, temporal expectation 

for US omission is provided primarily by the conditioned inhibitor's (CS X's) training excitor (CS A, its 
comparator stimulus). In other words, the conditioned inhibitor does not directly signal US omission; rather, it 

indirectly activates a strong US representation at a particular temporal location through its comparator stimulus 
(the training excitor). Thus, the inhibitor-training excitor and the training excitor-US temporal relationships 

determine the temporal location at which inhibitory behavioral control will be maximal. Hence, on a summation 
test, behavior indicative of inhibition reflects the sum of the effective associative strengths of the transfer 

excitor and the conditioned inhibitor. Alternatively stated, inhibitory behavioral control arises from the 

comparator process producing a negative effective response potential that subtracts from the positive response 
potential of the transfer excitor. 

It is important that negative summation should be maximal when the transfer excitor and the conditioned 
inhibitor's comparator stimulus (CS A) activate representations of the US that share common temporal (as well 

as quantitative and qualitative) attributes. When there is a mismatch in any of these US attributes, attenuated 
inhibitory behavioral control should be observed. For example, on the basis of the comparator hypothesis 

alone, one might expect that the additional training excitor-US pairings provided during update training should 
have enhanced inhibition overall (i.e., a form of associative inflation that should have enhanced inhibition 

regardless of which transfer excitor the inhibitor was compounded with at test). In contrast to this prediction, 

specific temporal control of inhibition at a new temporal location was observed, a result that highlights the 
importance of temporal variables in determining the output of the comparator process. 

In the present experiments, behavior indicative of inhibition was maximal when the conditioned inhibitor's 
comparator stimulus activated a US representation at the same temporal location as the transfer excitor 

activated a US representation. When there was a mismatch in temporal expectancies, as signaled by the 
inhibitor's training excitor and the transfer excitor presented at test, inhibitory behavioral control was reduced. 

Of greater importance, posttraining manipulation of the training excitor-US temporal relationship produced a 
corresponding shift in inhibitory behavioral control. On the basis of the above account, this shift in inhibitory 

behavioral control is thought to result from the inhibitor indirectly activating a strong US representation at a 

new temporal location (see Figures 2 and 4). At test, this allowed the conditioned inhibitor to pass a negative 
summation test with a transfer excitor that signaled US presentation at this new temporal location, but not 

with a transfer excitor that signaled US presentation at the original temporal location. 

As previously discussed, both the temporal coding and comparator hypotheses are required to more fully 

account for the present results. However, some aspects of the current results and theoretical integration 
warrant comment. First, it is somewhat surprising that our posttraining manipulation of the training excitor-US 

temporal relationship was as effective as it was, particularly after only 64 training trials at the new temporal 
interval, in that conceptually similar research has required far more training to obtain analogous comparator 

effects. For instance, both overshadowing and blocking can be attenuated when the comparator stimulus is 

subjected to posttraining devaluation (i.e., extinction), which presumably weakens the effective strength of the 
indirectly activated US representation. However, these effects typically require extensive extinction treatment 

(e.g., 214 trials in the case of overshadowing, Denniston, Savastano, Blaisdell, & Miller, 2003; and 800 trials in 
the case of blocking, Blaisdell, Gunther, & Miller, 1999). One potential explanation for the increased 

effectiveness of the temporal shifting manipulation, relative to the posttraining devaluation manipulation, is 
that US presentation might be more salient than US omission. That is, in the present experiments we 



manipulated the status of the inhibitor's comparator stimulus by pairing it with the US at a different temporal 

location than had been in effect during original inhibition training. Studies of recovery from cue competition, 
however, manipulated the associative status of the overshadowed or blocked CS's comparator stimulus by 

presenting the comparator stimulus in the absence of the US. If US presentation is more salient than US 
omission, the former treatment might produce more rapid changes in associative strength than the latter. Such 

a view has been incorporated into many contemporary theories of associative acquisition. For example, the 
Rescorla-Wagner model (Rescorla & Wagner, 1972) posits different values for beta (a learning rate parameter) 

depending on whether the US is present or absent. 

An additional potential concern regarding the current theoretical integration is that both the comparator and 

temporal coding hypotheses are qualitative in nature (i.e., they lack quantitative rules for acquisition and 

performance), potentially reducing their predictive power. However, many so-called quantitative models of 
associative learning (e.g., Rescorla & Wagner, 1972) ultimately reduce to ordinal predictions because they lack 

precise rules for transforming learning into performance. Thus, the comparator and temporal coding 
hypotheses might not be qualitatively different than their quantitative peers. 

In summary, the present experiments found that temporal control of inhibition is mediated by the temporal 
associative status of the inhibitor's training excitor at test. This suggests that the associative structure of 

temporal control of inhibition is X-A-US rather than a direct X-US association. Supportive of this conclusion is 
the observation that posttraining shifts in the training excitor-US temporal relationship resulted in a 

corresponding shift in the negative response potential generated by the inhibitor. When this updated temporal 

expectancy for US omission matched the temporal expectancy for US presentation signaled by the transfer 
excitor, robust inhibitory behavioral control was observed. These findings are problematic for theories of 

inhibition that posit a direct inhibitor-US association but are fully consistent with an integration of the temporal 
coding and comparator hypotheses. 
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