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Objective: This investigation examined the impact of human–machine competition 

(John Henry effects) on intent errors. John Henry effects, expressed as an unwilling- 

ness to use automation, were hypothesized to increase as a function of operators’ per- 

sonal investment in unaided performance. Background: Misuse and disuse often occur 

because operators (a) cannot determine if automation or a nonautomated alternative 

maximizes the likelihood of task success (appraisal errors) or (b) know the utilities of 

the options but disregard this information when deciding to use or not to use automation 

(intent errors). Although appraisal errors have been extensively studied, there is a paucity 

of information regarding the causes and prevention of intent errors. Methods: Operators 

were told how many errors they and an automated device made on a target detection task. 

Self-reliant operators (high personal investment) could depend on their performance or 

automation to identify a target. Other-reliant operators (low personal investment) could 

rely on another person or automation. Results: As predicted, self-reliance increased dis- 

use and decreased misuse. Conclusion: When the disuse and misuse data are viewed 

together, they strongly support the supposition that personal investment in unaided per- 

formance affects the likelihood of John Henry effects and intent errors. Application: 

These results demonstrate the need for a model of operator decision making that takes 

into account intent as well as appraisal errors. Potential applications include develop- 

ing interventions to counter the deleterious effects of human–machine competition and 

intent errors on automation usage decisions. 
 
 

INTRODUCTION 

 

In the home, the workplace, and on the battle- 

field, people often have the option of performing 

a task manually or relying on automation. These 

automation usage decisions (AUDs) are of great 

interest to system designers and operator train- 

ers because they influence the likelihood of task 

success. Inefficient AUDs often lower worker 

productivity and sometimes result in injury or 

death (e.g., Beck, Dzindolet & Pierce, 2002). 

Viewing automation usage from a decision- 

making perspective allows specification of 

two types of suboptimal choices.  Disuse  is 

the underutilization of technology, employing 

manual control or a low level of automation 

(LOA) when the task could be better performed 

with a higher LOA. Misuse is overreliance, or 

use of a high LOA when the task could be better 

accomplished manually or with a lower LOA 

(Parasuraman & Riley, 1997). 

Beck et al. (2002) proposed that disuse and 

misuse frequently result from appraisal and 

intent errors. Appraisal errors are evaluation 

failures; they occur when the perceived utilities 

(Dzindolet, Pierce, Beck, & Dawe, 2002) of the 

automated and nonautomated options fail to cor- 

respond with the actual utilities of the options. 

Unlike appraisal errors, intent errors are not 

caused by the inability of operators to assess the 

 



 

 

relative utilities of different LOAs. Operators 

committing intent errors know whether the 

automated or nonautomated alternative is most 

likely to produce a favorable task outcome. 

Nevertheless, they disregard these utilities and 

use a level of control that lowers the probability 

of task success. 

Why Distinguish Between Appraisal and 

Intent Errors 

Although it is well accepted that misjudg- 

ments of the utilities may produce disuse and 

misuse (DeVries & Midden, 2008; Dixon & 

Wickens, 2006; Dzindolet, Pierce, Beck, Dawe, 

& Anderson, 2001; Kantowitz, Hanowski, & 

Kantowitz, 1997; Madhavan & Wiegmann, 

2007a; Madhavan, Wiegmann, & Lacson, 

2006; Parasuraman, Bahri, Deaton, Morrison, 

& Barnes, 1992; Parasuraman & Miller, 2004; 

Seppelt & Lee, 2007; Wiegmann, 2002), there 

is a paucity of information regarding the causes, 

incidence, and prevention of intent errors. This 

may be a particularly significant omission in 

the literature because many instances of dis- 

use and misuse could result from appraisal or 

intent errors. 

Reportedly, some soldiers in the first Gulf 

War turned off useful automated aids before 

going into battle (Dzindolet & Beck, 2006). 

These suboptimal AUDs could have been 

appraisal errors; soldiers may have underesti- 

mated the value of the aids. Or they could have 

been intent errors. Soldiers may have recog- 

nized the benefits of automation but employed 

manual control for other reasons. 

From an applied standpoint, intent errors need 

to be distinguished from appraisal errors because 

they frequently require different remedies. 

Education regarding the alternatives often pre- 

vents appraisal errors. For instance, pilots learn to 

rely on instruments rather than vision when 

they have difficulty determining the horizon. 

Education regarding the utilities is less likely 

to decrease intent errors. Amelioration of intent 

errors requires mitigating the impact of objectives 

that are incompatible with good performance. For 
example, craftsmen may initially oppose automa- 

tion they believe reduces them to “button push- 

ers” but become supporters of new technologies 

after status concerns are minimized. 

A recent study by Beck, Dzindolet, and 

Pierce (2007) demonstrated the need to con- 

trol intent as well as appraisal errors. In one 

condition, operators received feedback that an 

automated device was more accurate than their 

unaided target detection. Manipulation checks 

revealed that feedback eliminated or substan- 

tially reduced appraisal errors. Nevertheless, 

when choosing between automated and nonau- 

tomated control, operators relied on their own 

skills on 55% of the trials. 

In another condition, participants received 

scenario training plus feedback. Scenario train- 

ing, a technique designed to reduce intent errors, 

encouraged operators to compare unaided per- 

formance to the performance of an automated 

device. When used with informational feed- 

back, scenario training produced a statistically 

significant reduction in intent errors, decreasing 

the disuse rate from 55% to 29%. 

A key question left  unresolved  by  Beck 

et al.’s (2007) study is, What caused these 

intent errors? Why did the majority of opera- 

tors given feedback without scenario training 

refuse to use an aid they knew would increase 

the number of correct identifications? What 

motivated these operators to knowingly lower 

their performance? 

John Henry Effects, Personal Investment, 

and Automation Disuse and Misuse 

Many investigators (Bowers, Jentsch, Salas, 

& Braun, 1998; Miller & Parasuraman, 2007; 

Nass & Moon, 2000; Park & Catrambone, 

2007; Rajaonah, Tricot, & Anceaux, 2008) have 

proposed that operators establish “relation- 

ships” with their machines. Ideally, operators 

will form cooperative associations with their 

machine “partners” (Klein, Woods, Bradshaw, 

Hoffman, & Feltovich, 2004; Madhavan & 

Wiegmann, 2007b), much as they do with human 

teammates. 

Unfortunately, the history of technology 

(Binfield, 2004; Garson, 1995; Sheridan, 2002) 

is characterized by antagonistic as well as 

cooperative relationships between workers and 

automation. One explanation for the intent 

errors in Beck et al.’s (2007) study is that par- 

ticipants were unwilling to rely on automation 

because they saw the machine as a competitor or 
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threat. Responding to automation as a challenger, 

competitor, or adversary is called a John Henry 

effect after the legendary railroad man who died 

racing the steam drill (Nelson, 2006; Watson, 

1990). 

Informal observation suggests that human– 

machine competition is most likely to affect 

AUDs when workers highly value unaided 

performance. For instance, officers who have 

trained for years to maneuver soldiers on a battle 

space are likely to bristle at the suggestion that 

 

efficiently. The purpose of this experiment was 

to test the hypothesis that operators’ personal 

investment in unaided performance increases 

the likelihood of John Henry effects. 

Task, Design, and Hypotheses 

On each of a series of detection trials, opera- 

tors could rely on a human or machine to dis- 

tinguish “friendly” from “enemy” helicopters. 

Unlike some studies (e.g., Dzindolet et al. 2001; 

Madhavan & Wiegmann, 2007a), the AUD was 

made before rather than after the target was 

shown. These kinds of decisions are common- 

place. For example, a commander could send 

a manned or an unmanned aerial vehicle on a 

reconnaissance mission. 

A 2 (operator:  self-reliant,  other-reliant)   

2 (machine reliability: inferior, superior) 14 

(trial blocks) mixed design was employed. 

Operator and trial blocks were within-subjects 

variables and machine reliability was a between- 

subjects variable. Self-reliant participants could 

depend on themselves or a combat identification 

device (CID) to identify the target. Those in the 

other-reliant condition could rely on a previous 

participant’s performance or the CID’s perfor- 

mance. Therefore, self-reliant but not other- 

reliant operators had the opportunity to become 

personally invested in unaided target detection. 

If the operator manipulation was effective, 

personal investment and human–machine 

competition should be greater in self- than in 

other-reliant conditions. 

The optimality of the AUD depended on the 
relative accuracies of the CID and human. In 

the superior machine condition, the CID made 

more correct identifications over the long run. 

Relying on human control was a suboptimal 

 

 

 

 
 

 

 
 

 
 

Figure 1. Hypothesized relationships of personal 

investment and human–machine competition on disuse 

and misuse. 

 

 
AUD, an instance of disuse. If personal invest- 

ment enhances the operator’s preference for the 

nonautomated option, disuse should be greater 

among self- than among other-reliant operators. 

In the inferior machine condition, the human 

was more accurate than automation. Relying 

on  the  relatively  inaccurate  CID  constituted 

automation  misuse.  Because  they  are  more 

personally  invested  in  unaided  performance, 

self-reliant operators are predicted to exhibit 

stronger  preference  for  human  control  (less 

misuse) than other-reliant operators (Figure 1 

illustrates the hypotheses). 

The main effect for the trials variable is also 

predicted to be statistically significant. Some 

appraisal errors are expected on early trials 

before operators have sufficient opportunity to 

compare human with machine accuracy. Across 

trials, cumulative feedback should decrease 

appraisal errors, producing a statistically sig- 

nificant reduction in suboptimal AUDs. 

The LOA that the operator relies on is one 

of many variables that influence the likeli- 

hood of a correct identification. Therefore, an 

inverse but imperfect correlation is expected 
between suboptimal AUDs and performance. 

Experimental manipulations that increase sub- 

optimal AUDs are predicted to produce lower 

levels of performance. 
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Participants 

METHOD Each trial began with a “Credit Choice” 

screen on which participants elected to base 

the upcoming trial on nonautomated or auto- 

Serving as participants were 88 undergradu- 

ates (44 females and 44 males) enrolled at a 

comprehensive southeastern university served as 

participants. Random assignment was employed 

with the stipulations that each cell contained the 

same number of participants and an equal num- 

ber of each gender. Procedures were approved 

by an institutional review board and were in 

accord with the guidelines for ethical conduct 

(American Psychological Association, 2001). 

Instrumentation 

The workstation was an Intel Pentium III, 

864-MHz central processing unit equipped with 

256 MB of random-access memory, a mouse, 

and keyboard. Slides were shown on a 38.1-cm 

V755 OptiQuest View Sonic Monitor driven 

by a Dell Dimension XPS B866 video card. 

Resolution was high color (16-bit), 1,024 768 

pixels. A Visual Basic program presented the 

slides and recorded responses. 

The targets were black-and-white photo- 

graphs of 72 Black Hawk (friendly) and 72 Hind 

(enemy) helicopters. Some pictures were of 

complete helicopters, and others showed part of 

a helicopter. Of the slides, 136 were presented 

twice and 8 pictures once, yielding a total of 280 

trials. 
 

Procedure 

Self-reliant operators. Participants were 

instructed that the task involved distinguishing 

friendly from enemy helicopters. On each trial, 

operators could rely on themselves or the CID to 

identify the target. Photographs of the two types 

of helicopters were placed on the workstation to 

assist the operators during the detection trials. 

The participants’ goal was to earn as many 

credit points as possible. Operators gained one 

credit point if they based credit on their perfor- 

mance and their targeting decision was correct 

or if they based credit on the machine’s answer 

and it was right. They earned zero credit points 

if they based credit on themselves and their tar- 

geting decision was wrong or if they relied on 

the CID and it was incorrect. Operators received 

$5 at the end of the session if their total credit 

points exceeded the 50th percentile. 

mated control (Figure 2). Choices were indi- 

cated by clicking a button labeled “Credit 
Point For The Next Trial Will Be Based On My 
Response” or “Credit Point For The Next Trial 

Will Be Based On The Combat Identification 
Device’s Response.” This AUD yielded the 
main dependent measure. 

Next, a target photograph was displayed for 

0.75 s. Then, the “Operator Response” screen 

appeared. Participants clicked the “Fire” button 
or “Hold Fire” button, depending on whether they 
believed the photo was a friend or enemy. Operators 
attempted to identify the target, regardless of their 
decision on the Credit Choice screen. 

The “Combat Identification Device 
Response” screen then emerged and indicated if 
the CID would fire or hold fire. Each trial con- 
cluded with the “Results” screen. It revealed 
(a) the operator’s choice on the Credit Choice 
screen, (b) the operator’s and CIDs’ targeting 

decisions, (c) whether a friend or enemy was 
in the slide, and (d) if the operator received a 
credit point for that trial. 

Counters located at the center of the Credit 
Choice screen provided running totals  of 
errors made by the participant on the Operator 

Response screen and errors made by the 
machine on the CID Response screen. After 
operators learned whether the human was more 
or less accurate than the CID, any suboptimal 
AUDs were expected to result from intent rather 
than appraisal errors. 

Unbeknownst to the operators, the CID’s 
accuracy depended on their performance and 
the level of the machine reliability. For exam- 
ple, if an operator paired with the superior 
machine made 40 errors during the session, the 
CID made approximately 20 mistakes. If a par- 

ticipant working with the inferior machine made 
15 errors, the CID made roughly 30 mistakes. 

After four sample trials, operators were 
questioned to ensure that they understood the 
directions. The experimenter then left the room 
and the detection trials began. 

Other-reliant operators. Like self-reliant 
operators, the goal of other-reliant operators 
was to earn as many credit points as possible. 
Participants assigned to the other-reliant con- 
ditions were treated identically to those in the 



 

 
 

 
Figure 2. Sequence of screens composing a detection trial: Credit Choice screen (a), photograph of a friendly (b) 

or enemy helicopter (c), Operator Response screen (d), Combat Identification Device Response screen (e), and 

Results screen (f). 
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self-reliant conditions with these exceptions. 
On the Credit Choice screen, other-reliant stu- 

dents clicked a button labeled “Credit Point For 

The Next Trial Will Be Based On A Previous 

Operator’s Response,” or they pressed a but- 
ton labeled “Credit Point For The Next Trial 

Will Be Based On The Combat Identification 

Device’s Response.” 

The target slide was then shown, followed 

by the Operator Response screen. Other-reliant 

participants, however, did not attempt to distin- 

guish friendly from enemy helicopters. Instead, 

they viewed a self-reliant operator’s choice to fire 

or hold fire. Each trial concluded with the CID 

Response and Results screens. Total mistakes 

made by a prior participant on the Operator 

Response screen and by the machine on the 

CID Response screen were displayed by error 

immediate feedback were employed. There 

should be little difference in how self- and 

other- reliant operators rated the relative 

accuracy of the CID. 

The investigator returned to the room 

following the manipulation checks. Operators 

received $5 if they obtained more than 210 

credit points; otherwise, no money was 

given. Participants were thanked and 

debriefed. 

RESULTS 

The dependent variables were the frequency 

of suboptimal AUDs and the frequency of trials 

in which the operator received no credit point 

(NCP). The error variances associated with the 

superior machine condition were much greater 

than the error variances associated with the 

inferior  machine  condition.  With  suboptimal 

counters on the Credit Choice screen. AUDs as the dependent measure, F (2, 21) = 
Operators assigned to the other-reliant groups 3.83, p < .01, with NCPs as the dependent vari- 

were yoked to an individual in the self-reliant able, F (2, 21) = 3.21, p < .05. Therefore, the 

groups with respect to the gender of the partici 

pant and the machine reliability variable. For 

instance, assume a woman in the self-reliant 

condition worked with the superior machine, 

clicked “Fire” on Trial 32, and saw that the 

CID held fire. Then, a woman in the other 

reliant condition who worked with the superior 

machine saw that the previous participant fired 

on Trial 32 and that the CID held fire. 

Manipulation checks. Participants responded 

to two five-item Likert-type items following 

the 280th trial. The first question, “Which was 

more important to you: earning credit points 

or answering (seeing a previous participant 

answered) correctly on the Operator Response 

screen?” assessed the operator variable. If 

self-reliance enhanced  personal  investment in 

unaided performance and human–machine 

competition, correct answers on the Operator 

Response screen should be more important to 

self than to other reliant participants. 

The second item, “Do you think that you 

(the previous participant) or the combat iden 

tification device was more accurate in distin 
guishing friendly from enemy helicopters?” 

tested the machine reliability variable. If the 

manipulation was successful, operators in the 

superior conditions should rate the CID as more 

accurate than operators assigned to the inferior 

conditions. Furthermore, because yoking and 

levels of machine reliability were examined 

separately. 

Two 2 (operator: self reliant, other reliant)  

14 (trial blocks) repeated measures ANOVAs 

were performed on the data of participants 

assigned to the superior machine condition, 

one for each dependent measure. Two similar 

ANOVAs were conducted on the responses of 

operators paired with an inferior machine. 

Superior Machine Conditions 

The main effect for the operator variable was 

statistically significant with suboptimal AUDs 

as the dependent variable, F(1, 21) = 38.54, p < 

.001, partial eta squared = .65. If the machine’s 

accuracy was superior to the human, self-reliant 

operators made more suboptimal decisions 

(M = 177.32) than other-reliant (M = 64.82) 

operators (Figure 3). A statistically significant 

main effect for the trial blocks variable was also 

obtained, F(13, 273) = 3.02, p < .001, partial 

eta squared = .13. Fewer suboptimal AUDs 

occurred on the later trial blocks. The Operator  

Trial Blocks interaction was not statistically 
significant, F(13, 273) = 1.58, ns, partial eta 

squared = .07. 

A significant main effect for the operator 

variable was also found if NCP was the depen 

dent measure, F(1, 21) = 15.44, p < .001, par 

tial eta squared = .42. Self-reliant operators 
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Figure 3. Mean suboptimal automation usage deci 

sions as a function of the operator variable and trial 

blocks for participants working with the superior 

machine. 

 

 

(M = 54.18) had more NCPs than other-reliant 

operators (M = 43.86). Trial blocks was also 

statistically significant, F(1, 21) = 5.80, p < 

.001, partial eta squared = .22. NCPs declined 

across trials. The two-way interaction was not 

statistically significant, F(13, 273) = 1.58, ns, 

partial eta squared = .07. 

Inferior Machine Conditions 

ANOVA yielded a statistically significant 

main effect for the operator variable with sub- 

optimal choices as the dependent variable, 

F(1, 21) = 9.62, p < .01, partial eta squared = .31. 

In the inferior machine condition, self-reliant 

operators committed more suboptimal  AUDs 

(M = 40.09) than other-reliant (M = 11.36) 

operators (Figure 4). The trial blocks variable also 

attained statistical 

significance,F(13,273)=16.45, p < .001, partial 

eta squared = .44. Suboptimal AUDs were 

more frequent on early trial blocks. A 

statistically significant ordinal interaction was 

also found, F (13, 273) = 8.51, p < .001, partial 

eta squared = .29. Other-reliant operators exhib 

ited a greater decline in suboptimal AUDs across 

trials than self-reliant operators. 

Analysis of the NCPs of participants paired 

with an inferior machine yielded a statistically 

significant main effect for the operator variable, 

Trial blocks (20 trials per block) 

 

Figure 4. Mean suboptimal automation usage deci 

sions as a function of the operator variable and trial 

blocks for participants working with the inferior 

machine. 

F(1, 21) = 5.80, p < .05, partial eta squared = 

.22. Self-reliance operators made fewer NCPs 

(M = 68.50) than other-reliant operators (M = 

73.91). Trial blocks was also statistically signifi 

cant, F(1, 21) = 12.53, p <.001, partial eta squared= 

.37. NCPs decreased across trials. The two-way 

interaction attained statistical significance, F(13, 

273) = 2.00, p < .05, partial eta squared = .09. 

Manipulation Checks 

Correct responses on the Operator Response 

screen were more important to self-reliant (M = 

3.41, SD = 1.11) than to other-reliant opera- 

tors (M = 2.27, SD = 1.15), t(43) = 5.18, p < 

.001, suggesting that personal investment and 

human–machine competition were success- 

fully manipulated. Responses to the second 

item, comparing the relative accuracies of the 

human and CID, found that machine reliability 

was successfully varied, t(86) = 20.52, p < .001. 

The superior machine received higher ratings 

(M = 4.27, SD = .82) than the inferior machine 

(M = 1.34, SD = .48). The mean accuracy rat 

ings of self-reliant operators (M = 2.86, SD = 

1.52) and other-reliant operators (M = 2.75, 

SD = 1.73) were not significantly different, 

t(43) = 0.76, ns. Thus, no evidence was found 

indicating that self-reliant operators were more 
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likely to underestimate their errors than other- 

reliant operators. 

 

DISCUSSION 

Personal Investment and John Henry 

Effects 

As predicted, high personal investment in 

unaided performance increased disuse. Self- 

reliant operators committed more suboptimal 

AUDs and NCPs than other-reliant operators 

if the CID was more accurate than the human. 

Although manipulation checks indicate that 

they recognized the CID’s superior accuracy, 

self-reliant operators’ AUDs proved resistant to 

cumulative feedback. Their rate of suboptimal 

decisions never dropped below 54% on any trial 

block (Figure 3). 

Other-reliant operators, having little or no 

personal investment in human control, were 

more responsive to cumulative feedback. They 

exhibited a distinct preference for the CID by 

the second trial block. Their rate of suboptimal 

AUDs across the last 260 trials was 22%. 

Results were also consistent with the suppo 

sition that high personal investment decreases 

misuse. In the inferior machine condition, self- 

reliant operators made fewer suboptimal AUDs 

and had fewer NCP trials than other-reliant oper- 

ators (Figure 4). Even on the first trial block, 

self-reliant operators seldom relied on the CID. 

Feedback indicating that they were more accu 

rate than the machine did not further reduce sub- 

optimal AUDs, perhaps due to a floor effect. 

In contrast, other-reliant operators did not 

exhibit a strong initial preference for human 

control. Forty-one percent of their AUDs were 

suboptimal on the first trial block. Suboptimal 

AUDs gradually decreased as other-reliant 

operators learned that the CID was less accurate 

than the prior participant. When the disuse and 

misuse data are viewed together, they provide 

strong support for the prediction that personal 

investment in unaided performance increases 

the likelihood of John Henry effects. 

As hypothesized, experimental conditions 

that increased suboptimal AUDs resulted in 

lower performance. Effect sizes, however, reveal 

that the operator and trial block variables had a 

greater impact on AUDs than on NCPs. NCPs 

were probably less affected by the experimental 

manipulations because performance is influ 

enced by many variables in addition to personal 

investment and AUDs. 

An alternative interpretation of these findings 

is that self-reliant operators underestimated their 

errors. No doubt, people are often less aware of 

their own errors than they are of mistakes made 

by others or by machines. In this study, how- 

ever, immediate feedback on the Results screen 

was intended to minimize this tendency. This 

procedure appears to have been effective, as 

the manipulation check comparing human with 

CID accuracy found little difference in the ratings 

of self- and other-reliant participants. 

Refusing to rely on automation of proven 

utility is one of many ways people express 

John Henry effects. John Henry effects could 

lead workers to destroy equipment, overem 

phasize machine failures, exaggerate their own 

skills, experience debilitating anxiety, become 

depressed, or organize to prevent mechaniza 

tion. Predicting how John Henry effects will be 

manifested is a complex but important topic for 

future investigations. 
The results of this and other studies empha 

size the need to develop interventions to coun 

ter deleterious John Henry effects. Techniques, 

such as scenario training (Beck et al., 2007), 
which prompt operators to compare the utili 

ties of automated and non-automated con 

trol are one means of decreasing suboptimal 

AUDs. The work of Miller (2002, 2004) on 

human–computer “etiquette” implies that John 
Henry effects will be reduced if operators 

regard automation as a partner rather than a 

competitor. Etiquette may affect trust, which in 

turn influences the probability of intent errors 
(Dzindolet, Beck, & Pierce, in press; Lee & 

Moray, 1992; Lee & See, 2004; Lees & Lee, 

2007; Merritt & Ilgen, 2008; Parasuraman & 

Miller, 2004). 

 
Intent Errors, Misuse, and Disuse 

In this investigation, some appraisal errors 

undoubtedly occurred on the early trials. Still, 

the preponderance of evidence indicates that 

most suboptimal AUDs were errors of intent. 

Manipulation checks found that almost every 

participant recognized whether the human or 

CID  was  more  accurate.  Also, yoking  was 



 

 

employed. With respect to judging the utilities, 

self- and other-reliant operators faced cognitively 

identical tasks. The substantial differences in the 

disuse and misuse rates of self and other-reliant 

operators can be attributed only to intent errors. 

It is very important for researchers to deter 

mine if intent errors affect the AUDs of highly 

trained as well as novice operators. Although 

this issue needs to be tested in an automated 

setting, investigations contrasting actuarial and 

clinical judgments (Dawes, 1994; Dawes, Faust, 

& Meehl, 1989; Grove, Zald, Lebow, Snitz, & 

Nelson, 2000) often find that professionals are 

not immune to errors of intent. Almost every 

graduate student in the behavioral sciences is 

exposed to the research demonstrating that actu 

arial judgments are frequently more accurate 

than clinical judgments. Nonetheless, person- 

nel directors, therapists, and other professionals 

often rely more on their subjective impres 

sions than on objective data when making life- 

changing assessments. 

If suboptimal AUDs were solely attributable 

to appraisal errors, disuse and misuse could be 

largely eliminated by correcting misjudgments 

of the utilities of the automated and non-

automated alternatives. The potential for 

intent errors necessitates a more complex 

and com- prehensive model of operator 

decision making. AUDs must be viewed as 

governed by multiple objectives, some of 

which may be incompatible with achieving 

task success. 

This experiment demonstrated that opera- 

tors’ personal investment in non-automated 

performance affects the likelihood of John 

Henry effects and intent errors. The challenge 

for investigators is to identify other variables 

that determine the impact of intent errors on 

disuse and misuse. After these conditions 

have been ascertained, interventions must be 

designed to control intent errors as well as 

appraisal errors. 
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