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ABSTRACT

Methane emission feedbacks in wetlands are predicted to influence global climate under climate change and other
anthropogenic stressors. Herein, we review the taxonomy and physiological ecology of the microorganisms responsible for
methane production in peatlands. Common in peat soils are five of the eight described orders of methanogens spanning
three phyla (Euryarchaeota, Halobacterota and Thermoplasmatota). The phylogenetic affiliation of sequences found in peat
suggest that members of the thus-far-uncultivated group Candidatus Bathyarchaeota (representing a fourth phylum) may be
involved in methane cycling, either anaerobic oxidation of methane and/or methanogenesis, as at least a few organisms
within this group contain the essential gene, mcrA, according to metagenomic data. Methanogens in peatlands are
notoriously challenging to enrich and isolate; thus, much remains unknown about their physiology and how methanogen
communities will respond to environmental changes. Consistent patterns of changes in methanogen communities have
been reported across studies in permafrost peatland thaw where the resulting degraded feature is thermokarst. However
much remains to be understood regarding methanogen community feedbacks to altered hydrology and warming in other
contexts, enhanced atmospheric pollution (N, S and metals) loading and direct anthropogenic disturbances to peatlands
like drainage, horticultural peat extraction, forestry and agriculture, as well as post-disturbance reclamation.
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INTRODUCTION low pH, saturated conditions, low redox potentials, recalcitrant
and inhibitory organic compounds in soil and thus extremely
low rates of microbial decomposition relative to organic mat-
ter inputs from primary production (Moore and Basiliko 2006).
Despite overall net uptake of atmospheric C, these saturated,
anoxic, organic-rich conditions are also conducive to methane
(CH4) production, the terminal step in anaerobic decomposition
(Conrad 2009; Zinder 1993). Methane is a much more potent

Peatlands (a.k.a. bogs and fens, mires and muskeg) are climate
change feedback hotspots in the terrestrial biosphere. These
wetland ecosystems cover less than 3% of global land area yet
hold an estimated 40% of all terrestrial organic carbon (C) as
soil organic matter called peat (Gorham 1991; Lehner and Doll
2004; Yu et al. 2010; Scharlemann et al. 2014). Peatlands are able
to store tremendous amounts of carbon owing to their often
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greenhouse gas than carbon dioxide (CO;), and methane emis-
sions feedbacks to climate and other environmental changes
in peatlands are challenging to predict. Although methanogens
represent prototypical members of the domain Archaea (Woese,
Kandler and Wheelis 1990), methanogens in peatlands are
notoriously challenging to enrich for and isolate; thus, much
remains unknown about their physiology and how methanogen
communities will respond to environmental changes. Here we
review and synthesize the taxonomy and physiological ecology
of methanogens in peatlands, including highlighting relatively
recent discoveries of putative methanogens in the phylum Cre-
narchaeota. We briefly cover what is known about methanogen
community responses to critical contemporary environmen-
tal changes (e.g. permafrost thaw) and end by recommend-
ing strategies that may contribute to improving our under-
standing of the known-unknown (i.e. detected, but not isolated)
methanogens in peatlands.

Methanogen taxonomy and physiological ecology

Anaerobic methanogenesis is carried out exclusively by mem-
bers of the archaeal domain. Thus far, methanogens include
eight orders, each of which contains at least one cultured
representative: the Methanococcales (marine and not found
in peat), Methanopyrales (hyperthermophiles not found in
peat), Methanobacteriales, Methanomicrobiales, Methanocel-
lales, Methanonatronarchaeales (haloalkaliphiles not found in
peat), Methanosarcinales and the Methanomassiliicoccales (Lyu
et al. 2018); note that the GTPD terminology is used through-
out. Additionally, metagenomic data have facilitated identifica-
tion of several other groups of putative methanogens includ-
ing one in the Euryarchaeota, Candidatus Methanofastidios-
ales, also known as WSA2 (Nobu et al. 2016); one in the
Halobacterota, Candidatus Methanoflorentaceae, also known as
RC-II (Mondav et al. 2014), as well as two in the Crenar-
chaeota: Candidatus Methanomethylicia, also known as Ver-
straetearchaeota (Vanwonterghem et al. 2016), and candidate
phylum Bathyarchaeota also known as MCG (Zhou et al. 2018a;
Evans et al. 2015; Baker et al. 2020). A total of five of these
orders and two of the candidate taxa are common in peat:
Methanomicrobiales, Methanocellales and Methanosarcinales
in the phylum Halobacterota; Methanobacteriales in the phylum
Euryarchaeota; Methanomassiliicoccales (RC-III) in the phylum
Thermoplasmatota, as well as candidate family Methanoflo-
rentaceae (in the Methanomicrobiales) and candidate phylum
Bathyarchaeota (Table 1 and Figs 1-3). Isolates for a number of
the orders are relatively recent; with the first Methanocellales
isolate (formerly recognized as RCI) described in 2008 (Sakai
et al. 2008) and Methanomassiliicoccales in 2012 (Dridi et al.
2012). Similarly, the first assembled metagenome of a member of
the candidate family Methanoflorentaceae was reported in 2014
(Mondav et al. 2014) and putative methanogenic metabolism in
the candidate phylum Bathyarchaeota first described in 2015
(Evans et al. 2015). Although the Methanocellales (RCI group)
had been recognized via community fingerprinting as key puta-
tive peatland methanogens prior to the first isolation, the other
recently-described groups generally were not. It is also impor-
tant to note that the type strain isolate(s) for each order were
not always enriched from peat soils, for example, the prototypi-
cal Methanomassiliicoccus sp. isolate was from human feces (Dridi
et al. 2012).

Despite the expansive phylogenetic diversity of
methanogens spanning three phyla (Euryarchaeota, Halobac-
terota and Thermoplasmatota) and potentially a fourth phylum

(Crenarchaeota), their metabolic pathways are extremely lim-
ited and include only: (1) CO,-reducing methanogens, using
H, (hydrogenotrophs), formate or even ethanol or isopropanol
as electron donors; (2) aceticlastic methanogenesis (acetate
splitting) and (3) methylotrophic methanogenesis, in which
methyl compounds like methanol or methylamines serve as
methane precursors that are either fermented to CH4 or CO,, or
are directly reduced to CH4 by H,. Most methanogens, including
most of those in the orders Methanomicrobiales, Methanocel-
lales, Methanobacteriales, Methanococcales, Methanopyrales
and Methanosarcinales can carry out hydrogenotrophic
methanogenesis and are able to reduce CO, using H, and/or
formate as an electron donor (Zinder 1993; Liu and Whit-
man 2008). Aceticlastic methanogenesis is carried out by two
genera in the order Methanosarcinales Methanosarcina and
Methanosaeta/Methanothrix (there is controversy about the name
of this genus). Acetate utilization in the genus Methanosarcina
has likely recently (475-250 Ma) evolved due to horizontal
gene transfer of ackA and pta from an organism within the
class Clostridia (Fournier and Gogarten 2008; Rothman et al.
2014). Methanosarcinales can also carry out methylotrophic
methanogenesis and are the most metabolically versatile
order of methanogens. Similar to at least one member of the
Methanobacteriales, Methanosphaera stadtmanae, a gastroin-
testinal isolate that can only grow using methanol and H,
(Fricke et al. 2006), the cultured members of the remaining two
orders, Methanonatronarchaeales and Methanomassiliicoccales
appear to be obligate methylotrophs that reduce methanol or
trimethylamine, using either H, or formate as the electron
donor (Kréninger, Gottschling and Deppenmeier 2017; Sorokin
et al. 2018).

Acetate is the dominant CHs precursor in most freshwa-
ter anaerobic soils, although this is not always the case in
acidic peatlands and/or permafrost- affected peatlands. Aceti-
clastic methanogenesis often accounts for 2/3 or more of total
methanogenesis in some peatlands (Schulz and Conrad 1996;
Conrad, Klose and Claus 2002; Metje and Frenzel 2007). Corre-
spondingly, aceticlastic methanogens can predominate among
methanogenic populations in peat (Kotsyurbenko et al. 2004;
Zhang et al. 2008b). However, in acidic peatlands where the
decomposition of organic matter is incomplete and/or turnover
rates are much lower compared to other freshwater systems
(Conrad 2020), hydrogenotrophic methanogenesis can play a
much more important role (Lansdown, Quay and King 1992;
Popp et al. 1999; Chasar et al. 2000; Metje and Frenzel 2005). This
trend has been observed in collapsing peat underlain by thaw-
ing permafrost described below (McCalley et al. 2014). Methy-
lotrophic methanogenesis is generally considered to represent
only a small proportion of total methanogenesis in most fresh-
water systems, including peatlands (Conrad 2020).

Although methanogenic activity is readily detected in acidic
peat soils that have pH values as low as 3.5 (Goodwin and
Zeikus 1987; Bergman, Svensson and Nilsson 1998; Hgj, Olsen
and Torsvik 2008; van Winden et al. 2012), very few novel gen-
era or species of methanogenic archaea have been isolated
from peat. These include two novel genera, Methanoregula boonei
(Brauer et al. 2006, 2011) and Methanospherula palustris (Cadillo-
Quiroz et al. 2008; Cadillo-Quiroz, Yavitt and Zinder 2009), within
what has been called the R10 cluster (Hales et al. 1996) or
fen cluster (Juottonen, Galand and Yrjala 2006) of the Metha-
nomicrobiales, several species of Methanobacterium (Konig 1984;
Krivushin et al. 2010; Shcherbakova et al. 2011; Cadillo-Quiroz
et al. 2014) and one species each of Methanolobus (Zhang et al.
2008a) and Methanoculleus (Tian, Wang and Dong 2010). Note that



Table 1. Archaeal orders containing methanogens or potential methanogens found in peat.

Order Phylum Representative genera Metabolism?
Methanosarcinales Halobacterota Methanosarcina, H, M,RM, A
Methanosaeta/thrix
Methancellales (Rice cluster I) Halobacterota Methanocella H
Methanomicrobiales Halobacterota Methanoregula H
Methanosphaerula
‘Methanoflorens’ (RCII)
Methanomassilii-coccales (Rice cluster III) Thermoplasmatota Methanomassiliicoccus RM
Methanobacteriales Euryarchaeota Methanobacterium H (RM in Methanosphaera)
‘Bathyarchaeales’ (Miscellaneous Bathyarchaeota ‘Bathyarchaeota’ clones M?, AMO?

Crenarchaeotal Group; Rice cluster IV)

@Metabolisms: H, hydrogenotrophic; M, methylotrophic (disproportionating); RM, reductive methylotrophic; AMO, anaerobic methane oxidation.
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Figure 1. Neighbor-joining tree inferring the phylogenetic relationship between the SSU rRNA sequences retrieved from known cultured methanogens and the related
sequences from peat. Bootstrap values > 65 shown for nodes that were also supported by maximum likelihood. Supported nodes are marked with filled circles. Scale

bar indicates fractional differences in nucleotide sequences.

no novel species of aceticlastic methanogens have been isolated
from acidic peat. In past studies, researchers have made addi-
tions of acetate to peat microcosms that were either inhibitory
or non-stimulatory (Williams and Crawford 1984; Goodwin and
Zeikus 1987; Bridgham and Richardson 1992; Watson and Ned-
well 1998; Blodau, Roehm and Moore 2002). Because of the tox-
icity of even low concentrations (3-5 mM) of acetate at low pH,

some strategies for enriching aceticlastic methanogens in low
pH environments have included co-culturing with syntrophic
partners (Schmidt et al. 2016) or successive additions of low con-
centrations (< 1 mM) of acetate (Brduer, Yavitt and Zinder 2004).
However, eventual isolation of these strains have thus far proven
unsuccessful (Horn et al. 2003; Sizova et al. 2003; Brauer, Yavitt
and Zinder 2004).
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Figure 2. Phylogenetic relationship between short metagenomic methyl-coenzyme M reductase alpha subunit (mcrA) sequences found in bogs and known methanogen
and Bathyarchaeotal mcrA sequences inferred using the iTOL-tree (Letunic and Bork 2019) with RaxML (Stamatakis 2014). Metagenomic mcrA genes were obtained
by searching with an mcrA gene hmmer-profile (Wheeler and Eddy 2013) against an NCBI-SRA database of all bog ecosystems. The databases of peatland related
ecosystems were collected with the SRAdD (Zhu et al. 2013) package in R (R Core Team 2019). In total, 203 bog SRA files were screened for mcrA genes.

Methanogens living in ombrotrophic bogs must adapt to
high concentrations of protons (low pH) and to extremely
low concentrations of ions like sodium and potassium; thus,
methanogen diversity is generally reduced in bogs and increases
with increasing pH and nutrient contents along a bog to poor fen,
to intermediate and rich fen gradient. Brauer et al. (2015) exam-
ined the genome sequence of M. boonei, and described some
aspects of its genome that were congruent with adaptation to
these conditions. The deduced amino acid sequence of the ion-
pumping AtpCK subunit of the A;A, ATPase/synthase in M.
boonei belonged to an AtpCK group able to pump either protons
or Na+, whereas the other AtpCK group can only pump Na+. The
membrane-bound Mtr methyltransferase complex plays a key
role in methanogen energy conservation, and the MtrE subunit
has been found to pump Na* in methanogens. The MtrE in M.
boonei lacks the amino acid motif considered essential to pump-
ing Na*, and may be a proton pump. Finally, most methanoar-
chaea only have genes encoding the low- and medium-affinity
K* transporters, Trk and Kup, respectively. M. boonei is one of
the few methanoarchaea possessing genes encoding the high-
affinity ATP-driven Kdp transporter. Other methanoarchaea
with predicted Kdp transporter genes include Methanobacterium
strains SWAN-1 and AL-21, both isolated from acidic bogs, and

Methanosphaerula palustris isolated from a fen where the porewa-
ter K+ concentration was only 3-8 uM. Interestingly, these genes
are all related to a family from Geobacter, suggesting horizon-
tal gene transfer that allowed these methanoarchaea to adapt
to hypokalemic environments. Other genome studies of Metha-
nomicobiales (Browne et al. 2017) have similarly revealed that
unique transporters for additional scarce nutrients (besides K+)
such as Co, Ni, Mg, Fe, Nos~, HCO3~ and sulfonate were present
in the peat-dwelling strains M. palustris and M. boonei but not
strains from other habitats such as sewage sludge, marine sed-
iments, oilfields, saline swamp mud or a tar pit. Comparison
genomes included those for Methanoregula formicica, Methanolinea
tarda, Mehtanoculleus marisnigri, Methanolacinia petrlearia, Methap-
lanus limicola, Methanospirillum hungatei and Methanocorpusculum
labreanum.

One, thus-far-uncultivated, elusive phylum is the Bath-
yarchaeota. Sequences clustering in this phylum have been
detected in a wide variety of peatlands throughout the globe
including those in Finland (Galand et al. 2002; Putkinen et al.
2009), Norway (Hgj, Olsen and Torsvik 2008), China (Tian et al.
2012; Gu et al. 2013; Cao et al. 2014; Wei et al. 2014; Xiang et al.
2017), Slovenia (StopniSek et al. 2010), Japan (Akiyama et al. 2011;
Narihiro et al. 2011), Germany (Hunger et al. 2011; Steger et al.
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Figure 3. Phylogenetic relationship between short metagenomic methyl-coenzyme M reductase alpha subunit (mcrA) sequences found in fens and known methanogen
and Barhyarchaeotal mcrA sequences inferred using the iTOL-tree (Letunic and Bork 2019) with RaxML (Stamatakis 2014). Metagenomic mcrA genes were obtained
by searching with an mcrA gene hmmer-profile (Wheeler and Eddy 2013) against an NCBI-SRA database of all fen ecosystems. The databases of peatland related
ecosystems were collected with the SRAdb (Zhu et al. 2013) package in R (R Core Team 2019). In total, 272 fen SRA files were screened for mcrA genes.

2011), Denmark (Gorres, Conrad and Petersen 2013), Brazil (Etto
et al. 2012), as well as several US peatlands including those in
Alaska (Rooney-Varga et al. 2007), Minnesota (Lin et al. 2012),
North Carolina, (Hawkins, Johnson and Brauer 2014), New York
(Cadillo-Quiroz et al. 2006, 2008, 2010) and West Virginia (Yavitt
et al. 2012). Members of this class have been previously known
as RC-IV (Grof3kopf, Stubner and Liesack 1998), group 1.3 cre-
narchaeota (Hgj, Olsen and Torsvik 2008), the deep peat group
(Putkinen et al. 2009) or more commonly, the MCG or miscella-
neous crenarchaeotal group (Kubo et al. 2012). Sequences from
this group can represent a large portion (> 50%) of the archaeal
population in some peatlands, for example in China (Xiang et al.
2017), Brazil (Etto et al. 2012) the southeastern continental US
(Hawkins, Johnson and Brauer 2014) and Alaska (Rooney-Varga
et al. 2007). Yet in other studies, the bathyarchaeotal sequences
are considerably rarer. This large variation in the proportions
and abundance of Bathyarchaota detected may depend on envi-
ronmental conditions (Xiang et al. 2017; Yu et al. 2017; Zhou et
al. 2018a, b; Pan et al. 2019), primers used (Cadillo-Quiroz et al.
2010), or other unknown factors (Biddle et al. 2006).

In addition to being implicated in methylotrophic methano-
genesis (Evans et al. 2015), members of the Bathyarchaeota have
been proposed to carry out the anaerobic oxidation of methane
(Harris et al. 2018), acetogenesis (He et al. 2016), photosynthesis

(Meng et al. 2009), or to utilize carbohydrates, aromatics, pro-
teins, acetate or other organics (Biddle et al. 2006; Lloyd et al.
2013; Meng et al. 2014; Na et al. 2015; Lazar et al. 2016). How-
ever, in the absence of isolated representatives, it is difficult
to infer the physiology of Bathyarchaeota in enrichment cul-
tures, or by genomic data alone. For example, in an earlier
case, before a representative of the Methanomassiliicoccales
(RCIII group) was isolated, it was proposed that members were
broader-spectrum soil heterotrophs rather than methanogenic
based on the substrates that favored enrichment (Kemnitz, Kolb
and Conrad 2005). In hindsight, responses to organic substrate
amendments were likely due to indirect effects including stimu-
lation of syntrophic bacteria. Additionally, members of the Bath-
yarchaeota are not only phylogenetically diverse, but also show
a high level of genomic diversity based on metagenomics analy-
ses; thus, there may be high metabolic diversity among species
(Meng et al. 2014) or among subgroups (Xiang et al. 2017; Zhou
et al. 2018b). About half of the rRNA gene sequences collected in
this review (using the NCBI Nucleotide Blast tool) appear to share
the highest identity (95-97% ID) with both fosmid clone 37F10
(shown in Figure S1, Supporting Information) and metagenome
BE326-BA-RLH, an organism predicted to be involved in anaero-
bic methane oxidation (Harris et al. 2018). These sequences (in
the top 2 clusters in Figure S1, Supporting Information) share



91-94% ID with sequences affiliated with MCG cluster 6 in the
literature (Kubo et al. 2012). The other half (shown in the bottom
half of the tree in Figure S1 (Supporting Information), approxi-
mately 4 clusters) appear to be most closely (85-90% ID) affiliated
with sequences in MCG cluster 8, including Candidatus Bath-
yarchaeota archaeon BA2, an organism predicted to carry out
methylotrophic methane production (Evans et al. 2015; Berghuis
et al. 2019; Evans et al. 2019). Thus, there is a potential for these
Bathyarchaeota may be involved with methane cycling in global
peatland ecosystems.

To assess the relative abundance of various methanogenic
groups in bogs and fens using a method independent of PCR
bias, an extensive search was carried out using a hmmer-
profile (Wheeler and Eddy 2013) of the methyl-coenzyme M
reductase alpha subunit (mcrA) gene to query the NCBI-SRA
database of all peatland ecosystems, either categorized as fens
or bogs. Short metagenomic mcrA sequences were aligned to
the mcrA reference database with the mafft-aligner-algorithm
(Katoh et al. 2019). These fragments where carefully selected,
evaluated as mcrA with nblast (nt-database) searches and after
the global alignment (as nucleic acid and amino acid sequences)
with mafft these fragments were closely related to the ref-
erence mcrA sequences after analysis with the evolutionary
model finder, iQ-tree and UF-boot (Trifinopoulos et al. 2016,
Kalyaanamoorthy et al. 2017, Nguyen et al. 2015, Hoang et al.
2018). Finally, the sequences were phylogenetically placed in
the iTOL-tree (Letunic and Bork 2019) with RaxML (Stamatakis
2014). Results indicate that bogs had a few clusters of Metha-
nomicrobiales, Methanocellales and Methanomassilicoccales,
as well as a limited number of Methanobacteriales related
mcrA gene sequences (Fig. 2). Fen datasets revealed a dra-
matic increase in diversity across those four main orders, and
notably a significant increase in Methanobacteriales-type mcrA
gene sequences (Fig. 3). Additionally, a small number of mcrA
sequences related to Methanothermococcus and Methanocal-
dococcus were found. Finally, results of the RaxML analyses
showed Bathyarchaeaota distantly related mcrA sequences.
These distantly related sequences were also analyzed after
mafft-alignment with iQ-tree, which also tests the best evolu-
tionary model for the data. Results indicate that these groups
may be performing methanogenesis, anaerobic methane oxi-
dation or another function especially in fens (Figure S2A, Sup-
porting Information). If additional Bathyarchaeotal mcrA gene
sequences are present, they may be too divergent (compared
to the two sequences currently known) to be detected; thus,
targeted/capture metagenomics should be used to detect Bath-
yarchaota in future studies (Kushwaha et al. 2015; Manoharan
et al. 2015).

Methanogen community responses to environmental
change

Methane feedbacks to environmental changes in wetlands rep-
resent an important knowledge gap in the role those wet-
lands will play in the future global climate system, particu-
larly through 2100 (Dean et al. 2018). Because methanogenesis
is a strictly anaerobic process with most known methanogens
lacking metabolic strategies for protection from reactive oxy-
gen species, CH, emissions from peatlands are governed by soil
moisture as an overarching control (Blodau 2002). Anaerobic oxi-
dation of some CH; produced is common in peatlands (Gupta
et al. 2013, and see Smemo and Yavitt 2011 for perspectives on
AOM in peatlands), yet rates are generally slow, and therefore the

position of CH, production in peat soil profiles (i.e. in fresher sur-
face organic substrate v recalcitrant deeper substrates) and oxi-
dation by aerobic CH4-oxidizng bacteria above the water table
control net emissions (Blodau 2002). Indeed, average summer
water-table position is a strong universal predictor of relative
rates of emissions within sites, however emissions can vary
by more than two orders of between even botanically-similar
sites at the same water-table position (e.g. see Fig. 1B in Moore
et al. 2011). Vegetation controls on CH, emissions are multi-
faceted, with both stimulation and suppression of methano-
genesis beneath the water table from substrate or O, supply
respectively, and stimulation and suppression of aerobic oxi-
dation through the supply of O, or by aerenchyma serving as
chimney allowing CH, to evade CH,-oxidizing bacteria above the
water table, respectively (Lai 2009).

Responses of peatland methanogen communities to envi-
ronmental changes are influenced by site characteristics. Peat-
land classification systems vary to some extent, but in gen-
eral, bogs are regarded as being primarily rain-fed, while fens
are hydrologically connected to groundwater (e.g. National Wet-
lands Working Group 1997). Although in part dependent on
the local climate, fens are typically wetter with more stable
water-table positions, have higher soil and pore water pH due
to higher base cation concentrations transported in from sur-
rounding mineral soils, and are more likely to be dominated by
graminoid (e.g. sedge) vegetation. Bogs are acidic with pH values
often ca. 4.0 due to atmospheric inputs of inorganic acids, inter-
nal acidity generation from vegetation and low buffering capac-
ity from groundwater-supplied base cations, and are often dom-
inated by Sphagnum (a genus) mosses, with evergreen and decid-
uous woody shrubs and stunted spruce (Picea sp.) and tama-
rack/larch (Larix sp.) trees. The chemistry and plant communi-
ties across fens can vary, with for example low pH and bog-like
vegetation in sites situated in catchments with shallow, coarse-
textured soils low in calcium and other base cation elements
(i.e. where the groundwater is more like rainwater chemically),
to well-buffered pH circumneutral systems with very high cal-
cium concentrations (e.g. see Godin et al. 2012 for descriptions
of poor fens that resemble bogs to calcareous rich fens). As peat
soil profiles grow over time (i.e. because primary productivity by
plants exceeds mineralization losses by microbes), conditions
often become more bog like, with hydraulic conductivity slow-
ing over time as peat becomes more decomposed and amor-
phic. This soil profile growth also leads to peatland surfaces and
local water table becoming perched higher than the surrounding
groundwater and cutting off the supply of base cation elements
from nearby mineral soils (Table 2 footnote). Peatlands can dis-
play varying degrees of microtopography, often consisting of
raised hummocks, low hollows and flat ‘lawn’ areas that are
relatively drier and wetter and have vegetation that is adapted
to microsite physicochemical characteristics; and typically bogs
display more pronounced undulating hummock-hollow topog-
raphy (varying every few m) than fens. Permafrost-affected peat-
lands are often characterized by having raised palsas (e.g. as in
Yavitt et al. 2006) or larger more continuous peat plateaus that
are elevated and isolated from surrounding mineral-influenced
groundwater by the permafrost (i.e. perennially frozen soil water
within the surface 1m).

Key anthropogenic disturbances facing peatlands include
direct and indirect effects of climate change such as higher
temperatures (and associated permafrost thaw in permafrost-
affected sties), altered precipitation and hydrologic dynamics, as
well as altered disturbance regimes such as fire, invasive species,
atmospheric pollution (notably enhanced reactive N, S and
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metalloading), and direct drainage exploitation for mining, silvi-
culture and agriculture (e.g. IUCN 2017; Grzybowski and Glinska-
Lewczuk 2020). A growing body of literature has explored how
these anthropogenic changes affect methane cycling rates, but
there are still numerous gaps in understanding how changes
influence methanogen communities. Many anthropogenic dis-
turbances lead to shifts in broader ecosystem properties like
plant functional types (e.g. with loss of keystone sphagnum
mosses from bogs and acidic fens and the encroachment of
vascular plants, or sedge and aquatic Sphagnum proliferation in
thermokarst formation through permafrost degradation), and
this means that studies exploring methanogen communities
across natural gradients (e.g. fen to bog, different vegetation and
hydrological micro-features within sites, etc.) can be useful to
make predictions of the effects of anthropogenic disturbances.

A search of peer-reviewed literature on the Web of Science
Core Collection database (Clarivate Analytics, Boston, MA) at the
time of writing yielded 112 works associated with topic words
‘methanogen’ and ‘peatland or fen or bog or mire’. Of these,
ca. 16 focused explicitly on how methanogen community struc-
ture changed with anthropogenic-type disturbances described
above, while ca. 15 contrasted methanogen community struc-
ture across sites or microforms (e.g. see descriptions of micro-
topographic features above) without an explicit link to anthro-
pogenic disturbance; most of these studies are summarized in
Table 2. Many anthropogenic disturbances led to changes that
are somewhat analogous to changes seen in the prototypical fen
to bog succession, only in reverse (Table 2 footnote) with regards
to vegetation and hydrological changes. In two studies, one for
warming by (Dieleman et al. 2015) and one for atmospheric nitro-
gen pollution deposition by Larmola et al. (2013), results demon-
strated that Sphagnum-dominated poor fen and bog plant com-
munities shifted rather quickly towards those seen in richer,
sedge-dominated peatlands. Shifting plant communities com-
monly mediate microbial feedbacks to environmental changes.
Regarding specific impacts on methanogen communities, there
are general trends that fens with sedges and higher pH sup-
port aceticlastic along with CO, reduction pathways (Table 2A),
however underlying controlling factors are complex. For exam-
ple (Kotsyurbenko et al. 2007) showed that aceticlastic path-
ways are absent below pH 4 in bog soils at low temperatures,
but can be substantial at low pH when soil temperatures are
high. Also, Rooney-Varga et al. (2007) demonstrated a clear link
between sedges (and little to no Sphagnum) and the aceticlas-
tic pathway across extensive study sites (further corroborated
by isotope-based methanogenesis pathway analyses by Hines
et al. 2008), yet Basiliko et al. (2003) and Godin et al. (2012) illus-
trated that Methanosaetaceae taxa might be important even in
acidic bog and poor fen sites with 100% Sphagnum cover. Though
it should be noted that the latter two studies were carried out
with surface peat soils in relatively lower latitude locations in
sub-boreal Canada and the northern continental US, and Kot-
syurbenko et al. (2007) reported that aceticlastic methanogenesis
can occur in low-pH peat soils if the temperatures are high.

A number of climate change impact studies have examined
in situ warming and drought on methanogen communities
in bogs and fens in Europe and Asia (Table 2). Community
structure changes appear to be context specific, with cases of
shifts from one CO,-reducing group to another (e.g. Tian et al.
2015), increasing importance of aceticlastic methanogens (e.g.
Peltoniemi et al. 2016), or in one case when drought was coupled
with a major plant invasion, loss of all known methanogen taxa
(Narihiro et al. 2011). Reported impacts in studies of climate
change degrading permafrost peatland landforms have been

more consistent, at least when the degradation results in
thermokarst and sedge expansion after thaw (Table 2). For
example, where initial archaeal populations are often dom-
inated by hydrogenotrophic methanogens, as the degree of
thaw and rates of decomposition increased, the proportion of
aceticlastic methanogens increased (e.g. McCalley et al. 2014).
It is important to note that there are still relatively few studies,
and permafrost degradation can lead to outcomes other than
thermokarst formation (and associated shifts in vegetation,
methane communities and increased CH, emissions) outside of
lowlands. For example, the effects of slow active-layer deepen-
ing or rapid drainage as gullies form from loss of ice wedges on
methanogen communities could be quite different from what
has been observed for thermokarst formation following thaw.

A number of case studies have explored direct impacts
associated with horticultural peat extraction and reclamation,
drainage and forestry and post-agricultural reclamation of peat-
lands on methanogen communities (Table 2), but given the
extent and diversity of context-specific land uses, more work is
needed. There are also critical gaps in the literature regarding
atmospheric deposition impacts on methanogen communities.
Important studies have shown that chronic S loading can sup-
press methane emissions at large scales (e.g. Gauci et al. 2004),
while chronic N loading has been shown to enhance emissions
from a bog (Juutinen et al. 2018), but little is known about the
impacts and feedback roles of methanogen communities. Sim-
ilarly, despite the known role of certain trace metals in CHy
cycling metalloenzymes (Glass and Orphan 2012), that continen-
tal gradients of metals might limit methanogenesis in peatlands
(Basiliko and Yavitt 2001), and that metal pollution disrupts veg-
etation and bacterial and fungal communities in peatlands (Luke
et al. 2015), work is still needed on methanogen community-
metal loading interactions in terms of trace nutrients and poten-
tial toxicant effects.

We have attempted to summarize and synthesize what we
believe are most of the peer-reviewed studies on methanogen
community responses to environmental changes (Table 2). How-
ever, given the global extent (ca. 4 x 10° km?; Parish et al.
2008) and variability within and between peatlands, and the
types and variability of environmental change pressures, much
more work is needed before strong conclusions about feed-
backs can be drawn. These studies will ideally go hand in hand
with work enriching for, isolating and exploring the physiolog-
ical ecology of the vast numbers of ‘known unknown’ peatland
methanogens to provide a comprehensive picture of both how
and why methanogen communities respond to increasing envi-
ronmental change pressures.

CONCLUSIONS AND OUTLOOK

Recent progress has contributed substantially to our under-
standing of the taxonomy and physiological ecology of
methanogens in peatlands, yet substantial gaps remain.
Environmental omics approaches continue to be refined and
play a key role in identifying the ‘known-unknown’ methane
cycling archaeal taxa that are most important in peatland
feedbacks to anthropogenic change, but alone they still fail to
elucidate fundaments of metabolism and ecology. The isola-
tion of Methanoflorens stordalenmirensis in the context of palsa
degradation was an excellent example of a paired community
biomarker and isolation approach (Mondav et al. 2014), and
similar work should continue across permafrost peatland thaw,
and other environmental change contexts. For example, to
date no novel species of aceticlastic methanogens have been



isolated from acidic peat, the role of the mcrA-containing Bath-
yarchaeota within the phylum Crenarchaeota is not known,
and the potential role of archaea in the omnipresent process
of anaerobic CHs-oxidation in peatlands (Gupta et al. 2013) is
not clear. Future efforts should clearly focus on novel methods
of isolation to acquire a greater diversity of representative
organisms in pure culture that are guided by in situ studies of
methanogen community responses to environmental stressors.
In cases where isolation is elusive, long-term enrichment
cultures (e.g. with a dominant methanogen and syntrophic
bacterium) coupled with physiological measurements and
genomic sequencing can yield important information on the
physiological ecology and taxonomy of novel methanogens
(Carson et al. 2019). To guide enrichment and isolation so that
efforts are placed on the most interesting and important taxa,
meaningful climate change simulation, pollutant (N, S and
metals loading) and land-use change studies on methanogen
communities are still needed.
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