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Complexity In Microbial Metabolic 
Processes In Soil Nitrogen Modeling: A 

Case For Model Averaging

Newsha K. Ajami •   Chuanhui Gu 1   Introduction 

With increasing concerns over environmental problems 
caused by human disturbances, accurate and reliable pre- 
dictions of nutrient cycling are essential for sustainable 
resource management practices. In the last few decades, 
much effort has been invested in developing biogeochem- 
ical models with different complexity that capture nutrient 
cycling across the scales (Li et al. 1992; Parton et al. 2001; 
Maggi et al. 2008). Regardless of the detail at which the 
chemical, biological and physical processes are taken into 
account, all these models are, in the best case, selective 
mathematical approximations of processes that are essen- 
tially complex. 

Choosing a level of complexity has been a routine 
concern by biogeochemical modelers (e.g. Johnson and 
Omland 2004; Homann et al. 2000) as  Biogeochemists 
have usually struggled to decide what level of complexity 
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in models is actually warranted (e.g., Kimmins et al. 2008). 
However, this so-called best-model selection really does not 
solve the significant variability between model per- 
formances (Homann et al. 2000). Thus, the standard notion 
of choosing the right complexity level (e.g., Lawrie and 
Hearne 2007) doesn’t overcome the model’s structural 
inadequacy. Furthermore, when there is nearly equivalent 
support in the observed data for multiple models, it is 
problematic to choose one model over another. Breuer et al. 
(2008) recently reviewed some of the nitrogen hydro- 
biogeochemical models and discussed the importance of 
addressing various sources of uncertainty in such models, 
especially the model structural (i.e. complexity) uncer- 
tainty. Multi-model averaging can lead to reduction of 
model selection bias and account for model selection 
uncertainty. 

The need for accounting for model structure uncertainty 
by multi-model averaging have motivated researchers in 
various fields such as economic, weather and hydrological 
forecasting to consider multi-model methods that aim to 
obtain consensus prediction from a set of models by dif- 
ferent averaging schemes (Bates and Granger 1969; 
Dickinson 1973; Krishnamurti et al. 1999; Shamseldin et al. 
1997; Stockdale 2000; Raftery et al. 2005). One way to 
aggregate multiple deterministic model outputs is to employ 
deterministic techniques (i.e. regression based approaches) 
(Shamseldin and O’Connor 1999; Piedelievre 2000; 
Georgakakos et al. 2004; Ajami et al. 2006). None-theless, 
the deterministic averaging does not provide an indication 
of the relative quality of the different model structures and, 
thus, it is difficult to include it in a quan-titative uncertainty 
analysis in terms of probabilities (Refsgaard et al. 2006). 

 
Bayesian Model Averaging (BMA; Hoeting et al. 1999), 

on the other hand, is a probabilistic multi-model averaging 
technique. It uses a statistical scheme to infer from an 
ensemble of competing deterministic predictions the 
probabilistic prediction that possesses more skill and reli- 
ability than the original ensemble members (Madigan et al. 
1996; Raftery et al. 2003). BMA assigns weight to each 
model which reflects the relative model performance given 
the observations. The BMA weights sum up to unity. BMA 
methods were used in various forecasting applications such 
as surface water hydrological forecasting (Duan et al. 2007; 
Ajami et al. 2007; Vrugt and Robinson 2007; W ¨o hling and 
Vrugt 2008; Hsu et al. 2009), ground water modeling 
(Neuman 2003; Neuman and Wierenga 2003; Ye et al. 2004; 
Poeter and Anderson 2005; Refsgaard et al. 2007; Y e et al. 
2008; Rojas et al. 2009) and weather forecasting (Raftery et 
al. 2003, 2005) and have shown promising results in dealing 
with model predictive uncertainty. 

Soil nitrogen  cycling  is  complex  in  the  sense  that 
it  involves  many  interactive  physical,  chemical,  and 

biological processes (e.g. Gu et al. 2009). Models have 
been constructed to predict soil N transport and fate with 
varying complexity of processes, including water dynam- 
ics, carbon cycling, plant uptake, chemical transport, and N 
transformation pathways (Chen et al. 2008). The model 
uncertainty can inevitably arise from different conceptu- 
alizations and subsequent mathematic representations of 
those processes. 

We here focused on soil nitrogen microbial metabolic 
processes as an appropriate example to investigate the 
general biogeochemical dilemma about complexity. It was 
outside the limits of this study to investigate all the possible 
model complexity mentioned previously. The process used 
here represents only a subset of N trans-formation 
processes, but arguably most dominant process that controls 
soil nitrogen fate (Maggi et al. 2008). In the current study, 
we described the nitrogen microbial meta-bolic processing 
(1) lumped microbial kinetics or (2) di-saggregating into 
functional groups (e.g., denitrifiers and ammonia oxidizers). 
Models with different levels of microbial complexity can 
give different model results, but none may be deemed 
entirely adequate (Homann et al. 2000). Therefore, it 
provides an ideal test of how BMA can lead to new insights 
about model uncertainties and system behavior. 

 
The objective of this paper is two fold. First, we explore 

the importance of a model’s complexity level in developing 
an accurate bio-geochemical representation of state vari- 
ables including soil gas emissions and pore water solute 
concentration. This has been a focus of many ecological and 
biological studies (Homann et al. 2000; Kimmins et al. 
2008). Here we will examine the plausibility of the notion 
of selecting the ‘‘right’’ complexity level to address all 
different processes within a field (Lawrie and Hearne 2007). 
We later illustrate that changing complexity levels does not 
conceal the model’s structural deficiencies. Therefore, the 
second objective focuses on addressing the model predictive 
uncertainty in biogeochemical models by using Bayesian 
Model Averaging approach. We developed three different 
versions of biogeochemical N cycle model 
THOUGHREACT-N (Maggi et al. 2008; Gu et al. 2009; Xu 
2008). Each version of the model presents different 
complexity levels in representing the N-cycling in our study 
field. The models were used to describe the N cycling in a 
tomato field in the Western Sacramento County, CA, site 
from which we measured different quantities over time. 
Each model was calibrated twice on these data sets using 
Parameter ESTimation (PEST) software (Doherty 2004) 
considering two different weighting sets in our objective 
function. Later we investigated the importance of 
accounting for predictive uncertainty using Bayesian Model 
Averaging to combine the existing six various deterministic 
model outputs. 



 

2 

 

2 Methods 

 

2.1 The biogeochemical cycle of nitrogen 
 

The reactions responsible for N cycling are numerous and 
mainly mediated by variegate microorganisms that exten- 
sively inhabit near-surface soils. These microorganisms can 
transform nitrogen via more than one pathway (e.g., Wrage 
et al. 2001; Shrestha et al. 2002), and under various condi- 
tions of temperature, pH, water content, substrate, electron 

2.2 Experimental data 
 

Experimental data were collected from a furrow irrigated 
tomato field during July–August 1998 in western Sacra- 
mento County, California. Fertilization consisted of an 
application of anhydrous ammonia, NH3, injected at 5 cm 
depth on 1st July. Irrigation occurred on 11th July and lasted 
for 4 days for a total water volume of 146 m3/ha (Venterea 
and Rolston 2000b). Available data consisted of water 
saturation  (volume  of  water  per  volume  of  pores),  pH, 

acceptor, and inhibitor concentrations (e.g., Knowles 1982). concentrations of NH4
?,  N  O - , and NO3

-
 solutes at 0–5 

The reaction patterns accounted for in this work are bio- 
logical nitrification (i.e., NH4

? ? NO2
- ? NO3

-) and 
denitrification (i.e., NO3

- ? NO2
- ? NO ? N2O ? N2) 

reaction chains, and chemical N decomposition (i.e., NO2
-
 

— HNO2
-  ? HNO3

-  $ NO3
-, and HNO2

-  ?NO). 
Nitrification of ammonium (NH4

?) into nitrate (NO3
-) 

consists of two oxidation reactions mediated respectively by 
ammonia oxidizing autotrophic bacteria (AOB; e.g., 
Nitrosomona and Nitrosospira) and by nitrite oxidizing 
autotrophic bacteria (NOB; e.g., Nitrobacter and Nitro- 
spira) (e.g., Salsac et al. 1987; Arp and Stein 2003). AOB 
and NOB are active in moist soils under oxic conditions, 
while they become inactive at low soil moisture content and 
water potential, and under anoxic conditions (e.g., Rosswall 
1982; Rodrigo et al. 1997). Denitrification of NO3

- into N2 

consists of a sequence of redox reactions mainly mediated 
by heterotrophic denitrifier bacteria (DEN; e.g., 
Pseudomonas,   Thiobacillum)   that   consume   dissolved 
organic carbon (DOC) and use NO3

-,  N  O -, NO, a2 nd 
N2O as electron acceptors (e.g., Payne 1973; Knowles 1982; 
Rosswall 1982). The metabolism of DEN, with concomitant 
CO2 production, is limited by available DOC, and is favored 
under anoxic conditions while declining under water 
drought stress. Some AOB are capable of carrying out part 
of the denitrification reactions in anoxic conditions by 
means of the same reactions as DEN (e.g., Tortoso and 
Hutchinson 1990; Wrage et al. 2001). Chemical 
decomposition of HNO2 into HNO3 and NO was taken into 
account as demonstrated in Venterea and Rolston (2000a). 

 
In linking the N cycle to part of the C cycle in a 

simplified manner, we assume that background organic 
carbon dissolution sustains a DOC pool as in Li et al.(1992). 
Although DOC is known to comprise a large number of 
complex and more or less recalcitrant mole-cules, we 
consider CH2O as the available DOC substrate for 
simplicity (e.g., Chen and MacQuarrie 2004). DOC is 
competitively consumed by AOB and DEN during deni- 
trification, and by other heterotrophic and aerobic 
microorganisms (AER) during respiration, resulting in CO2 

production. 

cm depth, and NO, N2O, and CO2 fluxes measured at 
various times for 20 days after fertilization (more details can 
be found in Venterea and Rolston (2000a, b)). The specific 
data set was chosen because it covered the main reactants, 
products, and intermediates in soil N cycling, while we 
acknowledge that the precise model structure can only be 
approximated rather than determined for any arbitrary field 
data. 

 
2.3 Multi modeling approach 

 
In this work, we considered three different models of the 
biogeochemical N cycle; each model was derived from the 
underlying model TOUGHREACT-N (Maggi et al. 2008; 
Gu et al. 2009) but each of them was characterized by a 
different level of complexity. The three models TRN1 
(complex with high complexity), TRN2 (middle with 
intermediate complexity), and TRN3 (simple with low 
complexity) were comprised of mechanistic representations 
of physical, chemical, and biological aspects. Complex 
model TRN1 used here was previously presented in Maggi 
et al. (2008) (Fig. 1). The middle model TRN2 (Fig. 1) 
differed from TRN1 in the description of denitrification, 
which was performed only by DENs as compared to TRN1. 
By consequence, the metabolism of AOBs was simplified in 
TRN2 in a way such to not contribute to CO2  production 
from consumption of CH2O as during nitrifier denitrifica- 
tion. The simple model TRN3 (Fig. 1) differed from TRN1 
because it employed an equivalent microbial biomass 
lumping all microbial biomass diversity into one species. 
This microbial biomass (defined by B in Fig. 1) was alone 
responsible for the full biogeochemical cycle of nitrogen 
and drastically simplified the complex respiration scheme of 
TRN1 and TRN2, the network on electron donor and 
acceptor feedback, and the inhibition effects. 

In each of the three models, the soil was modeled through 
a one-dimensional vertical mesh of the top 60 cm of column 
discretized   by   dz   =  1.25   cm.   The   column   depth 
encompasses the dynamically active zone for N cycle 
reactions in the agricultural field experiment described by 
(Venterea and Rolston 2000b). The initial soil–water 



 
 

Fig. 1  Schematic of three 
THOUGHREACT-N models 
with different levels of 
complexity: complex-TRN1 
(high complexity), middle- 
TRN2 (intermediate 
complexity), and simple-TRN3 
(low complexity) (modified 
from Maggi et al. (2008)) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

saturation, primary species and biomass concentrations 
within the soil column were assigned according to the 
measured values or obtained from calibration (Maggi et al. 
2008, Table 2). The Dirichlet boundary condition was 
assigned to the bottom boundary. Partial pressures of the 
gaseous species at the soil surface were kept constant and 
equal to 0.2 bar for O2 (g) and to 4 9 10-4 bar for CO2 (g), 
and equal to zero for all other gases. Surface fluxes of NO, 
N2O (g), CO2 (g), and O2 (g) were computed from soil sur- 
face concentration gradients. The soil moisture dynamics 
was modeled with the full mass-conserving Richards equa- 
tion taking into account the water tension-saturation rela- 
tionship according to van Genuchten (1980). Transport of 
chemical species was modeled with the advective-diffusive 
Fick’s law in both liquid and gaseous phases. Biologically- 
mediated chemical reactions were modeled with the 
Michaelis–Menten kinetics coupled with the Monod 
kinetics for the microbial biomass dynamics and accounting 
for electron donor, acceptor, and inhibitor concentrations. 
The chemical reactions of aqueous complexation, gaseous 
dis-solution and exsolution, and solute adsorption and 
desorp-tion were described as equilibrium reactions. Note 
that temporal dynamics of soil pH is directly simulated by 
tracing production and consumption of protons based upon 
stoichi-ometric reaction equations (Maggi et al. 2008, Table 
1b and 1c). A detailed description of the formulations used 
in these models, which is beyond the purpose of this work, 
can be found in Maggi et al. (2008). 

The soil physical and hydraulic properties were previ- 
ously determined by calibrating the model to the observed 
soil water saturation dynamics (Maggi et al., 2008). A silt 
loam soil was used with density of 2600 kg m-3, porosity 
of 0.6, permeability of 1.82 9 10-13 m2, residual water 
saturation of 0.001, and van Genuchten parameter of 0.62. 
The derivation of chemical transport parameters were 
described in Maggi et al. (2008). The rest of the biogeo- 
chemical parameters are subject to calibration and will be 
discussed in the following sections. 

 
2.4 Calibration approach 

 
Automatic calibration was conducted using the Parameter 
Estimation (PEST) software (Doherty 2004) which imple- 
ments a particularly robust variant of the Gauss–Marqu- 
ardt–Levenberg method of nonlinear parameter estimation. 
During the calibration process, the different sets of 
parameters were adjusted at different model complexity 
levels (Table 1). Seven subobjective functions that were 
based on multiple variable groups were combined to form a 
single composite objective function. Weights were 
assigned to each subobjective function to ensure that the 
contributions of each group to the multiple objective 
functions were almost equal so that no subobjective func- 
tion dominated the inversion process. It is acknowledged 
that the process of assigning weights to components of a 
multicomponent objective function can be subjective. In an 
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Table 1  Examples of 
TOUGHREACT-N model 
parameters adjusted during 
PEST calibration for weighting 
scheme 1 

 
Parameters 

 
NH4    oxidation rate (s 
AOB decay rate (s-1) 

- 

 

 
-1) 

NO2 oxidation rate 
NOB decay rate (s-1) 

- -1 
DEN NO3 

DEN NO - 

reduction rate (s   ) 
reduction rate (s-1) 

DEN NO reduction rate (s-1) 
DEN N2O reduction rate (s-1) 
DEN respiration rate (s-1) 
DEN decay rate (s-1) 
AER respiration rate (s-1) 
AER decay rate (s-1) 
DOC production rate (mg l-1 s-1) 
AOB NO - reduction rate (s -1) 

AOB NO reduction rate (s-1) 
AOB N2O reduction rate (s-1) 
Initial AOB (mg l-1) 
Initial NOB (mg l-1) 
Initial DEN (mg l-1) 
Initial AER (mg l-1) 

 
 

 
attempt to remove such subjectivity, two different 
weighting strategies were applied as a part of the calibra- 
tion process (Table 2). The objective function, U, can be 
stated as the weighted sum of squares of subobjective 
functions: 

m 

U ¼ 
X 

ðxiriÞ2 ð1Þ 
i¼1 

where xi is the weight attached to the ith objective vari- 
ables, m the number of variables, and ri expresses the ith 
subobjective function that represents the difference 
between the model output and the specific observation 
group. Weights were inversely proportional to the mean 
absolute values of observations. The values for xi were 
used as empirical weights with a goal to make the contri- 
butions of different model variables to U similar in size 

 

Table 2 Seven variable groups for subobjective functions and two 
sets of weighting schemes 

 
 

Variables Weight 1 Weight 2 

pH 1.5 1 
NH4 30 20 
NO - 250 200 

- 

and, therefore, give all measured variables a similar influ- 
ence on the estimates of the parameters (Table 2). 

Detailed process based N biogeochemical models such as 
TOUGHREACT-N are usually overparameterized with 
respect to given sets of observations. The involvement of 
too many parameters may lead to nonuniqueness in their 
estimation and possibly poor performance of the estimation 
due to consequential numerical instability. Temporary 
parameter immobilization technique was used to tackle this 
problem (Doherty 2004). In implementing this scheme 
PEST selects the most insensitive parameter, and tempo- 
rarily removes it from the optimization process. With the 
dimensionality of estimable parameter space thus reduced, 
the parameter upgrade vector is recalculated. A model run is 
then conducted to compute the new objective function. 
Unless the new objective function has fallen by a signifi- 
cant amount, the next most troublesome parameter is 
temporarily frozen, and the parameter upgrade calculation 
procedure is repeated. 

 
2.5 Bayesian model averaging 

 
Bayesian model averaging (BMA) is a statistical scheme 
that can drive probabilistic ensemble predictions from 
competing individual deterministic predictions (Madigan et 

NO3 150 100 al. 1996; Raftery et al. 2003). The BMA expected value is a 
NO flux 0.8 1 
N2O flux 1.2 1.5 
CO2 flux 0.008 1.00E-02 

combination of a set of competing models such that the 
more skillful models receive higher weights. The variance 
of the BMA reflects the model predictive uncertainty in the 

TRN3 
   

2.39E-06 

TRN2 
 

9.96E-06 

TRN1 
 

1.36E-05 
N/A 5.75E-06 1.68E-06 
2.26E-06 1.11E-05 2.55E-05 
N/A 4.56E-07 4.33E-07 
8.07E-05 7.64E-05 6.79E-05 
2.27E-06 6.90E-06 1.41E-06 
1.44E-04 4.60E-04 1.25E-05 
1.00E-07 1.00E-07 1.04E-08 
5.84E-06 8.77E-07 3.56E-06 
1.67E-06 7.28E-08 5.60E-07 
N/A 7.44E-06 1.73E-06 
N/A 1.74E-07 6.69E-07 
8.67E-04 3.98E-04 2.44E-03 
N/A N/A 9.77E-08 
N/A 
N/A 

N/A 
N/A 

2.43E-04 
1.05E-08 

N/A 52.9345 34.6158 
N/A 5.28649 5.67304 
24.25 2.69233 6.00E?00 
N/A 52.2609 49.0405 

 



 

k 

k k 

 

predicted BMA. BMA combines models for each output 
variable based on the assumption that at each particular 
time step, there is only one best ensemble member or 
model. Since we have more than one output variable in this 
study, BMA was applied separately to combine the model 
ensembles for each individual model variables. 

Let’s consider the forecasted variable, y, (or predictand) 
and  the  ensemble  of  all  considered  model  predictions, 
f = [f1, f2, …, fk]. Pk (y|fk, D) is the posterior distribution of 
y given model prediction fk and observational data set D. 
The posterior distribution of the BMA prediction is there- 
fore given as: 

K 

pðyjf1; f2. . .; fK ; DÞ ¼ 
X 

pðfk jDÞ · pk ðyjfk ; DÞ ð2Þ 
k¼1 

where p(fk|D) is the posterior probability of model 
prediction fk being the best one, also known as the 
likelihood  of  model  prediction,  fk    being  the  correct 

To implement the BMA scheme numerically, several 
assumptions are made for this study. First, the model 
ensemble used in BMA was assumed to be representative 
of the entire model space and that the individual ensemble 
members were independent of each other. Second, the 
conditional probability pk ðyjfk ; DÞ was assumed Gaussian. 
The Gaussian assumption was made here for computational 
simplicity and BMA scheme could be applied assuming 
other probability distributions. We estimate the model 
parameters, wk and r2, k = 1, 2, …, K (denoting h = [{w , 
k = 1, 2, …, K}, r2], by the maximum likelihood from the 
training period. The maximum likelihood estimator, esti- 
mates the value of the parameters under which the 
observed data is most likely to be observed. For both 
algebraic simplicity and numerical stability, here we 
maximize the logarithm of the likelihood function (log- 
likelihood functions) instead of the likelihood  function. 
The log-likelihood function was approximated as: 

prediction given the observational data, D. If we denote K 
!

 X 
w 5 wk = p(fk|D),  we  obtain  

PK
 wk ¼ 1:  wk    values  are ‘ðhÞ ¼ log · p ðyjf ; DÞ ð Þ 

k¼1 
nonnegative  and  reflect  relative  contribution  of  each 
ensemble member to the predictive skill of BMA over the 
training period. The posterior mean and variance of the 
BMA prediction can be expressed as (Raftery et al. 2003, 
2005): 

k k k 
k¼1 

Because there is no analytical solution for h, an iterative 
procedure that made use of the Expectation-Maximization 
(EM) algorithm was used for this purpose (Raftery et al. 
2005). The EM algorithm casts the maximum likelihood 
problem as a ‘‘missing data’’ problem. The missing data 

K K 
E½yjf1. . .; fK ; D] ¼ 

X 
pðfk jDÞ · E½pk ðyjfk ; DÞ] ¼ 

X 
wkfk may not be actual data. Rather, it can be a latent variable 

k¼1 k¼1  
ð3Þ 

that needs to be estimated. For this study, a latent variable 
zk,t  is introduced. If the kth model ensemble is the best 
prediction considering the value of the parameters, at time t, 

K K 
!2 zk,t = 1; otherwise zk,t = 0. Even though the estimates of the 

Var½yjf1. . .; fK ; D] ¼ 
X 

wk    fk      
X 

wifi þ r2 ð4Þ zk,t (Fig. 2) are not necessarily integers, at any time t, only 
k¼1 i¼1 one zk,t can be equal to 1 and the rest is equal to 0. As in the 

In essence, the expected BMA prediction is the average 
of individual predictions weighted by the likelihood that an 
individual model is correct given the observations. The 
BMA prediction receives higher weights from better 
performing models as the likelihood function measures the 
agreement between predictions and the observations. In 
addition, the BMA variance is an uncertainty measure of the 
BMA prediction. The right hand side of Eq. 4 contains two 
terms: the between-model-variance which presents between 
model  spread  (ensemble  spread)  and  the  within-model- 
variance  (r2)  which  measures  the  expected  uncertainty 
conditional on one of the forecasts being the best at any 
given time step. The within model variance or (r2) accounts 
for under-dispersivity of the ensembles. Equation 4 is a 
better description of predictive uncertainty than that in a 
non-BMA scheme, which estimates uncertainty based only 
on the ensemble spread (i.e., only the between-model 
variance is considered), and consequently results in under- 
dispersive predictions (Raftery et al. 2003). 

namesake, the EM algorithm alternates between the E (or 
expectation) step and the M (or maximization) step. It starts 
with an initial guess, h(0), for parameter, h. In the E step, zk,t 

is estimated given the current guess of, h. In the M step, h is 
estimated given the current values of the zk,t. The EM steps 
are repeated until certain convergence criteria are satisfied. 
The EM algorithm is illustrated in Fig. 2. For a more 
detailed description of the EM algorithm, readers are 
referred to McLachlan and Krishnan (1997). 

 
2.6 Model evaluation 

 
The performance of the Bayesian Model averaging 
approach should be evaluated in two terms. The first 
measure is to determine the overall accuracy of the pre- 
dictive mean in capturing observations. Second, we should 
measure the consistency of the Probability Density Func- 
tion (PDF) of prediction with the actual observations. To 
evaluate  the  accuracy  of  individual  model  predictions 
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Compute the initial likelihood 
K 

( 0 ) = log( w p ( y   | y   )) ∑ ∑ ( 0 ) ~ 
k t kt 

t k   1 = 

j=j+1 

Select the number of iterations (j), training period (t), number of models (K), set 
j=1,t=1 

Start 

k k Z 

T 

k 

y 

kt ∑ 

 

Fig. 2  EM flow chart for each 
variable 

 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 

Calculate the weights (likelihood of the model K to be true), 
w   g ( ~y   |  y ,σ (  j − 1 )   ) 1 

j    = k t kt ==> w (  j )   = (  j ) 

n kt 

∑ w k 
i=1  

g ( ~y |  y it ,σ (  j − 1 )   ) t 

Update the variance (standard deviation) 
( Iter ) 

σ 
 1  T

 K 

z Iter 
(~y y   ) 2 

= ∑∑  
t =1  k =1 

k ,t   ⋅ t  −  k ,t 

Update the likelihood 
K 

( j ) 
= ∑ log( ∑ w ( j )  p ( ~y | y kt  )) 

t k =1 

( ( j ) − ( j −1) ) < CC No
 

Yes 

Stop 

(estimation)  and  BMA  predictive  mean  in  capturing PT    yobs yest
  

observations, we used Root Mean Square Error (RMSE), 
ABSE ¼ t¼1     t t 

which presents the performance of the model in capturing 
extreme events and mean ABSolue Error (ABSE) which 
examines the overall performance of the models. The 
RMSE and ABSE are formulated as follows: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

T ð7Þ 
where  yobs   and  yest   are  observed  and  estimated  output 

t t 
values, T denotes the number of observations. In order to 
evaluate the consistency of the uncertainty bounds against 
the observations, we need to determine what percentage of 

RMSE ¼ 
PT 

t¼1 

( 
obs 

t   
T 

est  2 
t ð6Þ observation point’s fall within the 95% uncertainty bounds, 

which  here  represents  predictive  uncertainty.  The  95% 

Calculate the standard deviation of the individual model simulation from 
observed values, σ (0) , k=1,…,K 

Read the models Mk , k=1,…,K,  and their simulations 
Mk= ( yk1 ,........, ykt ) 

Z 

2 

y 

t 

t 



 
 

uncertainty bounds are expected to be wide enough to 
capture 95% of the observation points. 

 
 

3 Results 

 

3.1 Calibration of TOUGHREACT-N 
 

The calibrated parameter values for the simple, middle, and 
complex models for weighting scheme 1 are presented in 
Table 1. In general, the parameters governing the nitrogen 
dynamics of the system differ largely across the complexity 
levels. Figure 3 shows calibration results of the simple, 
middle, and complex models with two weightings. These 
results show that none of the models are sufficient to fully 
reproduce the observed temporal patterns of chemical 
concentrations and fluxes. The pulse behaviors of N solutes 
and gases were difficult to reproduce. Exact fitting of the 
peak concentration or flux was compromised in order to 
insure a good fit of the simulation to the data sampled 
throughout the whole calibration period. The performance 
of the middle model is much better than the simple model 
regarding pH and NO3

-  concentration, while there are no 
other significant improvements compared to the simple 
model. The complex model showed improved performance 
compared to the simple and middle models in terms of 

capturing the temporal dynamics of soil gaseous fluxes (i.e. 
NO, N2O, CO2). However, the simulations are still poor: the 
peaks of NH4

? and NO2
- concentrations, the CO2 flux and 

the final NO3
- concentration are all underestimated. It is 

also  worth  to  note  that  the  calibration  results  are  very 
sensitive to the two different weighting sets. The first 
weighting scheme emphasizing solute concentration vari- 
ables produced better performance on capturing soil solute 
dynamics, while gaseous fluxes were better predicted by the 
second weighting scheme that stressed on soil gaseous flux 
variables (Fig. 5). 

 
3.2 Assessment of predictive uncertainty 

 
The generated set of six ensemble members was used in the 
Bayesian Model Averaging approach. The goal was to see if 
the application of multi-model combination approaches 
such as BMA can help to improve the prediction of solute 
concentrations and gas emissions by accounting for the 
model uncertainty. The disparity in the ensemble set for 
each output variable and their inaccuracy in comparison to 
observed data (Fig. 3) demonstrates the incompetence of the 
individual models in capturing the entire chemical and 
biological processes in the field. By considering various 
model structural formats we expected that some of these 
structural deficiencies can be captured. However, we 
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Fig. 3  The calibration results for the simple, middle, and complex model with two different weighting sets 
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should note that the skill of BMA is still dependant on the 
skill of individual member models (ensembles) that par- 
ticipate in multi-model combination. BMA’s 95% uncer- 
tainty bounds for all the solute concentrations and gas 
emissions capture most of the observation point (Fig. 4). 

Figure 5 depicts DRMS and DABS of the ensemble 
models as well as BMA predictive mean. In this figure we 
also have included the result of simple model averaging 
which simply combines the ensemble members, assigning 
equal weights to all of them. BMA clearly outperforms the 
simple model averaging approach in most cases which 
emphasizes the importance of more sophisticated ways of 
combination and weight estimations. 

We applied BMA to the six models that where associ- 
ated with every output (seven of outputs) of the THOUGH 
REACT-N. The estimated weights are presented in Fig. 6. 
Not every model is included in the combination, since BMA 
assigns negligible weights to the models that do not 
contribute significantly to the combination results. Figure 5 
depicts that intermediate and complex models are the most 
selected models among all contributing models (both nine 
times) while the simple models are the least selected ones 
(only five times). The percent coverage of 95% uncertainty 
bounds for all outputs is also presented here (Fig. 7). 

4 Discussion 

 

In this study we investigated the use of Bayesian Model 
Averaging method to improve the prediction of soil N 

cycling with respect to soil N solute concentrations and N 
gas emissions. We generated three different modeling 

schemes with different levels of complexity (Fig. 1) based 
on THOUGHREACT-N model. These models were 

calibrated using PEST automatic calibration algorithm 
based on two different sets of weights for objective 

function. This created six different deterministic model 
outputs which comprised the ensemble. The ensembles 

showed a diverse behavior of the system which shows the 
sensitivity of the system to the different mathematical 

representations and parameter sets. The model 
performances appear to be sensitive to model complexity 

levels (Figs. 4, 5), which is consistent with the finding that 
model complexity is one of most important causes of model 

prediction variability (Homann et al. 2000). To assess 
model predictive uncertainty, we used a BMA combination 
scheme to weigh individual deterministic model predictions 
based on the likelihood of the prediction being correct given 

the observations. The BMA weights are the estimated 
posterior model probabilities, representing each models 

relative skill (Fig. 6). Models with negligible 
 

Fig. 4  BMA predictive mean 
(stared-line) and the associated 
model predictive uncertainty 
bounds associated with them 
(gray area). The ensemble 
models are presented in solid 
lines and observed values are 
presented as a dotted-line 

 
 

8 
 

6 
 

4 
 

0.1 

 

 
0 5 10 15 20 

0.4 
 
 

0.2 
 
 

0 
 

0.2 

 

 
0 5 10 15 20 

 
0.05 0.1 

 
0 

0 5 10 15 20 
 

20 

0 
0 5 10 15 20 

 
10 

 
10 5 

 
0 

 
 

1000 

 
0 5 10 15 20 

0 
0 5 10 15 20 

Time [d] 

 
500 

 
0 

0 5 10 15 20 
Time [d] 

 
 
 

   

FC
O

   
[m

gm
-2

h-1
] 

- [m
ol

L-1
] 

N
O

2 
-2

  -
1 

P
H

 
2 

FN
O

 [m
gm

   
h 

  ]
 

N
O

- [m
ol

L-1
] 

+ [m
ol

L-1
] 

N
H

4 
3 

2 



 

 

1.5 
 
 

1 
 
 

0.5 
 
 

0 
PH 

 

1.5 
 
 

1 
 
 

0.5 
 
 

0 
PH 

 
 
 

0.1 
 
 

0.05 
 
 

0 
 
 

0.15 
 
 

0.1 
 
 

0.05 
 
 

0 

 
 
 
 
 
 
 
 
 
 
 

NH4+ NO2- NO3- 
 
 
 
 
 
 
 
 
 
 
 

NH4+ NO2- NO3- 

 
5 

 
4 

 
3 

 
2 

 
1 

 
0 

NO N2O 
 

4 
 

3 
 

2 
 

1 
 

0 
NO N2O 

 
300 

 
 

200 
 
 

100 
 
 

0 
 

250 
 

200 
 

150 
 

100 
 

50 
 

0 

 

 
CO2 

 

 
CO2 
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Fig. 6  Estimated BMA weights for each ensemble models for different model outputs 
 

weights do not contribute in the combination. BMA pro- 
vides a deterministic prediction through combination of 
ensemble member using the estimated weights (Eq. 3) and 
the associated uncertainty with it (Eq. 4). 

We applied BMA scheme on seven of the THOUGH- 
REACT-N output variables individually. The deterministic 
model ensembles (solid lines) along with the BMA pre- 
dictive mean (stared line) and uncertainty bound (gray 
area) for each output were presented in Fig. 4 with the 
observed values (dotted line). One can see that skill of 
BMA is limited to the range of the ensemble members. 

When none of the models capture an event, the combina- 
tion of them is not going to predict that specific event either 
(Fig. 4). The uncertainty bounds tend to capture most of the 
observations in this study while they are visually not too 
wide (Fig. 4). One of the main drawbacks in this study has 
been the length of the observed data. With only nine data 
points available, it is very hard to train the BMA model 
perfectly putting aside evaluating it. This period does not 
capture many different events within the field. Even with 
this limitation we can see the BMA has done a very good 
job in capturing many observation points (Fig. 7) 
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while they stayed narrow enough and also they follow the 
trend of the observations (Fig. 4). In an ideal case with 
long enough data set, one would expect that the 95% 
uncertainty bounds would capture 95% of the observation 
points. Higher or lower percent coverage is an indication of 
too wide or too narrow uncertainty bounds. However, in this 
study because of the small number of data points every point 

 
 

Number of Observations Fall within the 95% Confidence Intervals 

that falls outside of the uncertainty bounds has a significant 
impact on the percent coverage. The 95% uncertainty 
bounds seem to be capturing 90% to 100% of the 
observation points with the exception of N2O (Fig. 7). The 
uncertainty bounds on N2O are too narrow compared to the 
uncertainty bounds on the other output variables, just 
capturing 80% of the observations (Fig. 7). This indicates 
that the models included in the BMA modeling approach to 
predict  N2O  are  not  accurately  representing  the  model 
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from  one  set  of  observations  to  another.  The  estimated 
weights are shown in Fig. 6. The results show that different 
models have different strength so that it is impossible to 
select a single best model that matches all observations 
well. Generally, intermediate and complex models have 
been selected more often over simple ones. These results 
suggest that there is no single best complexity level. 

Figure 8 shows the contribution of between model var- 
iance (light gray area) or in another word under-disper- 
sivity of the ensembles to the estimation of total model 
predictive uncertainty (dark gray area). This is evident just 
by  considering  different  model  structures  and  analyzing 

Fig. 7  Percent observations within the BMA 95% prediction uncer- 
tainty bounds 

their spread, one can underestimate the predictive uncer- 
tainty. One of the strengths of BMA is inclusion of the 

 
 

Fig. 8  Total model predictive 
uncertainty versus uncertainty 8 
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effect of both ensemble spread and under-dispersion in 
calculating the predictive uncertainty. The between-model 
variance in some degree represents the limitation of our 
ensemble pool, and importance of inclusion of other 
modeling schemes or improvement of existing models. The 
information about the susceptibility to model structure 
uncertainty of different state variables (model outputs) 
provides useful information for possible improvement of 
the  model  structure  or  to  guide  further  data  collection 
campaigns to optimally reduce model structure uncertainty. 
This is more evident in estimation of pH, NO2

- and NO3
-, 

where we can see many observation point fall outside of 
selected ensemble spread by BMA. This means that the 
existing model structures in hand are incapable of captur- 
ing the exact physical and biological processes that relates 
to these state variables (model outputs). 

Close look at the statistical summary of the model 
performances (Fig. 5) reveals that BMA outperforms the 
simple model averaging approach in almost all the cases 

- 

accounting for parameter uncertainty using probabilistic 
parameter estimation approaches (Kuczera and Parent 1998; 
Vrugt et al. 2003) can help to reduce this effect. In general to 
gain the best and most accurate predictive mean and 
uncertainty estimation, it is important to assess all sources of 
uncertainty simultaneously (Ajami et al. 2007). 

The current study has brought out the benefits of com- 
bining biogeochemical models with different complexity 
levels to produce a more robust result that better captures 
uncertainties and also lead to insight about the system 
behavior. There may be several model outputs that may 
contain information of direct bearing to different levels of 
complexity. In the current soil N model, for example, the 
simple model complexity did better for solute concentra- 
tions whereas the complex model did better for gaseous 
emissions. This might suggest a compromised model 
structure between disaggregated microbial functional 
groups (i.e., AOB, DEN, and NOB) and lumped microbial 
kinetics. Thus, the standard concepts of ‘‘Reducing model 

(except  the  RMSE  of  NO2
-   and  NO3 )  which  assigns complexity’’ (Lawrie and Hearne 2007) and ‘‘choosing the 

uniform weights to all the models. RMSE best examines the 
performance of the model in capturing extreme events while 
ABSE gives the overall performance of the models. In case 

right complexity’’ (Homann et al. 2000) do not reconcile 
the inherent model deficiency and neglect uncertainty in the 
choice  of  models.  This  uncertainty  may  be  important 

of NO - and  NO3
-
 simulations,  looking  at  the  RMSE especially if there are several models that differ in pre- 

values (Fig. 5), it seems that simple model aver-aging has 
done a better job in capturing the extreme events compared 
to BMA. Meanwhile studying ABSE values (Fig. 5), BMA 
outperform simple model averaging in overall. The trend of 
estimated model weights is not nec-essarily consistent with 
the trend of two statistical measures (RMSE and ABSE) we 
presented here. This is because in estimating the model 
weights, here we used maximum likelihood as our objective 
function which does not neces-sarily results in the same 
pattern as RMSE and ABSE. Analyzing Fig. 5, we can see 
that application of BMA improves prediction of gas 
emissions especially CO2 and N2O, more significantly 
compared to the predictions of solute concentrations. Again 
we should emphasize here that the strength of BMA is not 
just improving the predictive mean but also more 
importantly, BMA directly accounts for model predictive 
uncertainty, which is often neglected in traditional 
uncertainty analyses, and, therefore, it yields more accurate 
estimations of the predictive uncertainty compared to 
estimations based on a single model. 

One limitation of the current study is its reliance on the 
deterministic calibration of parameters defined for each 
alternative conceptual model. In the case of multi-model 
combination approaches that include a deterministic cali- 
bration step, errors in the model structures will be com- 
pensated by biased parameter estimates in order to optimize 
model fit during the calibration (Beven 2006). Sensitivity of 
our model outputs to the estimated parameter sets using 
PEST (Fig. 3) is the evidence of such limitation. Therefore, 

dictions but have similar fitting criterion scores (Gibbons et 
al. 2008). The alternative approach proposed by this study is 
multi-model ensemble by BMA, which indeed enhances 
prediction capacity, so as to outperform the best 
participating single model. In a real model prediction 
practice, it may be difficult or impossible to know which 
model is the best, since model performance varies with 
predictand. The best model is usually not the same for all 
variables. In such a setting, model averaging can provide a 
pragmatic method for issuing an optimum prediction. 
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